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Abstract:     The aim of this study is to demonstrate the applicability of machine learning methods to understand 

the transmission of the viral flow of COVID-19 with respect to various environmental factors. Daily update 

data of new COVID-19 related reported cases from six states of the United State (US), dated from 1st March 

2020 to 30th November 2020, across 6 US states - New York, New Jersey, Illinois, Massachusetts, Georgia and 

Michigan are examined. The daily COVID-19 update data are assembled from the US health department and 

Weather Underground Company (WUC) official websites. A diverse set of environmental factors, including 

temperature, humidity, dew point, wind speed, atmospheric pressure and precipitation are used to express 

possible environmental determinants. Asymmetric distributions of daily reported new cases of COVID-19 with 

respect to all states is evident. The average numbers of new reported cases of COVID-19 patients remains 

highest in Illinois. Whereas maximum numbers of affected cases in a single day were reported in Georgia. The 

lowest of the average new cases is found in Massachusetts state.  

We test six most used model-based machine learning methods, namely, linear discriminant analysis (LDA), 

classification and regression trees (CART), k-nearest neighbours (KNN), support vector machines (SVM), 

random forest (RF) and the naïve bayes (NB) method. The comparative performance of these ML schemes is 

expressed using statistics, such as kappa, balanced accuracy, detection rate, information preservation rate, 

accuracy, sensitivity, and specificity. Moreover, predictive orderings of the environmental factors, for each 

state with respect to the most promising ML method, are also reported to highlight the hierarchical significance 

of climatic determinants.  The performance orderings of the ML approaches vary across states with the RF 

model the most promising in exploring the underlying nexus of between the environment covariates and case 

numbers across all states, the ML hierarchies are: New York: 𝑃𝑅𝐹 > 𝑃𝐾𝑁𝑁 = 𝑃𝐶𝐴𝑅𝑇 = 𝑃𝑆𝑉𝑀 > 𝑃𝐿𝐷𝐴 > 𝑃𝑁𝐵 , 
New Jersey : 𝑃𝑅𝐹 > 𝑃𝐿𝐷𝐴 = 𝑃𝑆𝑉𝑀 > 𝑃𝑁𝐵 = 𝑃𝐶𝐴𝑅𝑇 > 𝑃𝐾𝑁𝑁 , Illinois: 𝑃𝑅𝐹 > 𝑃𝐾𝑁𝑁 = 𝑃𝑆𝑉𝑀 > 𝑃𝑁𝐵 = 𝑃𝐶𝐴𝑅𝑇 > 
𝑃𝐿𝐷𝐴, Massachusetts: 𝑃𝑅𝐹 > 𝑃𝑆𝑉𝑀 > 𝑃𝐶𝐴𝑅𝑇 > 𝑃𝐾𝑁𝑁 > 𝑃𝑁𝐵 > 𝑃𝐿𝐷𝐴, Georgia: 𝑃𝑅𝐹 > 𝑃𝑆𝑉𝑀 > 𝑃𝐶𝐴𝑅𝑇 > 
𝑃𝐾𝑁𝑁 = 𝑃𝑁𝐵 > 𝑃𝐿𝐷𝐴 and Michigan: 𝑃𝑅𝐹 > 𝑃𝐾𝑁𝑁 > 𝑃𝑆𝑉𝑀 > 𝑃𝐶𝐴𝑅𝑇 = 𝑃𝑁𝐵 > 𝑃𝐿𝐷𝐴.   Noting that procedures 
such as CART, NB and LDA show questionable performance where Michigan state is concerned.  

Across the states, average temperature emerges as the most important candidate in explaining the underlying 

nexus between environment and COVID-19 numbers, consistent with Shahzad et al. (2020).  However, we 

have found that other climate variables such as dewpoint, is a close second in Georgia and Michigan states, 

and humidity and wind speed play a similarly important role to dewpoint in Illinois and Michigan. Note 

