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Abstract: The Bureau of Meteorology, in collaboration with the Queensland Department of Transport and 
Main Roads, conducted a case study that aimed to evaluate the performance of nine-day runoff forecasts in 
predicting road flooding for selected river crossings along the Bruce Highway. The Bruce Highway is a major 
traffic carrier in Queensland and one of the most critical transport infrastructures in the state. Flooding in one 
of the close rivers along the highway can cause the road to be closed. Skilful forecasts of the risk of flooding 
several days ahead would provide an opportunity to prepare for the event and reduce any negative impacts for 
commuters on the highway. We developed and tested a method to relate simulated catchment runoff from the 
national AWRA-L water balance model with water levels at gauging stations close to major highways in 
Queensland. We found promising potential of predicting the risk of flooding in the next five days, as 
highlighted by high hit rates (average of 67.9% for moderate flood level at 15 stations) and low false alarm 
rates (average of 0.5%) for most stations and flood thresholds. This paper provides an overview of the 
evaluation results and outlines recommendations for future work. 

 

Figure 1. Flow diagram illustrating the generation of a road-flooding forecast. 
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1. INTRODUCTION 

Flooding is a recurrent natural hazard that has a significant impact on Australian communities and the economy. 
In Queensland, extreme weather conditions and isolation of inland town centres accentuate the impact of 
flooding, especially on transport infrastructure. Rolfe et al. (2013) estimated that the cost of road closure around 
Rockhampton during the 2010/2011 floods reached $3.3 million per day of disruption. The significant impact 
of road closure due to flooding on transport projects prompted the Queensland Department of Transport and 
Main Roads (TMR) to include it in its cost-benefit analysis manual (TMR, 2011, section 2.41 and 5.5). More 
precisely, the guideline stresses that "Flood warning times and the availability of alternative routes will (…) 
affect the decisions made by road users" (TMR, 2011, page 3.116). 

Being responsible for weather and flood warnings across Australia, the Bureau of Meteorology (BoM) is well 
placed to assist TMR with road flooding forecasts. To explore this avenue, the Bureau and TMR collaborated 
on a preliminary analysis to quantify the value of runoff forecasts generated with the AWRA landscape water 
balance model (AWRA-L) for road flooding prediction. The analysis was undertaken as part of the 
development by the Bureau of a short-term to seasonal landscape forecasting system for hydrological variables 
– including soil moisture at different depths, runoff and evapotranspiration. Previous assessment of forecast 
skill has shown good performance for different variables, regions and lead times and promising potential for a 
wide range of applications. 

This paper presents a forecast evaluation focused on the prediction of road flooding for selected river crossings 
along the Bruce Highway (flooding hotspots). The Bruce Highway is a major highway that connects the state 
capital, Brisbane, with Cairns in Far North Queensland, passing major coastal centres, including Townsville, 
Mackay, Rockhampton and Maryborough. Being the biggest traffic carrier in Queensland, it is one of the most 
critical transport infrastructures in the state. Flooding in one of the close rivers along the highway can cause 
the road to be closed. Skilful forecasts of the risk of flooding several days ahead would provide an opportunity 
to prepare for the event and reduce any negative impacts for commuters on the highway. Here, we developed 
a statistical post-processor based on logistic regression that relates AWRA-L runoff to the risk of road flooding 
and evaluated predicted road flooding probabilities against historical observed water level data. 

2. METHODS 

2.1. Data 

The analysis in this study is based on three data sources: (i) water level time series at several gauging stations 
provided by the state governments and compiled in the Bureau of Meteorology Wiski database; (ii) Road 
flooding level thresholds provided by the Bureau of Meteorology, and (iii) simulated catchment-runoff using 
the AWRA-L model. The datasets used in this study 
generally cover the period 1960-2018 (streamflow 
and water level data as well as AWRA-L simulations 
using AWAP climate inputs), with varying levels of 
data availability between stations. 

