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Abstract: Combat simulation studies are commonly used to support decision-making on the basis of 
competing outputs, simulated under comparable conditions, for a selection of input design points. Such 
simulators have long been in use to support analysis in force design, operational requirements, mission area 
analysis and force-on-force analysis, necessitating high-resolution, closed-form and stochastic simulation 
capabilities. Each simulation typically runs as a black-box, making it difficult to discern the intermediate 
stochastically-varying series of events that form part of the combat narrative, detailing the sequence of events 
that led from the simulator inputs to the observed outputs. 

Although the simulator runs in black-box mode, internal simulator data on stochastically-varying temporally 
indexed events over the combat spatial region are also captured. These events record an ordered series of events 
that, although stochastically seeded, reflect the fundamental logic of cause and effect. Understanding these 
event series through appropriate statistical modelling has the potential to provide key insights into the combat 
mission narrative and support decision-making around combat missions. 

In this paper we present a first step towards constructing a combat mission narrative to support decision-making 
via a case study of internal combat simulation event series and their associated outputs. Statistical modelling 
of the internal data is challenged by the underlying simulator mechanisms – the use of Common Random 
Numbers (CRN) to reduce the variability in simulation output. CRN simulators are fraught with difficulties as 
they violate key statistical assumptions by design, requiring alternative, robust methods of analysis.  

We adopt the use of the statistically robust Event Coincidence Analysis (ECA) to capture causality between 
events by providing a framework for quantifying the strength, directionality and time lag between two event 
series. The use of ECA is novel in this area of application; ECA has been recently adopted in the literature, 
predominantly in the areas of ecology, environment and health and is relatively under-explored in Defence, 
with current areas of application including armed conflict and hate-speech triggered terrorism. 

An attractive feature of ECA is that it allows for significance testing of causality between two series, based on 
stochastic point processes with a prescribed inter-event time distribution and other higher-order properties, thus 
providing a differentiation between coincidence and causal events. Specifically, ECA considers two types of 
causal behaviour - precursor and trigger - with the former describing a series of events that typically occur 
before a secondary event takes place (mediated cause-and-effect) whereas the latter captures the concept of 
direct cause-and-effect between two events. Extensions of ECA include aggregation and conditionalisation; 
the former providing an integrated measure for coincidences that occur between several pairs of event series 
subject to some meaningful grouping mechanism and the latter allowing for the flexibility of interlinking 
multiple causal event series, to allow for conditioning of events on specific situations.   

The R library coincalc was used to implement ECA as part of constructing a combat narrative. The case study 
provided four event series of interest - Movement, Detections, Shots and Kills – yielding combat narratives 
around the progression of Movement leading to Detection, being Shot and a Kill. Suggested combat narratives 
arising from the analyses conducted herein were: (i) standing can act as either a precursor or trigger to being 
identified or recognised while detection is a mediating, not direct, trigger for being shot. These results were 
supported by two different ECA methodologies; and (ii) for those simulations resulting in combat mission 
failure, precursory behaviour led to the failure of the overall mission over a relatively short time window, rather 
than a single, or series of, direct triggers. 
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1. INTRODUCTION 

Simulation studies are commonly used to support decision-making on the basis of competing outputs, simulated 
under comparable conditions, for a selection of input design points. Combat simulators have long been in use 
to support analysis in force design, operational requirements, mission area analysis and force-on-force analysis, 
necessitating high-resolution, closed-form and stochastic simulation capabilities. These simulators typically 
run as a black-box, making it difficult to discern the intermediate stochastically-varying series of events 
between any given input and output leading to an outcome of interest. However understanding the interplay 
between simulator input, internal stochastic simulator behaviour and the simulated outputs is important to 
support insight into simulated combat mission narrative for decision-making and related activities.  

Although the simulator runs as a black-box, internal data on stochastically-varying temporally indexed events 
over the combat spatial region are captured, with these events contributing to simulation output. These events 
have the potential to contribute to the narrative of how the combat mission unfolded by providing an 
inhomogeneous series of events occurring in space and time. Moreover, although the simulator is stochastically 
varying, these simulated temporally indexed events are designed to imitate reality; that is they are not intended 
to unfold randomly, but rather as an ordered series of events connected by cause and effect. Thus statistical 
modelling and understanding of such a narrative could provide critical information as part of overall combat 
mission progression to aid decision-making. A complication arises however, in that key to the simulator 
structure is the use of Common Random Numbers (CRN) to reduce the variability in simulation output (Heikes, 
et al., 1976). CRN simulators are fraught with difficulties as they violate key statistical assumptions by design, 
requiring alternative methods of analysis (Law, 2015).  