Georgia and Michigan states have highest average temperature and dew point, and both states record low 

average wind speed. Michigan has a reported high black community, as does Georgia. For Illinois, temperature 

is dominant, but followed by dew point, and then closely by both humidity and wind speed, with Illinois having 

lowest average wind speed and low temperature. There is less evidence for an association between air pressure 

and precipitation and COVID-19 cases in all states. Finally, based on the outcomes of this research, we believe 

that a more rigorous study targeting other variables, such as population density, mobility, air quality, nature of 

travel bans, race, and the degree of health interventions, is required. Furthermore, understanding the potential 

for seasonality and the association with weather is particularly relevant for further work given the longer time 

series of COVID-19 information now available in 2021, as is modelling new cases, transmission, along with 

deaths, reproduction number and severity levels of COVID-19. Given the skewed nature of the distribution of 

number of reported cases in each state, future work could likewise employ the quintile regression approach. 
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1. INTRODUCTION

1.1 Motivation 

The emergence of the novel coronavirus has led to enormous research efforts to understand how several 

environmental and non-environmental factors affect transmission. The research community from every 

corner of the globe is responding to the COVID-19 crisis in diverse analytic methods and using both local 

and global data inputs, and analysis is often based on a variety of outcomes, new cases, number of deaths, 

transmission rates, reproduction number and inputs.  For example, Huang et al. (2020) and Guan et al. (2020) 

initiated the systematic mapping of the clinical nature of the virus at the start of the first wave. Further, Wild-

Smith and Freedman (2020) and Cheema et al. (2020) focused on the quantification of the degree of 

effectiveness of various health interventions such as, quarantine, social distancing, and travel bans. Moreover, 

Kang et al. (2020) and Kawohl and Nordt (2020) investigated the long run socio-economic cost of the 

pandemic. Furthermore, Shahzad et al. (2020) studied environmental aspects of the pandemic in China as a 

case study. There is need for more inclusive and interactive efforts to assemble the so-called collective 

wisdom, towards equity and possible consensus, see Maas et al. (2020). Despite the launch of rigorous 

preventive measures, the viral transmission is escalating, confounded by new variants emerging. As the 

United States has led the path in terms of case incidence, various studies have focussed in the first instance 

on how weather variables may impact the spread of the disease (Bashir et al. (2020)), as environmental factors 

are known to affect the epidemiological transmission of many infectious diseases (Majumder & Ray, 2021). 

Machine learning is a branch of Artificial Intelligence (AI) shown to provide powerful predictive capabilities 

and superiority over conventional statistical modelling (Beam & Kohane, 2018, Hudson 2021, Boutaba et al. 

(2018). Given the high predictive power of these algorithms ML is becoming more widely used in public 

health data analysis and promises to aid in overall new strategies and interventions in public health.  

The aim of this study is to demonstrate the applicability of machine learning methods to understand the 

transmission of the viral flow with respect to various environmental factors. Firstly, we study the underlying 

nexus between in the flow of viral spread and environmental factors for six major US cities. The US remains 

an attractive candidate in this regard as the number of COVID-19 active patients in US remained higher than 

China – the early sufferer of the pandemic, see WHO (2020) report. To this end we study the daily update 

data of new COVID-19 reported cases from six states of the United State (US), dated from 1st March 2020 

to 30th November 2020, across 6 US states - New York, New Jersey, Illinois, Massachusetts, Georgia and 

Michigan. Furthermore, a diverse set of environmental factors, including temperature, humidity, dew point, 

wind speed, atmospheric pressure and precipitation are used as the environmental determinants. The daily 

update data is assembled from the US health department and Weather Underground Company (WUC) official 

websites. Secondly, we explore the applicability of the model-based machine learning (ML) methods to 

understand the nature of the health emergency. Comparative performance of the ML schemes is expressed 

using numerous relevant statistics, such as kappa, balanced accuracy, detection rate, information preservation 

rate, sensitivity, and specificity. Moreover, predictive orderings of the environmental factors, for each state 

with respect to the most efficient ML method are reported to highlight the hierarchical significance of the 

climatic determinants. Results and discussion are followed by areas for future research in Sections 2 and 3. 

1.2 Machine Learning Tools 

In this sub-section, we briefly summarise the ML methods investigated, namely, linear discrimination 

analysis (LDA), classification and regression trees (CART), k-nearest neighbours (KNN), support vector 

machines (SVM), random forest (RF) and naïve bayes (NB) methods).  