Site selection 
We selected 15 streamflow and water level gauging 
stations in Queensland that fulfilled the following 
criteria: (i) Location within 50 m of major highways 
in Queensland, (ii) availability of long-term high-
quality measurements of streamflow and water level, 
and (iii) available information on flooding thresholds 
(i.e. flood levels and bridge height). The locations of 
the gauging stations are presented in Figure 2. 

 

 

Road flooding levels – physical thresholds and 
percentile-based thresholds 
For 13 out of 15 stations, the flood level database of the Bureau of Meteorology (accessible via: 
http://www.bom.gov.au/qld/flood/networks/index.shtml) contained data on minor, moderate and major flood 
water levels. However, such information might not always be available, especially in remote locations. 

Figure 2. Location of selected gauging stations 
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Therefore, we used two types of road flooding thresholds: (i) Physical flooding thresholds, i.e. flood thresholds 
corresponding to moderate and major flood heights for stations where such data is available; and (ii) Percentile-
based flooding thresholds: We found that the minor, moderate and major flood levels averaged to be close to 
the 99th, 99.5th and 99.9th percentiles, respectively. In other words, the three flood levels correspond to the top 
1%, 0.5% and 0.1% of measured water levels at each station. Therefore, we used these as empirical (percentile-
based) thresholds for stations where no flood thresholds were available. 

2.2. Modelling of runoff using AWRA-L 

AWRA-L model 
The runoff was generated using the AWRA-L water balance model v6 (Frost et al., 2018). AWRA-L is a 
gridded water balance model that simulates land surface water fluxes and stores, including runoff, 
evapotranspiration, deep drainage and soil moisture for three soil layers (top: 0-10 cm, shallow: 10-100 cm, 
deep: 100-600 cm), on a 5km x 5km grid. The model was developed by CSIRO and BoM and is run 
operationally by the BoM to provide hydrological data from 1911 until present 
(www.bom.gov.au/water/landscape). The AWRA-L model has been calibrated to observed streamflow, 
catchment-averaged soil moisture and evapotranspiration across Australia and extensively evaluated against 
in-situ hydrological observations, including streamflow, soil moisture, evapotranspiration and groundwater 
recharge (Frost and Wright, 2018). It is used to inform the National Water Accounts, water resource 
assessments, monitoring of soil moisture conditions in Australia and registered users. The input variables of 
AWRA-L v6 are: daily precipitation, minimum and maximum air temperature, wind speed (at 2m) and solar 
radiation. 

Computation of catchment runoff from AWRA-L simulations 
AWRA-L gridded runoff was processed in three steps for each forecast location: 1) The boundary of the 
catchment drained at the location was first delineated using a GIS tool and the Geofabric dataset 
(http://www.bom.gov.au/water/geofabric/). 2) The AWRA-L daily runoffs time series for the cells located 
within the catchment were extracted and averaged to compute a simulated catchment runoff. 3) Finally, a 
running 5-days maximum was applied to the catchment runoff daily series. The 5-day maximum was chosen 
as AWRA-L has no implementation of catchment routing yet (a routing method is currently being developed). 
Due to this, the timing of maximum runoff in AWRA-L may not always follow the actual flood timing, 
especially in larger catchments. However, the model may nonetheless be used to flag high-risk periods for road 
flooding aggregated for multiple days. 

Climate inputs used by AWRA-L 
Two types of climate inputs were used as inputs to AWRA-L: 

• 1) Climate observations: the maximum predictive capacity of AWRA-L catchment to forecast the risk 
of flooding was assessed using a historical AWRA-L runoff simulation based on meteorological 
observation-based datasets: precipitation and temperature from the AWAP dataset (Jones et al., 2009), 
station-based wind speed data (McVicar et al., 2008), and remote-sensed solar radiation (Grant et al., 
2008). All data were available on a 5km x 5km grid. 

