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Abstract:   It has been recognized that one of the most visible manifestations of global climate change is an 

increase in the intensity and frequency of extreme weather events. The latter include droughts, heat waves, 

heavy downpours, tornados, typhoons, and major hurricanes. In this paper, we propose a conceptual 
framework for assessing extreme weather conditions 

incorporating the factor of seasonality. The study was based on 

historical meteorological data of Ahmedabad city, India (latitude: 

22.9914, longitude: 72.6167) consisting of daily average 

temperature (°C), minimum temperature (°C), maximum 

temperature (°C), wind speed (m/s), surface pressure (kPa) and 

precipitation (mm) collected over the past 38 years, from 1st 

January 1982 to 31st December 2020 (Figure 1). 

The main steps of the framework are shown in Figure 2. We used 

boxplot technique to visualize the dataset and determine the central 

tendency, range, symmetry, and the presence of outliers in data. 

Predicting extreme weather events based on fixed seasonal time 

frames may produce inaccurate or biased results. It is important to 

consider the seasonal variability across the years before detecting 

extreme weather events and predicting their trends. We conducted 

cluster analysis to group observed data points into distinct seasons 

based on the similarity in their meteorological features. Given an 

obvious time-oriented nature of data, K-means clustering algorithm 

with dynamic time warping metric to measure similarity have been 

applied. The resultant clusters (i.e., artificial seasons) have been used 

to study the variation in seasonality across contiguous years and to 

identify the long-term trends in extreme weather conditions (namely, 

temperature and precipitation) within a seasonal context over a 38-year 

period (1982-2020). Traditionally, the study of extreme weather events 

includes computation of 5th, 10th, 90th and 95th percentiles of observed 

meteorological data as thresholds across the time periods, and this 

approach is extensively applied and recommended in the literature. 

However, in the prior research, the thresholds have been computed 

across the whole periods, whereas we used these thresholds and 

computed them over derived seasonal clusters to analyze the extreme 

weather events pertaining to a given season. Additionally, we included 

1st and 99th percentile thresholds as severe/extreme weather events. The 

magnitude trends in extreme hot and extreme cold events during each 

season and extreme rainfall events in the “Monsoon” season have been 

estimated and visualized. 

It would be worthwhile to include the intensity of precipitation and 

humidity for a finer determination of seasonality. In combination, we 

can analyse the contribution of each meteorological feature to the 

formation of clusters (seasons) and compare our obtained results with 

different permutation of features in K-means. 
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Figure 2. The proposed 

conceptual framework for 

studying seasonality and extreme 

weather events factoring 

seasonality. 

Figure 1. Location of the study 

area (city of Ahmedabad in 

India). 
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1. INTRODUCTION

Numerous efforts have been made to define the term “extreme weather” but no universal formalized definition 

quantifying the term “extreme” exists so far. There are multiple types of severe and extreme weather conditions, 

such as heat waves, thunderstorms, cold spells, hurricanes, tornadoes, hails, ice and dust storms, etc. which are 

determined by the combination of meteorological features. It is important to quantify “extreme” weather 

conditions and define absolute thresholds to the degree of severity based on daily meteorological observations. 

One such approach is to define severity based on percentiles which is convenient to produce seasonally 

aggregated scores and perform comparison between seasons and regions (Magnusson et al. 2014). The 

meteorological attributes used to define the extreme weather events for different seasons should also be 

considered chronologically, i.e., in their temporal order. In reality, however, seasons do not always start and 

end on fixed calendar dates but are variable and dependent on the daily meteorological features like air 

temperature, wind speed, precipitation, surface pressure, humidity, etc.  

Predicting extreme weather events based on fixed seasonal time frames may produce inaccurate or biased 

results. For example, if we consider the winter season to span from 1st November to 31st January for a certain 

location it is not necessary that the winter season will occur every year exactly during the same time frame. 

