MODSIM2021 banner

Author Index

* Please note this includes full papers only

A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

S

  • Sabaghy, S.
    • Random forest classification: A case study of dryland crop cover mapping in the Victorian Mallee using Sentinel-2A, Sentinel-3, and MODIS imagery
      Sabaghy, S., Sheffield, K.J. and Robson, S.A.
      https://doi.org/10.36334/modsim.2021.B3.sabaghy
  • Saco, P.M.
    • Assessing waterbird breeding conditions using an emulator of wetland inundation regime
      Quijano, J., Rodriguez, J., Kuczera, G., Saco, P.M., Sandi, S.G., Carlier, R., Wen, L. and McDonough, K.
      https://doi.org/10.36334/modsim.2021.J1.quijano
  • Sainsbury, O.
  • Sandi, S.G.
    • Assessing waterbird breeding conditions using an emulator of wetland inundation regime
      Quijano, J., Rodriguez, J., Kuczera, G., Saco, P.M., Sandi, S.G., Carlier, R., Wen, L. and McDonough, K.
      https://doi.org/10.36334/modsim.2021.J1.quijano
  • Scanlan, J.
    • Disentangling the effects of management and climate on perennial grass pastures and the degradation that follows multi-year droughts
      Owens, J., McKeon, G., O’Reagain, P., Carter, J., Fraser, G., Nelson, B. and Scanlan, J.
      https://doi.org/10.36334/modsim.2021.B1.owens
  • Seaton, S.
    • Towards a provenance-enabled, reproducible, and extensible machine learning platform by integrating databases, web services, containers, and code repositories in a loosely coupled manner
      Singh, R.M., Wilson, P., Gregory, L., Seaton, S. and Malone, B.
      https://doi.org/10.36334/modsim.2021.C4.singh
  • Shafqat, M.
    • Model-based machine learning to explore the nexus between COVID-19 and environmental factors in the United States
      Munir, T., Hudson, I.L., Cheema, S.A., Muhammad, R., Shafqat, M. and Kifayat, T.
      https://doi.org/10.36334/modsim.2021.H1.munir
  • Shanafield, M.
    • Modelling hydrological change due to wildfires
      Partington, D., Thyer, M., Shanafield, M., McInerney, D., Westra, S., Maier, H.R., Simmons, C.T., Croke, B.F.W., Jakeman, A.J., Gupta, H.V. and Kavetski, D.
      https://doi.org/10.36334/modsim.2021.J8.partington
  • Sheffield, K.J.
    • Random forest classification: A case study of dryland crop cover mapping in the Victorian Mallee using Sentinel-2A, Sentinel-3, and MODIS imagery
      Sabaghy, S., Sheffield, K.J. and Robson, S.A.
      https://doi.org/10.36334/modsim.2021.B3.sabaghy
  • Shepherd, D.
    • Mapping additional streamflow decline due to shifts in catchment response during the Millennium Drought
      Saft, M., Peel, M., Jordan, P., Shepherd, D., Steendam, G., Lett, R. and Peterson, T.
      https://doi.org/10.36334/modsim.2021.K11.saft
  • Sim, W.
    • Analytic approaches to understanding future Defence workforce needs
      Rowe, C., Crockett, A., Rohan-Jones, S., Aljoorfri, S., Tay, N., Coutts, A., Bishop, C., Pay, A., Sim, W., Date, V. and Boyce, J.
      https://doi.org/10.36334/modsim.2021.M8.rowe
  • Simmons, C.T.
    • Modelling hydrological change due to wildfires
      Partington, D., Thyer, M., Shanafield, M., McInerney, D., Westra, S., Maier, H.R., Simmons, C.T., Croke, B.F.W., Jakeman, A.J., Gupta, H.V. and Kavetski, D.
      https://doi.org/10.36334/modsim.2021.J8.partington
  • Singh, R.M.
    • Towards a provenance-enabled, reproducible, and extensible machine learning platform by integrating databases, web services, containers, and code repositories in a loosely coupled manner
      Singh, R.M., Wilson, P., Gregory, L., Seaton, S. and Malone, B.
      https://doi.org/10.36334/modsim.2021.C4.singh
  • Skinner, A.
    • Prototyping, developing, and iterating a gamified survey to evaluate participatory systems modelling for youth mental health: Quality assurance pilot
      Lee, G.Y., Hickie, I.B., Occhipinti, J., Song, Y.J.C., Huntley, S., Skinner, A., Lawson, K., Hockey, S.J. and Freebairn, L.
      https://doi.org/10.36334/modsim.2021.H2.lee
  • Song, Y.J.C.
    • Prototyping, developing, and iterating a gamified survey to evaluate participatory systems modelling for youth mental health: Quality assurance pilot
      Lee, G.Y., Hickie, I.B., Occhipinti, J., Song, Y.J.C., Huntley, S., Skinner, A., Lawson, K., Hockey, S.J. and Freebairn, L.
      https://doi.org/10.36334/modsim.2021.H2.lee
  • Stassen, C.
  • Steendam, G.
    • Mapping additional streamflow decline due to shifts in catchment response during the Millennium Drought
      Saft, M., Peel, M., Jordan, P., Shepherd, D., Steendam, G., Lett, R. and Peterson, T.
      https://doi.org/10.36334/modsim.2021.K11.saft
  • Steinle, P.
  • Stewart, L.K.
  • Stewart, R.
    • An assessment framework for classifying determinants of household water consumption and their priorities for research and practice
      Cominola, A., Preiss, L., Thyer, M., Maier, H.R., Stewart, R. and Castelletti, A.
      https://doi.org/10.36334/modsim.2021.J3.cominola
  • Stewart, R.A.
  • Stuart, G.
    • Estimation of road closure risks along the Bruce highway using the AWRA-L water balance model
      Vogel, E., Lerat, J., Gericke, L.A., Russell, C.A., Preece, A., Stuart, G., Pipunic, R., Khan, Z. and Donnelly, C.
      https://doi.org/10.36334/modsim.2021.K5.vogel
  • Su, C.-H.
  • Subash, N.
    • Changing crop management improves farm level productivity and profitability for smallholder farmers in northern India
      Beletse, Y.G., Laing, A.M., Prestwidge, D.B., Gathala, M.K., Subash, N. and Liedloff, A.C.
      https://doi.org/10.36334/modsim.2021.B8.beletse

T

  • Thatcher, M.
  • Thompson, M.
  • Trotter, L.
    • “Naïve” inclusion of diverse climates in calibration is not sufficient to improve model reliability under future climate uncertainty
      Trotter, L., Saft, M., Peel, M.C. and Fowler, K.J.A.
      https://doi.org/10.36334/modsim.2021.J8.trotter