• 2) Climate hindcasts: retrospective forecasts of catchment runoff (referred to as “hindcasts”) were 
used to assess the reliability of the nine-day ahead AWRA-L runoff forecasts. Runoff hindcasts were 
created by running AWRA-L with hindcast data from a numerical weather prediction model 
(ACCESS-G2) which produces 10-day forecasts of daily rainfall, temperature, wind speed and solar 
radiation, among other climate variables. A hindcast is produced assuming that climate data is 
available up to a specific forecast date (in the past) – after this date the model is run in forecast mode, 
i.e. without any inputs from historical observations. ACCESS-G2 hindcast are available from April 
2016 to January 2018. 

2.3. Statistical post-processing of simulated catchment runoff 

A logistic regression was used to identify the relationship between catchment runoff (predictor) and whether 
or not a road flooding threshold is exceeded (binary predictand). The regression predicted a probability of 
occurrence using a Sigmoid function as shown in Figure 3. The probability of occurrence is subsequently 
converted to a binary prediction (flood will occur or not) by comparing the predicted probability with a cut-off 
level (for example a cut-off of 50% is used in Figure 3 as shown by the dotted horizontal line). 
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Figure 3. Sigmoid function underlying the logistic regression fitted for station 141010. 

 

The training of the logistic regression required the definition of a series of road flooding events from observed 
water level data. To explore the sensitivity of the post-processor to the threshold, four different flood thresholds 
were used: 1) Physical-based moderate flood level, 2) Physical-based major flood level, 3) 99.5 Percentile-
based flood level (approximately corresponding to moderate), and 4) 99.9 Percentile-based flood level 
(approximately corresponding to major). The overall process used to generate a road flooding forecast is 
illustrated in Figure 1. 

2.4. Forecast verification 

To assess road flooding forecast performance, we calculated: 1) Hit Rate: fraction of flooding events (in %) 
that were correctly predicted, 2) False Alarm Rate: non-flooding events (in %) that were incorrectly predicted 
as events, 3) ROC score: the ROC score is an integral of the fraction of Hit Rate and False Alarm Rate over all 
p thresholds and describes the usability of the forecast more generally. The ROC score ranges between 0.5 and 
1.0, with 0.5 indicating a forecast with no skill and 1.0 being a perfect forecast. 

All verification metrics were calculated in a cross-validation approach: 80% of data points were used as training 
data and the remaining 20% as test data. This step was repeated five times such that all data points were used 
as test data once. The out-of-sample predictions were subsequently combined and used to compute the 
verification metrics. 

3. RESULTS 

3.1. Results for gauging station 141010 using climate input observations 

In this section, we will illustrate the results using one sample location – gauging station 141010 at Coochin 
Creek, Mawsons Road in the North Coast District, north of Brisbane (see Figure 2 for location). This station 
was selected due to its location in close proximity to the Bruce Highway and availability of long-term high-
quality streamflow and water level data. Results for other stations are reported in subsequent sections. 

Comparison of catchment runoff with observed streamflow and water level 
Prior to applying the post-processor, we evaluated AWRA-L catchment runoff (step 2 in Figure 1) forced with 
observed climate against observed streamflow data from the gauge. Figure 4 presents both time series for 
gauging station 141010. The figure suggests that AWRA-L catchment runoff matches observed streamflow 
well except for flood peaks and low flow recessions. 

Figure 5 shows the time series of observed 5-day maximum water levels (in m) and 5-day maximum catchment 
runoff (step 3 in Figure 1) for the same station. The dashed line represents the moderate flood level (4.8m) for 
this station. At this station, ~12.4 years of gauging station data from 2006 to 2018 are available, and the flooding 
threshold level is exceeded 11 times (1.31% of 5-day periods). Visual examination of the peaks suggests that 
there is good agreement between peaks in water level and peaks in AWRA-L catchment runoff. Quantitatively, 
we find that in 73.8% of cases where the maximum water level is in the top 5% of values, the maximum runoff 
is also in the top 5%. These results suggest that there is promising potential for using AWRA-L runoff to 
predict critical water level exceedances. This provides the basis for the logistic regression approach used in the 
following, as we can assume a relationship between simulated AWRA-L runoff and observed water level 
threshold crossings. 
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Figure 4. Time series of observed streamflow (red, in ML/day) and simulated catchment mean runoff from 

AWRA-L (blue, in mm/day) for 2010-2015. 

