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Abstract: Parameter sets of hydrologic models do not transfer well between periods with different climatic 
conditions. Existing literature shows that model performance is particularly affected when parameters 
calibrated on wetter conditions are used to project streamflow during drier conditions. In the Australian context, 
where future projections indicate the climate is likely to become warmer and drier as a result of global climate 
changes, these limitations of hydrologic models become particularly disquieting, especially with regards to 
their implications for estimating water availability during dry periods. The Millennium drought, which 
impacted large parts of south-eastern Australia ca. 1997-2009, exposed these limitations of hydrologic models 
and their most common calibration methods. During the drought, many catchments in south-eastern Australia 
underwent changes in their hydrologic behaviour. Extensive research since the end of the drought shows that 
models calibrated on pre-drought conditions routinely overestimate streamflow when forced with climate data 
from the years of the drought. 

In operational simulation, it is often assumed that once a model is shown a variety of climate conditions in the 
calibration sequence, it will perform better under future climate variability. In the context of the Millennium 
drought, it has been theorised that now that we have experienced these conditions, models calibrated on long 
timeseries that include the Millennium drought will be able to perform well under a future drier climate. In this 
study, we put this idea to the test. Specifically, we use five commonly used conceptual hydrologic models and 
evaluate their performance during and after the Millennium drought in 155 Victorian catchments. We test 
whether their performance (in terms of KGE and bias) improves significantly after inclusion in the calibration 
period of the drought and the post-drought periods themselves. For calibration we use an objective function 
specifically designed to optimise models’ ability to reproduce both high and low flow conditions while 
minimising volumetric bias. 

Our results show that the “naïve” approach of extending calibration sequences to include as much climate 
diversity as possible is not sufficient to significantly improve model reliability in the face of future climate 
uncertainty. We demonstrate that showing models data from the Millennium drought in calibration did not 
significantly improve their performance across this set of catchments, neither during the drought itself nor, in 
most cases, in the period after the drought. Further including the post-drought sequence in calibration does 
significantly improve post-MD KGE in three out of five models, but even in these models, performance is still 
significantly lower than it is when calibrating on post-drought only and the improvement, albeit statistically 
significant, is unlikely to make operational difference in most cases. Additionally, bias doesn’t significantly 
change. This is despite drought and post-drought making up a significant proportion of the calibration sequence 
(at least 30%). Mann-Whitney tests were used to assess whether model performance was significantly different 
across the set of catchments. Our results also show that, while rarely significant, the extension of the calibration 
period does provide a marginal improvement in performance for almost all models and both periods tested. 
This is encouraging and supports the practice to expose models to a variety of climate conditions, however it 
indicates that additional provisions are needed when training models for use in ungauged climates. 

Evidence from literature suggests that more sophisticated calibration methods with explicit and distinct 
treatment of different climate regimes improve model performance under a transient climate. However, 
especially in the catchments where drastic shifts were observed, new model structures that are more flexible to 
such climate-induced changes in hydrologic regime are likely necessary to confidently project streamflow 
under future climate scenarios. By exposing these limitations, we encourage members of the hydrologic 
community to exercise caution when applying our existing models and calibration frameworks to project 
streamflow into unknown and uncertain climate conditions. We also join the numerous community calls for 
new and more robust approaches for hydrologic modelling and simulation in the face of a changing climate. 
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1. INTRODUCTION 

Parameter sets of hydrologic models do not transfer well between periods with different climatic conditions. 
This is a well-known fact, supported by an extensive corpus of literature (e.g. Coron et al., 2012; Li et al., 2012; 
Seibert, 2003; Vaze et al., 2010). Transferability is particularly poor when the evaluation period is drier than 
the calibration period; in these conditions, models tend to overestimate streamflow during evaluation. These 
limitations of hydrologic models are especially disquieting in the context of climate change (Peel and Blöschl, 
2011). Under a changing climate, hydrologic models play a central role in assessing risks derived from water 
availability and extreme hydroclimatic events (Xu, 1999). Nevertheless, future climate conditions (i.e. model 
forcing data) may be too uncertain or too different from any period in the observed series to be able to define 
and identify an adequate calibration period. In practice, to project streamflow under uncertain climates, it is 
standard procedure to subject models to differential split-sample testing – DSST (Klemeš, 1986) – to ensure 
their adequacy to perform under varying conditions. Models are then recalibrated on the entirety of the 
available data prior to their operational use to ensure their parameters have been tuned by exposing them to the 
maximum available climate variability.  

In the Australian context, the Millennium drought (MD) exposed serious limitations of hydrologic models and 
their most common calibration methods (Fowler et al., 2016; Saft et al., 2016a). The MD impacted large parts 
of south-eastern Australia ca. 1997-2009 and contributed to a shift in the hydrologic behaviour of many 
catchments in the area, often persisting years after the end of the drought itself (Peterson et al., 2021; Potter 
and Chiew, 2011; Saft et al., 2016b). This, in turn, affected the reliability and adequacy of common frameworks 
for modelling and calibration (e.g. Fowler et al., 2020, 2016; Saft et al., 2016a). In particular, exposing 
hydrologic models to the many short dry spells which are present in the instrumental record prior to the MD is 
not sufficient for them to perform well during the MD itself (Saft et al., 2016a). Given the extreme conditions 
posed by this event and its unprecedented nature, however, it is often assumed for operational simulation that 
even if models fail this DSST, inclusion of the MD in the calibration sequence may be sufficient to train models 
to perform under future climate, as long as it isn’t more extreme than what was observed during the MD (Chiew 
et al., 2014, 2009).  