Practically, we observe seasonal shift in either direction every 12 months. Therefore, it is important to take into 

account the seasonal variability across the years before detecting extreme weather events and predicting their 

trends.  

Machine learning (ML) methods (such as clustering) can be applied on panel data to segregate observed data 

points into distinct seasons. This artificial grouping of multi-dimensional data points to form seasons based on 

the similarity in their meteorological attributes would help in the study of seasonal variability and detection of 

extreme weather events while taking the seasonality factor into consideration.  

This paper describes a generic framework to group observed data points to form seasons based on the similarity 

in their meteorological features. The data used for this research is time-oriented and thus we use K-means 

clustering algorithm with dynamic time warping metric to measure similarity (Petitjean et al. 2010). The 

resultant clusters (i.e., seasons) are analysed to study the variation in seasonality across contiguous years. 

Furthermore, the derived seasonal clusters are used to analyse the long-term trends in extreme weather 

conditions (namely, temperature and precipitation) within a seasonal context over a 38-year period (1982-2020) 

using formalized definitions of “extreme” weather conditions from the literature.  

2. METHODOLOGY

Unsupervised learning unlike other ML algorithms, such as regression, does not produce results based on 

characteristics or features but rather categorizes each data point based on similarity in its attributes or patterns 

discovered from its associated data (Mahesh 2020). It can be applied to classify data with no class labels. We 

use this technique to cluster our panel data containing time stamp and meteorological features into distinct 

seasons based on the similarity and sequential order of twelve calendar months within a year aiming at 

partitioning of contiguous months with the most similar weather patterns and labelling them as respective 

seasons. K-means and agglomerative hierarchical algorithms are the two most popular clustering techniques 

(Garima et al. 2005). K-means algorithm assigns each data point to its nearest centroid based on similarity, and 

the group of points particularly close to the centroid forms a cluster. This type of partitioning maximizes the 

measure of similarity within the cluster and minimizes similarity between the clusters (Badhiye et al. 2012). 

On the other hand, agglomerative hierarchical algorithm initially considers each data point as a single-element 

cluster (leaf) and iteratively merges closest pairs of clusters together until each data point is categorized into 

any one of the clusters. Both K-means and agglomerative methods are parametric algorithms; that is, they 

require a user to pre-define a fixed number (k) of clusters in a dataset (in our case – the number of seasons). 

We can identify the optimal number of clusters (seasons) using the elbow method or silhouette coefficient 

(Kodinariya et al. 2013). This automates the process of setting the optimal number of seasons based on the 

input dataset (meteorological time series) and establishes a generic approach as it depends only on the 

meteorological features and is universal relative to geographical location. The elbow technique uses the within 

cluster sum of squares (WCSS, the squared average distance of all the points within a cluster to the cluster 

centroid) as the performance indicator and calculates it for a series of k (number of clusters) values. On plotting 

WCSS vs k, the point of inflection (bend/elbow) gives the optimal value of k. The silhouette score is determined 

by the ratio of the difference of mean intra cluster distance and mean nearest cluster distance to the maximum 

of either of them. As a result, the maximum silhouette coefficient gives the ideal respective k value. 
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However, in clustering algorithms, the standard metric used for similarity measure is the Euclidean distance 

known to be very sensitive to distortion in time axis (Chu et al. 2002). Neglecting the temporal shifts and order 

of data can result in poor accuracy of clusters which would be propagated to biased grouping of months. This 

problem can be addressed by Dynamic Time Warping (DTW), an extremely efficient algorithm for time-series 

similarity measure which is sensitive to the temporal 

shifts and minimizes the effects of distortion in time 

(Ratanamahatana et al. 2004). DTW measures similarity 

between two time-series which do not align exactly in 

time, speed or length; that is, the sequences are similar 

but locally out of phase. For example, in Figure 3, both 

red and blue time series have similar shape but are not 

aligned in the same time axis. Here, the Euclidean metric 

calculates similarity based on the alignment of ith point in 

red sequence to ith point in blue sequence which would 

produce a pessimistic dissimilarity measure whereas 

DTW allows innate similarity calculations of non-

linearly aligned sequences.  It works best for clustering 

meteorological time series into different seasons 

ensuring accuracy and reducing time complexity as well 

as matching similar trends to each other. 