 
Figure 5. Time series of 5-day maximum water level (red, in m) and 5-day maximum catchment runoff 

simulated by AWRA-L (blue, in mm/day) for 2010-2015. 

 

 

Probabilistic road flooding 
forecasts 
Using the logistic regression 
model, it is possible to visualise 
the predicted probabilities of a 
flood event occurring. Figure 5 
shows the time series of 
observed water levels and the 
timeseries of the predicted 
probability of exceeding the 
moderate flood level based on 
the logistic regression (step 4 in 
Figure 1). The peaks show good 
agreement, indicating that the 
logistic regression is able to 
capture flood risk events in the 
historical time series. 

 

 

 

Forecast verification 
The Hit Rate and False Alarm Rate depend on the probability cut-off (p) that is selected to define an event. By 
default, a cut-off p=50% is selected, i.e. if the forecast probability of an event is greater than 50%, an event is 
predicted; if the forecast probability is less than 50%, no event is predicted (for example, the dashed line in 
Figure 5b represents the 50%-threshold). However, other cut-off points are possible and depend on the 

Figure 6. Time series of observed water levels (a) and timeseries of the 
predicted probability of exceeding the moderate flood level based on 

the logistic regression (b), for station 141010. 
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decision-making context, such as the societal impacts and costs of a missed event or the costs and effects of 
false alarms. The Hit Rate and False Alarm Rates for station 141010 for the moderate flood level for three 
different p-cut off points (10%, 50%, and 66%) are presented in Table 1. 

 

Table 1. Hit Rates (HR), False Alarm Rates (FAR) and ROC-area for station 141010 for the moderate flood 
levels and three probability cut-off thresholds. 

  Probability cut-off 
 

  p = 10% p = 50% p = 66% 
 

Flooding threshold Occurrence rate HR FAR HR FAR HR FAR 
ROC-area 

Moderate flood 1.3% 81.8% 1.2% 54.5% 0.1% 54.5% 0.1% 
0.927 

99.5 pctl flood 0.7% 50.0% 1.1% 16.7% 0.2% 16.7% 0.1% 
0.856 

 

There is a trade-off between the Hit Rate and False Alarm Rate – a conservative approach that aims to capture 
as many events as possible might mean reducing the probability cut-off point. This leads to an increased Hit 
Rate (more events are predicted), but also generally a rise in the False Alarm Rate. At the same time, if the 
costs of False Alarms are high and the costs of a missed event are comparatively low, a less conservative 
approach could mean having a stricter (higher) probability threshold above which an event is predicted. This 
leads to a lower Hit Rate, but also a lower False Alarm Rate. The balance between Hit Rate and False Alarm 
Rate – in relation to the p-cut off point – can be re-presented in a plot type referred to as the Receiving Operating 
Characteristic (ROC) curve (Bradley, 1997). The area under the ROC curve (ROC-area) is a metric for how 
well the probabilistic forecast distinguishes between events and non-events. The ROC-area ranges between 0.5 
and 1.0, with 0.5 indicating a forecast with no skill and 1.0 being a perfect forecast. The ROC-area values of 
the logistic regression all range above 0.8 – indicating a very high resolution of the prediction model for the 
out-of-sample predictions (Table 1, see Table 2 for results for the other stations). 

3.2. Forecast verification for all stations using observed climate inputs 

Table 2 generalises the results reported in section 3.1 to all stations. All forecasts assessed here were generated 
using climate input observations, 99.5 percentile flood threshold (approximately moderate floods) and two 
probability cut-offs (10% and 50%). The table indicates that false alarm rates remain very low for both 
probability cut-off, suggesting that the system does not trigger unrealistic flood events. The area under the 
ROC curve remains also high, revealing that there is no strong trade-off between hit rates and false alarm when 
changing the probability cut-off. The hit rates vary between 33% and 100% when the probability cut-off is set 
to 10%, and between 8% and 83% when it is set to 50%.  Considering that the false alarms remain low for both 
cut-off points, it is suggested to use a cut-off of 10%, which delivers much higher hit rates. 