In this paper we present a first step towards constructing a combat narrative in support of decision-making via 
a case study explored using the statistically robust Event Coincidence Analysis (ECA) (Donges, et al., 2016). 
ECA considers two types of causal behaviour - precursor and trigger - with the former describing a series of 
events that typically occur before a secondary event takes place (mediated cause-and-effect) whereas the latter 
captures the concept of direct cause-and-effect between two events. The use of ECA is novel in this area of 
application; ECA has been recently adopted in the literature, predominantly in the areas of ecology, 
environment and health (Templ, et al., 2021; Wiedermann, et al., 2021; Wolf, et al., 2021; Fdez-Arroyabe, et 
al., 2020) and is relatively under-explored in Defence, with current areas of application including armed 
conflict and hate-speech triggered terrorism (Scharwaechter & Mueller, 2020; Schleussner, et al., 2016). 

This paper is outlined as follows. In Section 2 we introduce the case study by exploring the characteristics of 
the temporally indexed event series under consideration before introducing ECA in Section 3. Section 4 focuses 
on constructing combat narratives for the case study using ECA on four stochastically-varying intermediate 
event series. Finally in Section 5 we give our conclusions and future directions.  

2. CASE STUDY: TEMPORALLY INDEXED EVENT SERIES OF A COMBAT SIMULATOR 

The combat simulator under consideration here takes the general format as in Figure 1 (a), in which known 
inputs X are provided to the simulator, with known outputs Y captured as simulator metrics, repeated over a 
number of replications R, 𝑟𝑒𝑝!, … , 𝑟𝑒𝑝" , used to reflect the stochastically-varying nature of the combat mission. 
The internal simulator data are recorded as the transition between event states 𝑠!, … , 𝑠# (Figure 1 (b)) yielding 
stochastically-varying temporally indexed event series, with these transitions necessarily varying for each 
replication 𝑟𝑒𝑝!, 𝑟𝑒𝑝$, …	 . The features characterising the internal temporally indexed event space here 
include time of event, event type (Movement, Detection, Shots, Kills), spatial co-ordinates (latitude, longitude) 
and replication number 𝑟𝑒𝑝%, representing which CRN value is used for the simulation. 

Two competing approaches for this type of data are event time series, i.e. a set of events indexed by time, and 
event sequences, i.e. a set of times capturing a series of events. In this case study, events occur at 
inhomogeneous time points and are categorical, lending themselves to classical categorical time series models 
such as stochastic state-transition modelling (e.g. Markov chain models) and state-space models, such as 
categorical time series by treating the data as a discrete-valued time series (Weiss, 2018). A key challenge with 
these approaches lies in identifying an appropriate movement model in either continuous or discrete time; 
correlated random walks are used in the literature to capture state-switching behaviours, however 
complications arise when viewing the data as continuous-time versus as discrete instances of a continuous time 
process (Michelot & Blackwell, 2019). A further challenge is that the simulated time index is irregular, 
requiring a time-irregularised first-difference correlated random walk model with drift, with an allowance for 
likely different autocorrelation levels in both spatial coordinates. Graph-based representations can be used with 
event sequences (Thejaswi, et al., 2020) although are typically used for pattern-detection problems in temporal 
graphs to determine usual or unusual event sequences rather than causal behaviour. One method that is data-
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driven and statistically robust to a number of these concerns, thus inherently designed to accommodate for all 
these design considerations, is Event Coincidence Analysis, discussed next. 

 

 
SIMULATOR 

(a) 

 
(b) 

Figure 1. The CRN simulator structure in (a) with the internal black-box data indicated by the bolded 
rectangle; (b) internal black-box simulator transitions between event states 𝑠!, … , 𝑠#	for replication 𝑟𝑒𝑝%. 