After clustering our meteorological time-series into distinct seasons and grouping the respective seasonal 

months together using DTW, we use the derived season-based clusters to study the extreme weather events and 

analyze the shift of seasonal span across the years. Five seasons (i.e., winter, spring, summer, monsoon and 

autumn) are investigated. The study of extreme events includes computation of 5th, 10th, 90th and 95th percentiles 

as thresholds across the whole time periods which is extensilvely applied and recommended by STARDEX 

(Statistical and Regional Dynamical Downscaling of Extremes for European Regions; 

http://www.cru.uea.ac.uk/projects/stardex/) and the ETCCDI (Expert Team on Climate Change Detection and 

Indices; http: //cccma.seos.uvic.ca/ETCCDI/) projects (Khomsi et al.  2016). While in the above-mentioned 

projects, they compute the thresholds across the whole periods, we use these thresholds and compute them over 

derived seasonal clusters to analyze the extreme weather events within a given season. Additionally, we include 

1st and 99th percentile thresholds as severe/extreme events. Tables 1 and 2 define the thresholds used to classify 

the weather events as extreme, heavy or exceptional.  

Table 1. Percentile thresholds and their respective definition/meaning w.r.t. temperature events. 

Percentile Definition/Meaning 

99th (1st) All the events whose maximum (minimum) temperature is greater (lower) than or equal to the given threshold 

is an extremely hot (cold) day. 

95th (5th) All the events whose maximum (minimum) temperature is greater (lower) than or equal to the given threshold 

is a very hot (cold) day. 

90th (10th) All the events whose maximum (minimum) temperature is greater (lower) than or equal to the given threshold 
is a hot (cold) day. 

Table 2. Percentile thresholds and their respective definition/meaning w.r.t. precipitation events. 

Percentile Definition/Meaning 

99th All the events whose daily precipitation value is greater than or equal to the given threshold is classified as an 

exceptional/extreme precipitation day. 

95th All the events whose daily precipitation value is greater than or equal to the given threshold is classified as an 

intense precipitation day. 

90th All the events whose daily precipitation value is greater than or equal to the given threshold is classified as a 
heavy precipitation day. 

3. DATA SOURCE

We have captured historical meteorological data of Ahmedabad city, India (latitude: 22.9914, longitude: 

72.6167) from NASA Prediction of Worldwide Energy Resources (https://power.larc.nasa.gov) and Power 

Data Access Viewer (https://power.larc.nasa.gov/data-access-viewer/). The dataset consists of daily average 

temperature (°C), minimum temperature (°C), maximum temperature (°C), wind speed (m/s), surface pressure 

Figure 3. Euclidean distance measure and 

dynamic time warping distance measure. 
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(kPa) and precipitation (mm) measured over the past 38 years, from 1st January 1982 to 31st December 2020, 

with no missing values. In order to visualize the dataset, we made use of boxplots as shown in Figure 4 which 

highlights the five most important descriptive statistics, i.e., mean, median, the minimum and maximum as 

well as the first and third quartiles. Boxplots also indicate the central tendency, range, symmetry and the 

presence of outliers in the dataset (Boslaugh 2012). 

 

Figure 4. Descriptive analysis of (a) average temperature, (b) surface pressure and (c) wind speed of 12 

months from 1982-2020 visualized as boxplots. 

4. RESULTS 

The results of this project are two-fold: the seasonality clustering is presented in section 4.1 and the study of 

extreme weather conditions incorporating the factor of seasonality is presented in section 4.2. 