 

4. CONCLUSIONS AND RECOMMENDATIONS 

We developed and tested a method to generate road flooding forecasts at gauging stations close to major 
highways in Queensland. We found promising potential of predicting the risk of flooding in the next five days, 
as highlighted by high hit rates and ROC areas for most stations and flood thresholds. Future work may address 
several limitations of this study, which are outlined below: 

• Aggregation period: Due to routing not yet being implemented into the AWRA-L model, we selected 
a 5-day aggregation period for the analysis, i.e. predicting the risk of flooding within the next five 
days using the maximum runoff over the same period. Shorter periods were tested as well and show 
potential of reducing the aggregation period. Future work may investigate the influence of the 
temporal aggregation period on the verification metrics to select the optimal aggregation period. 
Furthermore, a routing method is currently being developed in the AWRA-L model, so that a temporal 
aggregation of runoff may not be required using future model versions. 

• Selection of gauging stations: In this study, we selected 15 gauging stations based on proximity to 
major highways and data availability criteria to develop and test the methodology on a small subset 
of data. In future work, the approach developed may be expanded to the Queensland region more 
broadly to capture all catchments relevant for TMR operations. 
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• Road flooding levels: The results in this study are based on Road flooding levels in the Bureau of 
Meteorology river height station network. Future work may use more localised information on critical 
water levels that have been found to be linked to impacts on the Queensland highway network, 
reflecting the experiences and impact assessments of TMR. 

 

Table 2. Hit Rate and False Alarm Rate for 99.5 percentile-based flood level (approximately moderate flood 
level) and 15 stations. 

    
Probability cut-off  

p = 10% 
Probability cut-off  

p = 50% 

 

Station ID Number of time steps Number of events Ratio: N event 
/ N total 

HR FAR HR FAR ROC 

109001 2554 13 0.51% 69.23% 0.51% 30.77% 0.08% 0.995 
116013 3363 15 0.45% 60.00% 0.27% 53.33% 0.06% 0.997 
117002 2355 13 0.55% 76.92% 0.64% 7.69% 0.13% 0.993 
118106 2586 19 0.73% 52.63% 0.78% 26.32% 0.19% 0.980 
120307 1906 12 0.63% 50.00% 0.90% 16.67% 0.00% 0.801 
121004 996 6 0.60% 50.00% 0.71% 16.67% 0.00% 0.884 
130413 2694 14 0.52% 78.57% 0.45% 50.00% 0.07% 0.996 
136209 2146 9 0.42% 100.00% 0.23% 55.56% 0.09% 0.999 
137201 3500 19 0.54% 63.16% 0.34% 52.63% 0.14% 0.995 
141010 837 6 0.72% 50.00% 1.08% 16.67% 0.24% 0.856 
143229 1435 5 0.35% 100.00% 0.14% 60.00% 0.07% 0.999 
143901 1156 5 0.43% 80.00% 0.61% 20.00% 0.09% 0.997 
416317 1638 9 0.55% 66.67% 0.06% 44.44% 0.06% 0.997 
416319 887 6 0.68% 33.33% 0.34% 16.67% 0.11% 0.996 
416415 2222 12 0.54% 91.67% 0.27% 83.33% 0.05% 0.999 
919013 2806 14 0.50% 64.29% 0.64% 14.29% 0.14% 0.988 
Average 2067.6 11.1 0.55% 67.90% 0.50% 35.32% 0.10% 0.967 

Min 837.0 5.0 0.35% 33.33% 0.06% 7.69% 0.00% 0.801 
Max 3500.0 19.0 0.73% 100.00% 1.08% 83.33% 0.24% 0.999 
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