Linear discrimination analysis (LDA): The LDA approaches the problem by assuming that 𝑃(𝑥|𝑦 = 0) and 

𝑃(𝑥|𝑦 = 1), that is the conditional density functions are normally distributed with (𝜇𝑜, Σ) and (𝜇1, Σ), where

Σ is the covariance matrix which is Hermitian. The deletion criterion is launched on the threshold 𝑤. 𝑥 > 𝑐, 

where 𝑤 = Σ−1(𝜇1−𝜇𝑜). LDA has been used in various multidisciplinary areas, such as health surveillance,

pattern recognition and marketing, for more details see Miller and Busby-Earle (2017) and Hudson (2021).  

Naïve Bayes classifier (NB):  Based on the rule of picking the most probable hypothesis and assuming 

conditional independence amongst the features, the NBC assigns class labels �̂� = 𝐶𝑘 as follows,

�̂� =
𝑎𝑟𝑔𝑚𝑎𝑥

𝑘 ∈ {1,2, … , 𝑘}𝑝(𝐶𝑘) ∏ 𝑝(𝑥𝑖|𝐶𝑘)𝑛
𝑖=1 , 

where, 𝐱 represents the vector of features and 𝑘 are the possible outcomes. The utility of above conditional 

probability model is well documented in applied research literature, see for example Hudson (2021). 
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k-nearest neighbour (KNN): A non-parametric approach aims at partitioning set of d-dimensional vector of

𝑛  observations, such as (𝑥1, 𝑥2, … , 𝑥𝑛) into 𝑘 ≤ 𝑛 set of partitions, that is, 𝑆 = {𝑆1, 𝑆2, … , 𝑆𝑘} by giving each

neighbor a contribution weight. The objective is then to find 

𝑎𝑟𝑔𝑚𝑖𝑛
𝑆

∑ ∑ ‖𝑥 − 𝜇𝑖‖2
𝑥∈𝑠𝑖

𝑘
𝑖=1 ,  

where, 𝜇𝑖 is mean of points in 𝑠𝑖. For more details see Nigsch et al. (2006) and Rajeswari et al. (2017).

Random Forest (RF): An off-the-shelf data mining procedure which aims to reduce the variance by 

employing bootstrap aggregation to tree learning. Given a training set, 𝐱 = (𝑥1, 𝑥2, … , 𝑥𝑛) with responses

𝐲 = (𝑦1 , 𝑦2, … , 𝑦𝑛), random samples are selected from training data through bootstrapping to make

predictions for unseen samples. The predictions from the training set are averaged such as  𝑓 =
1

𝐵
∑ 𝑓𝑏(𝑥/)𝐵

𝑏=1 , where 𝐵 denotes bagging. The efficacy of the random forest procedure is discussed in 

Breiman (2001) and Fawagreh et al. (2014). 

Support Vector Machine (SVM): A member of the supervised learning model family, SVM focusses on 

the pattern identification by creating hyper planes or set of hyper planes in high dimensional space. In its 

simplest form, given some training data, 𝐷, of 𝑛 points of the form; 𝐷 = [(𝑥𝑖 , 𝑦𝑖)|𝑥𝑖 ∈ ℛ𝑝
𝑛, 𝑦 ∈ {−1,1}],

where 𝑦𝑖 represents the class to which point 𝑥𝑖 belongs. The SVM aims to attain maximum-margin hyper

plane dividing the points with 𝑦 = 1 from those 𝑦 = −1, orthogonally. For details see Simon et al. (2015). 

Classification and Regression Tree (CART): A commonly used procedure in data mining whose prime goal 

is to establish a model with best predictive influx. Variance reduction in CART is usually conceptualised as 

the reduction of variance of the target variable due to a split, such as,  

𝐼𝑣(𝑁) =
1

|𝑠|2
∑ ∑

1

2𝑗∈𝑠𝑖∈𝑠 (𝑥𝑖 − 𝑥𝑗)
2

− {
1

|𝑠𝑖|2
∑ ∑

1

2𝑗∈𝑠𝑖𝑖∈𝑠𝑖
(𝑥𝑖 − 𝑥𝑗)

2
+

1

|𝑠𝑓|2
∑ ∑

1

2𝑗∈𝑠𝑓𝑖∈𝑠𝑓
(𝑥𝑖 − 𝑥𝑗)

2
},

where, 𝑁 is the splitting node. Also, 𝑠, 𝑠𝑖 and 𝑠𝑓 represent set of presplit sample indices, indices for which

the split is true and sample indices for which the split is false, respectively. A detailed account is given by 

Sharma et al. (2021). 