3. MODELLING TEMPORALLY INDEXED EVENT SERIES USING ECA 

Event Coincidence Analysis captures causality between events (Donges, et al., 2016) by providing a framework 
for quantifying the strength, directionality (causality) and time lag between two binary event series. Moreover, 
ECA allows for significance testing of causality between two series, based on stochastic point processes with 
a prescribed inter-event time distribution and other higher-order properties (Donges, et al., 2016). Figure 2 
illustrates ECA under two different premises; precursor and trigger causality event series. Specifically, Figure 
2 (a) depicts the situation where an event in Series B acts as a precursor to an event in series A, where events 
of type B are typically observed before an event of type A takes place, but are not directly responsible for event 
A itself. Conversely, Figure 2 (b) represents the situation where an event of type B acts as a direct trigger for 
an event of type A and is considered responsible for event A occurring. In either case, time parameters 𝛥𝑇 and 
𝜏 are required to determine whether a coincidence has occurred. An instantaneous coincidence occurs if two 
events with timings 	𝑡%& < 𝑡'(	 are closer in time than a coincidence interval 𝛥𝑇, allowing the option to address 
uncertain timings of events. A lagged coincidence 𝜏 is also incorporated to yield the coincidence window 
(𝑡'( − 𝜏) − 	𝑡%& ≤ 𝛥𝑇 with 𝜏 ≥ 0 the lag parameter, to capture any natural lagging between the two event series. 
Thus ECA performs an asymmetric comparison between series to support directionality and allow for 
coincidence rate calculation. 

 
(a) 

 
(b) 

Figure 2. ECA for (a) a precursor event and (b) a trigger event. Event Series B causes Event Series A, with 
dark blue (green) bars indicating significant causal events. Shaded regions demarcate a significant 

coincidence window (𝑡'( − 𝜏) − 	𝑡%& ≤ 𝛥𝑇. Adapted from (Donges, et al., 2016). 
 

The calculations for the precursor coincidence rate 𝑟)(𝛥𝑇, 𝜏) (Equation 1) and the equivalent for the trigger 
coincidence rate 𝑟*(Δ𝑇, 𝜏) (Equation 2) are: 
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function over the interval [0, Δ𝑇] (equal to 1 for 𝑥 ∈ [0, Δ𝑇] and 0 otherwise). Significance testing for ECA 
allows for different possibilities depending on the statistical properties of the data — here we adopted a 
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Poissonian approximation requiring events A and B to be randomly distributed and sufficiently rare (Δ𝑇 ≪
𝑇/𝑁( ≪ 	𝑇) where 𝑇 is the length of the binary sequence (Donges, et al., 2016). 

Extensions of ECA include aggregation and conditionalisation; the former providing an integrated measure for 
coincidences that occur between several pairs of event series subject to some meaningful grouping mechanism 
and the latter allowing for the flexibility of interlinking multiple causal event series, to allow for conditioning 
of events on specific situations. Aggregated ECA has been used in the literature for spatiotemporal aggregation 
across different regions or countries for analysis of flooding and epidemic outbreaks (Donges, et al., 2016) 
while conditionalisation has appeared in the context of meteorological drivers of climatic extremes (Siegmund, 
et al., 2016). Aggregated precursor and trigger coincidence rates 𝑟)3 and 𝑟*3 for a group 𝐺 are given by Equations 
(3) and (4) while the conditionalised counterparts are provided in Equations (5) and (6). 
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Here 𝑁> is the number of events in series C, {𝑡?>}?,!
+1 	the timings of these events, Δ𝑇@ABC is a tolerance window 

for the conditional series, 𝜏@ABC is a time lag parameter for the conditional series and 𝑁& , 𝑐𝑜𝑛𝑑 is the number 
of conditional events of type B having significant precursor coincidence with at least one event of type C.  

It should be noted that aggregated coincidence rates support systematic analysis of coincidences under a 
grouping mechanism. Recalling the CRN combat simulator design (Figure 1), aggregation could thus occur 
over input or output metrics or anomalous simulations. In what follows we will focus on the latter, using 
aggregation to construct a combat narrative for those event sequences from anomalous simulations. 

4. CONSTRUCTING A COMBAT NARRATIVE USING ECA 

In this section we explore the use of ECA, using the R library coincalc (Siegmund, 2017), to construct a combat 
narrative. A key requirement of ECA is that data from the original observation space must be binarised with 0 
indicating no event and 1 indicating an event has taken place. In this case study four event series - Movement, 
Detections, Shots and Kills – were binarised by identifying a subset of actions as events. Specifically, the event 
for Movement was standing, Detection was being identified or recognised, Shots was being hit and Kills was a 
catastrophic kill or mounted personnel casualty. Thus in what follows, combat narratives centre around the 
progression of Movement leading to Detection, being Shot and a Kill. 