4.1. Seasonality study 

Phenologically for Ahmedabad, the five seasons of the 

year are: winter (December – February), spring (March – 

April), summer (May – June), monsoon (July – 

September) and autumn (October - November), and the 

grouping of these months in the corresponding seasons 

can be confirmed by Figure 4. However, in reality, the 

starting and ending dates of the seasons fluctuate every 

year and do not necessarily align with the phenological 

norm. To analyse these seasonal shifts and possible 

trends, we apply clustering to group the data points into 

seasons based on the daily maximum temperature, 

minimum temperature, wind speed and surface pressure. 

The optimal number of clusters (seasons) for the input features (average temperature, minimum temperature, 

maximum temperature, wind speed and surface pressure) 

is calculated using elbow method and the resultant WCSS 

vs k plot is depicted in Figure 5. Since the graph flattens 

after 4 and 5, we can safely conclude that 4 is the optimal 

value for k. Using DTW metric for K-means, we perform 

time series clustering on our dataset, and the clusters 

obtained using above-mentioned input features are shown 

in Figure 6. 

The labelling of clusters to their respective seasons can be 

explained using Figure 7 which depicts the average 

temperature curve for the year 1982 (over 360 days of the 

year) with colour encoded clusters. Clearly, the purple 

clustered data points fall in the lower temperature values 

and occur in the end of the year and beginning of the next 

year (i.e., approximately correspond to November – mid 

March period). Accordingly, we mark the purple cluster 

as “Winter” season. Similarly, the blue cluster occupies 

the highest temperature values and spreads from mid-

April to June. We label the blue cluster as “Summer” season. The orange cluster essentially begins straight 

 

Figure 5. Elbow Plot to determine the optimal 

number of clusters (seasons). 

 

            

    

Figure 6. 3D scatter plot (minimum 

temperature, maximum temperature and 

average temperature) of data points with 

clusters obtained from DTW metric for K-

means. 

 

(a) (b) (c) 
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after the “Summer” season and follows a negative slope (decline 

in temperature values) spreading across July to September 

months of the year. It is labelled as the “Monsoon” season. The 

yellow cluster includes two portions of the year, namely, pre-

summer (“Spring” season) and post- monsoon (“Autumn” 

season). Data points belonging to “Autumn” and “Spring” 

seasons are clustered together because of their meteorological 

similarity in terms of minimum temperature and maximum 

temperature with the only distinguishing factor being the time-

order of their occurrence within the year using which we label 

the pre-summer as “Spring” season and post-monsoon as 

“Autumn” season. 

 

The derived clusters help us to analyse 

possible shifts in the seasons over the past 

38 years. For example, Figure 8 and Table 

3 (contains season end dates for 1988-

1991) depict the shift and span of seasons 

across four contiguous years (1988-1991). 

These results are practical and informative 

to analyse the trend and shift in the 

seasonality based on historical data and 

contribute significantly to the forecasting 

of future variations.  

 

Table 3. Season end dates for four contiguous years based on derived clusters (1988-1991). 

Year Winter Spring Summer Monsoon Autumn 

1988 23rd February 5th April 26th June 16th September 5th November 

1989 3rd March 16th April 25th June 17th September 17th November 

1990 7th March 10th April 26th June 25th September 2nd November 

1991 28th February 17th April 12th June 12th September 24th November 

 

Table 4. Minimum (cold) and maximum (hot) temperature magnitudes estimated from the thresholds shown 

in Table 1 over 38 years (1982-2020) using the derived seasonal clusters. 

Season Extremely Hot (Daily Maximum temperature) Extremely Cold (Daily Minimum Temperature) 

Summer  >=46.45°C <=21.27°C 

Winter >=34.82°C <=6.88°C 

Monsoon >=36.87°C <=20.66°C 

Autumn/Spring >=41.02°C <=14.56°C 

 

 

 

                

Figure 7.  Average Temperature and 

Julian Day curve for the year 1982 with 

colour encoded seasons. 