2.

2.1 

MATERIALS 

The Data

The data for this study are assembled from daily updates available on US health department official website 

reporting numbers of new COVID-19 cases from 1st March 2020 to 30th November 2020. Daily average 

values of environmental covariates are compiled from the official website of Weather Underground Company 

(WUC), these include, temperature (oF), humidity (%), wind speed (Mph.), atmospheric pressure (Hg.), 

precipitation (in.) and dew point. Moreover, the data is based on six US states, New York, New Jersey, Illinois, 

Massachusetts, Georgia, and Michigan. The state-wise summaries of all variables studied are presented in 

Table 1. From Table 1, from 1st March to 30th November, the average numbers of new reported cases of 

COVID-19 patients remains highest in Illinois. Whereas maximum numbers of affected cases in a single day 

were reported in Georgia. Further, the highest average temperature value is associated with Georgia and 

Michigan, with minimal averages observed in Massachusetts. Similarly, Massachusetts overall is the most 

humid state, New York exhibiting the minimal average humidity. At the same time, the highest values of 

average wind speed occur in New York state with Illinois state showing the lowest average wind speed. New 

Jersey exhibits the highest atmospheric pressure, whilst Georgia the minimum average air pressure. In 

contrast the state of Georgia exhibits the highest average precipitation in contrast to Massachusetts at the 

lower end. Similar trends are evident with respect to dew point with maximum average dew point in Georgia 

and Michigan, and minimum average dewpoint in New York.   

Table 1. Summary statistics 

Variable Minimum Q1 Mean Median Q3 Maximum 

New York 

New Cases 0.00 687.50 2357.84 1048.00 3169.50 11434.00 

Temperature (°F) 35.5.00 52.55 64.27 64.40 75.80 90.30 

Humidity (%) 26.10 47.15 59.27 58.10 70.70 91.80 

Wind Speed (Mph) 2.30 7.85 10.29 9.40 12.10 21.60 
Pressure (Hg) 29.30 29.90 29.99 30.00 30.10 30.60 

Precipitation (in) 

Dew. 
0.00 

13.70 

0.00 

36.35 

0.11 

48.37 

0.00 

49.90 

0.07 

62.25 

2.47 

72.70 
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New Jersey 

New Cases 0.00 326.00 1228.22 559.00 1929.00 4669.00 

Temperature (°F) 33.90 52.10 63.25 63.20 75.25 87.90 
Humidity (%) 30.40 52.15 64.26 64.80 76.35 96.90 

Wind Speed (Mph) 1.50 6.75 9.25 8.70 11.30 22.30 

Pressure (Hg) 29.00 29.90 30.00 30.00 30.10 30.60 
Precipitation (in) 

Dew. 

0.00 

13.40 

0.00 

36.95 

0.14 

49.41 

0.00 

50.80 

0.07 

63.80 

2.78 

73.30 

Illinois 

New Cases 0.00 977.00 2643.01 1617.00 2482.00 15415.00 
Temperature (°F) 34.00 52.25 62.73 64.50 74.05 83.80 

Humidity (%) 30.50 66.00 74.77 76.90 84.50 95.40 

Wind Speed (Mph) 0.50 3.65 6.45 6.10 8.70 23.20 
Pressure (Hg) 14.10 29.50 29.53 29.60 29.70 30.10 

Precipitation (in) 

Dew. 

0.00 

22.90 

0.00 

41.95 

0.12 

53.54 

0.00 

56.20 

0.09 

66.40 

2.20 

73.80 

Massachusetts 

New Cases 0.00 247.00 824.27 440.00 1192.00 4658.00 
Temperature (°F) 27.10 47.60 57.73 58.90 67.75 81.10 

Humidity (%) 38.60 68.35 78.49 82.10 90.30 98.80 

Wind Speed (Mph) 1.90 6.85 9.84 9.50 12.15 23.90 

Pressure (Hg) 29.30 29.80 29.95 29.90 30.10 30.60 

Precipitation (in) 

Dew. 

0.00 

9.10 

0.00 

37.55 

0.08 

50.29 

0.00 

51.20 

0.035 

63.65 

2.80 

74.80 

Georgia 

New Cases 0.00 671.50 1711.54 1275.00 2407.50 31605.00 
Temperature (°F) 43.70 61.60 69.45 70.60 77.55 85.20 

Humidity (%) 31.70 61.05 68.46 69.40 78.25 91.60 

Wind Speed (Mph) 1.80 6.00 7.92 7.30 9.50 19.20 
Pressure (Hg) 28.60 28.90 28.97 28.90 29.10 29.40 

Precipitation(in) 

Dew. 