The first pair in this narrative is Movement causing Detection. The simulated movement event series was 
selected from the timepoint at which standing was first recorded and the Detection series was taken from the 
first timepoint at which identification or recognition occurred after the first standing event, to preserve the 
directionality of causal events. It was not possible to select identical time points as the events were time 
indexed, rather than recorded at regularly sampled intervals. To support the requirement that events A and B 
are sufficiently rare (Δ𝑇 ≪ 𝑇/𝑁(), the parameter Δ𝑇	was set to 1, thereby necessitating 𝜏 = 0, which tests 
whether an event of Type A was triggered by the closest event of Type B. This selection was supported by the 
time indices recorded within the simulator reflecting quick action during combat. A total of 200 temporally 
indexed events were considered, capturing a short time window over which most of the simulated events took 
place. The rare events condition was met, allowing for the Poissonian approximation significance test of the 
coincidence rates. 

A subset of the Movement-Detection series is given in Figure 3 (a) with 𝑟) = 0.819	(𝑝 < 	 .000)	and 𝑟* =
0.59	(𝑝 < .000)	for the full-length sequences. These rates suggest a combat narrative that standing can act as 
either a precursor or trigger to being identified or recognised. The subsequent causal series (Detection-Shots, 
Figure 3 (b)) yielded 𝑟) = 0.847	(𝑝 = 	 .008) and 𝑟* = 0.381	(𝑝 > .05). Here the combat narrative suggests it 
is a collection of precursory behaviours that lead to being shot after detection, rather than being shot as an 
immediate consequence of being identified or recognised. It is interesting to note 𝑟) = 0.661	(𝑝 = .06) and 
𝑟* = 0.245	(𝑝 = .697) are both not significant for Movement-Shots, indicating the intervening Detection 
event is a necessary part of the causal chain of behaviour.  
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To further investigate the mediated relationship Movement-Detection-Shot, conditionalised ECA was 
employed with Δ𝑇 = 0, 𝜏 = 1, Δ𝑇#%&' = 0	and	𝜏#%&' = 1 with these parameters also set to reflect relatively quick 
action during combat as captured by the time indices. Both the precursor and trigger coincidence rates were 
significant; 𝑟@) = 0.566	(𝑝 = .001)	and 𝑟@* = 0.408	(𝑝 = .01) with conditionalised causality as depicted in 
Figure 4 (a) and (b). 

   
     (a)     (b) 

Figure 3 – A subset of the full sequence of (a) Movement (blue) causing Detection (green) and (b) Detection 
(blue) causing a Shot (green). Overlayed dark blue/green show significant coincidences (causal events). 

From Figure 4 (a) and (b) it can be seen the combat narrative is filtered into a smaller set of coincidental events. 
That is, while there are a large number of significant Movement-Detection events, the number of significant 
Detection-Shots events is considerably smaller, indicating that being detected does not necessarily lead to being 
shot. For precursor coincidences there are 9 significant Detection-Shots events (Figure 4 (a)), suggesting that 
a minority of precursor behaviours can lead to the sequence of events Movement-Detections-Shots. This 
filtering effect is somewhat less stringent for trigger behaviour (Figure 4 (b)) with 15 significant Detection-
Shots events, suggesting there are more instances of a chains of events leading to being shot as a direct cause 
of detection.   

    

(a) 

 

(b) 

Figure 4 – (a) Precursor coincidences and (b) Trigger coincidences for conditional ECA. Overlayed dark 
blue/green/pink bars show significant coincidences (causal events). 

The final investigation considered here used aggregated ECA to characterise anomalous behaviour as part of a 
combat narrative. Previous research (Schultz, et al., 2020) identified 36 anomalous replications in the event 
series Detections, Shots and Kills, with 16 of these replications resulting in mission failure. While mission 
failure is typically a function of the output produced by the simulator, it is unclear which of the intermediate 
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event series, if any, may have contributed to this eventual outcome. A combat narrative could therefore provide 
invaluable insight into understanding why the mission was not classified as successful. 
 