 
               

 

Figure 8. Seasonal shift across four contiguous years (1988 – 

1991).         
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4.2. Extreme weather events factoring seasonality 

We study the extreme weather events and their 

point of occurrence based on the results derived 

from seasonal clustering as described in section 

4.1. Performing univariate analysis using the 

threshold percentiles described in Tables 1 and 2, 

we quantify the range of “extreme” weather points 

for all the four clusters (“Summer”, “Winter”, 

“Monsoon” and “Autumn”/”Spring”). The 

magnitude trends in extreme hot and extreme cold 

events during each of the four derived seasons as 

well as extreme rainfall events in the monsoon 

season have been estimated and the results are 

shown in Tables 4 and 5, respectively. We observe that the occurrence of extreme events (i.e., hot, cold and 

intense precipitation) is not contiguous throughout the studied years (1982-2020), meaning that there are either 

few years containing 

many extreme 

events or containing 

few extreme cold 

events but no 

extreme hot event or 

not containing any 

extreme event. This 

is illustrated in 

Figures 9–16 

presenting the 

number of days in the 

year with extreme 

events and also 

showing the trend 

line over the period 

from 1982 to 2020. 

The trend 

magnitudes of 

extreme events (both 

hot and cold) are 

differently directed 

for every season. For 

the “Summer” season 

(Figures 9 and 10), we 

observe that the trend 

magnitude slightly 

increased for extreme 

cold events and 

slightly decreased for 

extreme hot events 

over the years. At the 

same time, the trend 

magnitude for all the 

other cases decreased 

(Figures 11-16). 

Contrary to the extreme temperature events, the trend magnitude 

for extreme precipitations (Figure 17) demonstrates a steady 

increase over the studied 38 years. 

 

 

 

Table 5. Precipitation magnitudes estimated from the 

thresholds mentioned in table 2 for 38 years (1982-

2020) using the derived monsoon cluster. 

 Daily Precipitation (mm) 

Exceptional/Extreme 
Precipitation 

>= 68.0389 

Intense Precipitation >=33.2829 

Heavy Precipitation >=20.4559 

  

            

    

Figure 13.  Trend magnitudes for 

extreme cold events in winter season. 

 

            

    

Figure 14.  Trend magnitudes for 

extreme hot events in winter season. 

 

             

 

Figure 9.  Trend magnitudes for extreme 

cold events in summer season. 

 

             

 

Figure 10.  Trend magnitudes for 

extreme hot events in summer season. 

              

 

Figure 11.  Trend magnitudes for 

extreme cold events in autumn and 

spring seasons. 

 

             

 

Figure 12.  Trend magnitudes for 

extreme hot events in autumn and spring 

seasons. 

 

            

    

Figure 15.  Trend magnitudes for 

extreme cold events in monsoon season. 

 

                 

    

Figure 16.  Trend magnitudes for 

extreme hot events in monsoon season. 

 
            

    

Figure 17.  Trend magnitudes for 

extreme precipitation events in 

“Monsoon” season. 
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5.  CONCLUSION AND FUTURE WORK 

The results obtained above show the variability in seasonality over years and its effect and contribution to 

determine the extreme weather events. Over 38 years from 1982 to 2020, the extreme temperature (both 

maximum and minimum) trends for almost all the seasons are seen to decline in the studied area, while a 

statistically significant increasing trend is observed in the case of extreme precipitation in “Monsoon” season. 

This response depends on the clusters obtained from unsupervised K-means in an attempt to cluster data points 

to form seasons. 

It would be worthwhile to include the intensity of precipitation and humidity as factors in determining the 

seasonality. Future study could also investigate the consistency of the obtained extreme weather events and 

their trends with the literature. Evaluation of the expansion/contraction of each season over a multi-year period 

could provide a significant dimension in the analysis of extreme weather events. In combination, we can assess 

the contribution of each meteorological feature to the formation of clusters (seasons) and compare obtained 

results with different permutations of features in K-means. 
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