0.00 

21.00 

0.00 

50.50 

0.17 

57.60 

0.00 

60.90 

0.07 

67.90 

4.04 

72.90 

Michigan 

New Cases 0.00 360.50 1412.38 717.00 1221.00 17368.00 

Temperature (°F) 25.80 42.82 56.59 56.90 70.85 81.80 

Humidity (%) 33.90 60.80 68.43 67.85 77.30 96.80 
Wind Speed (Mph) 1.40 5.50 8.22 7.90 10.47 22.10 

Pressure (Hg) 28.60 29.00 29.09 29.10 29.20 29.60 

Precipitation (in) 
Dew. 

0.00 

14.60 

0.00 

32.20 

0.11 

45.05 

0.00 

46.10 

0.04 

58.35 

2.12 

71.60 

2.2 Results and Discussions 

This section details data aspects along with major findings. The summary statistics are supported by 

appropriate tabular and graphical displays, as is the contribution hierarchy of the environmental factors in 

predicting new cases. The performance hierarchy of contemporary models is assessed using various relevant 

statistics, such as accuracy, true-false split of test data, degree of retaining the information and marginal 

homogeneity test for training and testing data. Table 2 presents the performance ordering of all considered 

machine learning models for each state. Next, we elaborate state wise findings of our study. Moreover, Table 

3 displays the contribution ladder of the covariates in explaining the number of new COVID-19 cases for 

each state, using the most predictive ML model in each case.    

Firstly, New York state reveals the performance ordering such as, 𝑃𝑅𝐹 > 𝑃𝐾𝑁𝑁 = 𝑃𝐶𝐴𝑅𝑇 = 𝑃𝑆𝑉𝑀 > 𝑃𝐿𝐷𝐴 >
𝑃𝑁𝐵. The RF model is the most promising candidate among the assembly of rival ML procedures in exploring

the underlying nexus of environment covariates and the numbers of COVID-19 patients. We observe 

noticeably tight 95% confidence interval demonstrating the accuracy of the split of the test data into the 

fundamental categories. The accuracy remained bounded in the interval (0.93, 1.00). The extent of retrieving 

the information is quantified through the null hypothesis that 𝐻𝑜: 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ≥ 𝑛𝑜 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒. The

associated p-value for RF is highly significant 𝑝 <  0.0001. The next procedures in line are KNN, CART 

and SVM with equal potential, and accuracy bounded in the interval (0.77, 0.96) along with p-value <
0.0001. LDA takes third position with accuracy interval (0.73, 0.93) with significant p-value < 0.0001 

(Table 2). Lastly, for the NB model accuracy remained bounded in (0.66, 0.89) with significant p-value of 

information test. To ascertain explanatory and predictive contribution of the environmental covariates, we 

launched RF as the best choice ML method. Temperature emerges as the most important contributing 

covariate followed by dew point then to a lesser extent humidity, see gini index based on RF (Table 3).  
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The performance ordering of models in the state of New Jersey is 𝑃𝑅𝐹 > 𝑃𝐿𝐷𝐴 = 𝑃𝑆𝑉𝑀 > 𝑃𝑁𝐵 = 𝑃𝐶𝐴𝑅𝑇 > 
𝑃𝐾𝑁𝑁 . The RF maintains its position of prominence with accuracy interval of (0.93, 1.00). It is to be noted 
that the 95% interval takes the same value as in the case of New York state. The reason for this is that in 

both cases the value of test statistics evaluating the accuracy attains maximum value of 1.0. This observation 

stays consistent throughout the study. Further, the significant p-value associated with the information test 

highlights the capability of the RF in retaining informative data splitting. Further, LDA and SVM have equal 

performance with confidence interval (0.80, 0.97) and significant p-value of information retention. Next 

place belongs to NB and CART where accuracy is bounded in (0.77, 0.96) with significant p-value of the 

test of information. Similarly, for KNN the accuracy is in the interval of  (0.73, 0.94), with significant p-
value (Table 2). The climatic variable contribution patterns also are consistent, with temperature the leading 

covariate and dew point following, as in New York state, see gini index based on RF (Table 3). 