The three series were considered in two progressive steps; Detection as a precursor or trigger for Shots, 
followed by Shots as a precursor or trigger for Kills, with Δ𝑇 = 0	and	𝜏 = 1 in both cases. A total of 9 of 16 
anomalous replications for Detections-Shots yielded significant precursor coincidence rates ranging between 
0.592 – 0.754 while only 2 replications yielded significant precursor rates in the subsequent Shots-Kills event 
series, with rates ranging between 0.818 – 0.820. Interestingly, the Detection-Shots-Kills trio displayed 
continuity for 1 simulated replication only (𝑟) = 0.652	(𝑝 = 	 .006)	and 𝑟) = 0.818	(𝑝 = .022) for Detection-
Shots and Shots-Kills respectively), whereas the second significant Shots-Kills event did not yield a significant 
precursor event for Detection-Shots (𝑟) = 0.338	(𝑝 = 	 .980)). 
 
A very different result was obtained for trigger coincidences; for Detection-Shots only 4 of 16 replications 
yielded significant coincidence rates ranging between 0.421 – 0.699. However, the event sequence Shots-Kills 
showed no trigger coincidence rates were significant, suggesting that within the subset of anomalous scenarios 
that resulted in mission failure, a common feature is that none of the shots during the ultimately failed mission 
led to a kill event. Thus the suggested overarching combat narrative for these anomalous simulations indicate 
it is precursor behaviour that leads to being shot and potentially killed, rather than trigger behaviour, for those 
missions which are overall deemed as a failure. 
 
At this point it is noted there are several limitations of the study presented here. The first is the choice of events 
for binarisation; further investigation is needed to enrichen the library of potentially differing narratives that 
may arise as a result of shifting focus from one subset of events to another subset of interest. The second is a 
detailed study on the choice of Δ𝑇, 𝜏 and the impact on the uncovered narratives. The third is that the results 
presented here are expected, in that the ECA-supported combat narrative is unsurprising. As a first step in this 
relatively new field of exploration the results presented here are encouraging in that more obvious narratives 
are supported by the methodology, however of stronger interest for future work would be uncovering those 
narratives which are not intuitive and, for example, would lend insight into mission outcomes that were 
unexpected. This would necessarily need to be supported by more detailed and broader simulation data to 
include numerous events for consideration. However in spite of these limitation, the first step towards 
constructing a combat narrative, based on simulated stochastically-varying temporally indexed events has been 
encouraging. It appears the use of Event Coincidence Analysis in its original, conditionalised and aggregated 
forms warrants further exploration for adaptation and applicability in this area to support decision-making 
using combat simulators. 

5. CONCLUSION 

In this paper we presented a first step towards constructing a causality-driven combat narrative via Event 
Coincidence Analysis, in support of decision-making when faced with competing simulator input design points. 
We considered a black-box combat simulator capturing stochastically-varying temporally indexed events 
Movement, Detection, Shots and Kills, to determine whether causality interlinked these sequences under 
typical and anomalous operating conditions. 

Three different approaches for ECA were trialled. The first was paired events capturing the progression 
between the sequences Movement-Detection and Detection-Shots, for which a suggested combat narrative was 
that standing can act as either a precursor or trigger to being identified or recognised. Detection itself was not 
a trigger for being shot, instead playing a key mediating role between initial movement a shot being fired. 

Conditional ECA further refined this narrative by filtering the Movement-Detection-Shot events into a smaller 
subset of causal behaviours to support the original narrative that Movement acts as a precursor to Detection 
but does not necessarily lead to being shot as a direct consequence. In terms of precursory behaviour, the 
narrative indicated that Movement and Detection were necessary for a shot to occur. 

We also considered aggregated ECA for anomalous combat sequences that led to mission failure. A combat 
narrative was sought in terms of the interaction between Detection, Shots and Kills for these missions, with 
results indicating that for anomalous simulations precursor behaviour leads to being shot and potentially killed, 
rather than behaviour that directly triggers being shot and perhaps contributing to an unsuccessful mission. 
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Future work will explore the choice of Δ𝑇, 𝜏 and their impact on the combat narrative including investigating 
longer lead times to precursor and/or trigger events. An expanded definition of events in each of the temporal 
sequences also will be investigated over a statistically sympathetic structure such as a network including 
coincident network structures, avoiding the need for selecting the time-based parameters Δ𝑇, 𝜏, or Markov logic 
networks, to allow for probabilistic transitions between events resulting in a predictive capability within the 
combat narrative thereby enhancing the reactive approach presented here. Other extensions include combat 
team labelling to identify team members, combined with graph theoretic methods such as social network 
analysis, to determine key players and their roles to further enrichen the combat narrative. 
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