Table 2. Confidence intervals for state-wise accuracy of models (grey shaded show insignificance of model) 

New 

York 

RF KNN CART SVM LDA NB 

(0.934,1.00) (0.773,0.958) (0.773,0.958) (0.773,0.958) (0.728,0.933) (0.664,0.893) 

New 

Jersey 

RF LDA SVM NB CART KNN 

(0.934,1.00) (0.797,0.969) (0.797,0.969) (0.773,0.958) (0.773,0.958) (0.728,0.938) 

Illinois 
RF KNN SVM NB CART LDA 

(0.934,1.00) (0.623,0.865) (0.623,0.865) (0.525,0.789) (0.525,0.789) (0.468,0.740) 

Massach

usetts 

RF SVM CART KNN NB LDA 

(0.934,1.00) (0.821,0.979) (0.773,0.958) (0.751,0.946) (0.623,0.865) (0.583,0.853) 

Georgia 
RF SVM CART KNN NB LDA 

(0.934,1.00) (0.821,0.979) (0.775,0.985) (0.751,0.946) (0.751,0.946) (0.664,0.893) 

Michigan 
RF KNN SVM CART NB LDA 

(0.934,1.00) (0.623,0.865) (0.487,0.757) (0.360,0.639) (0.360,0.639) (0.343,0.621) 

Next, for Illinois state the performance ordering is observed as, 𝑃𝑅𝐹 > 𝑃𝐾𝑁𝑁 = 𝑃𝑆𝑉𝑀 > 𝑃𝑁𝐵 = 𝑃𝐶𝐴𝑅𝑇 >
𝑃𝐿𝐷𝐴. Again, the RF model outperforms other techniques while obtaining maximum accuracy with 95%
confidence interval of (0.93, 1.00) and significant p-value of information test. RF is followed equally by 

KNN and SVM with interval of (0.63, 0.87). At equal third position, NB and CART with associated 

confidence interval (0.53, 0.79) with significant p-value of information test. The LDA remains the poorest 

performer with interval of (0.47, 0.74), LDA shows insignificant ability in retaining the desired information 

from the training data (p-value of 0.07). We also observe varying patterns in contribution ordering of the 

climatic covariates (Table 2). For Illinois, temperature is dominant but followed by dew point, and then 

closely followed by both humidity and wind speed, differing to the patterns above (Table 3). Noting Illinois 

state has the lowest average wind speed and low temperature. 

For the states of Massachusetts and Georgia states, we found the ordering such as 𝑃𝑅𝐹 > 𝑃𝑆𝑉𝑀 > 𝑃𝐶𝐴𝑅𝑇 >
𝑃𝐾𝑁𝑁 > 𝑃𝑁𝐵 > 𝑃𝐿𝐷𝐴 and 𝑃𝑅𝐹 > 𝑃𝑆𝑉𝑀 > 𝑃𝐶𝐴𝑅𝑇 > 𝑃𝐾𝑁𝑁 = 𝑃𝑁𝐵 > 𝑃𝐿𝐷𝐴, respectively. In both instances, RF

approach again is dominant.  Again, the RF model outperforms other techniques while obtaining maximum 

accuracy with 95% confidence interval of (0.93, 1.00) and significant p-value of information test. For both 

Massachusetts and Georgia states SVM, CART and KNN accuracies are significant and equal across both 

states, in order being (0.821,0.979), (0.775,0.985), and (0.751,0.946), with NB and LDA significant but lower 

in Massachusetts (Table 2). The climatic variable contribution patterns for Massachusetts have temperature 

the leading covariate and dew point following, see RF based gini index (Table 3). Noting Illinois state has 

the lowest average wind speed and low temperature. The climatic variable contribution patterns for Georgia 

temperature are followed very by closely by dew point and then to a slightly lesser degree by both humidity 

and wind speed, which also differs to the patterns discussed above (Table 3). However, Michigan state 

demonstrates a distinctive profile regarding both ML procedure hierarchy and regarding important climate 

predictors. The performance ordering is 𝑃𝑅𝐹 > 𝑃𝐾𝑁𝑁 > 𝑃𝑆𝑉𝑀 > 𝑃𝐶𝐴𝑅𝑇 = 𝑃𝑁𝐵 > 𝑃𝐿𝐷𝐴, with RF again the

most promising, but followed here by KNN and then SVM, with associated intervals of (0.63, 0.87) and 

(0.49, 0.76), respectively (Table 2). The remaining three models, CART, NB and LDA have questionable 

performances with respect to the test of the null hypothesis of 𝐻𝑜: 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ≥ 𝑛𝑜 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒. Their

related p-values are 0.55 and 0.66, respectively, indicating a lower degree of information sustainability. This 

is further supported by Mc Nemar’s test for testing the marginal homogeneity among training split and testing 
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data, with a p-value of 0.47. For Michigan, temperature is followed very by closely by dew point and 

humidity and then to a slightly lesser degree by wind speed, which again differs to the patterns discussed 

above (Table 3). Note Georgia and Michigan states have highest average temperature and dew point, and 

both states record low average wind speed. Michigan state has maximal value of average temperature among 

all considered states and reported highest black community, as is Georgia state. 

Table 3. Gini Index to highlight the importance of climatic variables per state: RF based. 

State Temp. Dew. Hum. Wind. Pressure. Preci. 

New York 68.476 25.559 18.083 11.856 9.525 3.509 

New Jersey 48.621 34.061 20.365 16.598 11.101 6.076 

Illinois 37.057 29.447 25.592 23.572 11.349 9.963 

Massachusetts 49.928 34.845 17.939 17.217 10.936 5.945 

Georgia 38.601 36.551 23.155 20.212 11.175 7.019 

Michigan 29.88 29.35 28.48 25.2 12.18 11.38 

Figure 1 shows the error rate, out-of-class sample bagging, and cross entropy against the number of trees in 

RF to be used to obtain optimal classification of the data. All curves show 50 as the optimal number of trees 

to attain the most suitable model, noting that RF assumes that each tree is identically distributed.    

Figure 1. Error rate, out-of-class sample bagging and cross entropy versus tree number using RF. 

3. SUMMARY

This article primarily focuses on the study of interlinks between the environmental factors and the flow of 

COVID-19 outbreak by using machine learning tools. The objectives are achieved by conducting in-depth 

exploration of six US states’ data of daily updates of new reported cases of COVID-19 patients and daily 

average values of environmental covariates, dated form 1st March 2020 to 30th November 2020. In all six 

states, the RF model was found to be the optimal approach to capture the probabilistic features of the data, 

among the assembly of the 6 ML techniques. This performance ordering is established by employing various 

relevant statistics, such as accuracy, degree of classification, marginal homogeneity, and maintenance of 

information rate. Further, in five instances out of six, RF is followed by the SVM procedure; Michigan state 

appears to be the only exception in this regard, with KNN following RF. The contribution hierarchy of the 

environmental factors in predicting new COVID-19 case numbers is reported using only RF. Temperature 

emerges as the most important candidate in explaining the underlying nexus of environment and COVID-19 

related numbers, consistent with Shahzad et al. (2020) who used a generalized linear model approach.  

However, we have found that other climate variables such as dewpoint, and humidity play a significant role. 

Also, by considering the skewed nature of the distribution of number of reported cases in each state, future 

work could employ the quintile regression approach (see Sim & Zhou, 2015). It is anticipated that, instead 

of studying the probabilistic behaviours of the distribution based on averages, analysis at various quintiles 

may be more informative. Temperature and humidity are significant factors in virus transmission and 

seasonality for several reasons, as they determine virus survivability and persistence in the air and on surfaces 

(Aboubakr et al. 2020). Across the states, average temperature emerges as the most important candidate, as 

in Shahzad et al. (2020). But variables such as dewpoint, is a close second in Georgia and Michigan, and 

humidity and wind speed play a similarly important role to dewpoint in Illinois and Michigan. There is less 

evidence for an association between air pressure and precipitation and COVID-19 cases. A fuller treatment 

of previous day/weeks cases and interactions of the (sub) populations, which leverage time-series approaches 
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that use inputs from previous time periods, as in Hudson (2018) and also in Hudson & Keatley (2013) who 

modelled flowering and budding pheno-phases with respect to lagged  climate/pheno-phases is underway. 

Factors such as population density, mobility, race, air quality, wind direction, interventions, will add further 

insights, as will modelling the interaction of populations, specifically with lockdowns. 
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