In this study, we investigate whether inclusion diverse climatic conditions such as the Millennium drought in 
the calibration period, without their explicit and distinct treatment, is sufficient to produce a set of parameters 
that will performs satisfactorily under future climate variability. We refer to this approach as “naïve” to 
distinguish it from more sophisticated calibration methods aiming at maximising the amount of information 
extracted from the calibration sequence through differential treatment of different periods or aspects of the 
flow regime – e.g. through meta-objective functions or multi-objective optimisation (Fowler et al., 2018, 2016). 
We use five commonly used conceptual hydrologic models and evaluate their performance during and after 
the Millennium drought in 155 Victorian catchments. We test whether their performance improves significantly 
after inclusion in the calibration period of the drought and the post-drought periods themselves. 

2. METHODS 

2.1. Catchments and data 

Models are calibrated and forced with data from 155 drought-affected catchments in the southern Australian 
state of Victoria. Located on both sides of the Great Dividing Range, these catchments experienced a range of 
hydrologic responses to the Millennium drought: two-thirds of them were shown to shift their rainfall-runoff 
relationship during the drought and only half of the shifted catchments recovered from these shifts in the decade 
after the end of the dry spell (Peterson et al., 2021). Meteorological data were extracted from daily gridded 
interpolated records: rainfall data comes from the Australian Gridded Climate Data collection (Jones et al., 
2009), while for temperatures (HBV only) and potential evapotranspiration (Morton’s wet environment) the 
SILO database was used (Jeffrey et al., 2001). Catchment-level daily average values were calculated from the 
gridded records. All meteorological data is complete at the daily timestep from before 1950 to 2019 inclusive. 

Streamflow data were obtained from the WMIS portal of the Victorian Department of Environment, Land, 
Water and Planning. All available daily data between 1950 and 2019 were extracted and used for this study. 
Within the 155 catchments, 29 had streamflow data starting on or prior to 1950; for the majority of gauges, 
monitoring began in the 1950’s or 1960’s (110 gauges in total). The shortest record starts in 1981. All except 
15 of the catchments have streamflow records running up to the end of the 2019 water year (i.e. 29 February 
2020). This set of catchments was selected to exclude catchments with incomplete or unreliable records and 
significant external impacts on their flow regime; additionally, quality codes were used to additionally filter 
out problematic data points. 
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We distinguish three periods of interest: (1) PreMD is the period before the onset of the drought, i.e. up to and 
including 1996; (2) MD is the period during which the drought occurred, here fixed between 1997 and 2009 
water years inclusive for all catchments; and (3) PostMD refers to the years after the drought, from 2010 to the 
end of the record. Based on available streamflow, the average (median) length of the PreMD period in these 
catchments is 33.5 (32) years; whereas the MD is of a fixed 13 years for all catchments. The minimum length 
of the PostMD period is 5 years, but as already stated, all except for 15 catchments have 10 years of record in 
this period. When models are calibrated on the period including PreMD and MD (see section 2.2 below, 
calibration 2), the drought represents on average 29.2% of the calibration length. When the PostMD period is 
added to that (hence calibrating on the entire record, calibration 3 in section 2.2) the period after the drought 
makes up on average 17.9% of the calibration sequence and MD and PostMD together sum up to on average 
41.7% and at least 29.9% of it. 

2.2. Experimental set-up 

We use five commonly used, conceptual, spatially-lumped hydrologic models, namely IHACRES (Croke and 
Jakeman, 2004; Jakeman et al., 1990), GR4J (Perrin et al., 2003), SimHyd (Chiew et al., 2002), Sacramento 
(Burnash, 1995) and HBV (Lindström et al., 1997). This set of models encompasses a range of complexities 
(1–5 stores and 4–15 parameters) and are all widespreadly used in hydrologic modelling studies both in 
Australia and overseas, including in the same area and period used for this study (e.g. Fowler et al., 2020, 2016; 
Saft et al., 2016a). All models are used in their implementation within the MARRMoT framework (Knoben et 
al., 2019; Trotter et al., in preparation).  

Models are calibrated using the Covariance Matrix Adaptation Evolution Strategy – CMA-ES (Hansen et al., 
2003). The objective function optimized in the calibration process is designed to capture the ability of models 
to reproduce high and low flow conditions while maintaining minimal volumetric bias. The objective function 
is comprised of the average of two KGEs (Gupta et al., 2009), one calculated on observed and simulated 
streamflow and one on their transformation using the fifth-root to enhance the weight given to smaller flows, 
and of a logarithmic bias penalisation factor (Viney et al., 2009), which reduces the value of the objective 
function as the volumetric bias (B) deviates from zero. The formula to calculate model efficiency (E) under 
this objective function is given in equation 1 below. 

 𝐸𝐸 =  
1
2
�𝐾𝐾𝐾𝐾𝐾𝐾𝑄𝑄 + 𝐾𝐾𝐾𝐾𝐾𝐾𝑄𝑄0.2� − 5 ∙ | ln(𝐵𝐵 + 1) |2.5 (1) 

Meteorological data of the five years prior to the beginning of the calibration sequence are used to warm-up 
the models and stabilise the stores. 

Each of the five models was calibrated in each of the 155 catchments using data from five different periods: 

1. Pre-drought period (PreMD), from the beginning of the streamflow record up to 1996; 
2. Pre-drought and drought (PreMD+MD), from the beginning of the streamflow record up to 2009; 
3. Entire record (AllTime), using all of the available streamflow record for each catchment; 
4. Millennium drought only (MD), from 1997 to 2009; 
5. Post-drought only (PostMD), from 2010 and up to the end of the streamflow record. 

Once a calibration run returned a set of parameters, this was used to simulate streamflow for the entire available 
record and the streamflow output by this simulation is used to evaluate model performance during and after 
the drought. KGE and volumetric bias are used as metrics for model performance, representing respectively 
how well a model reproduces the hydrograph overall and the water balance specifically. 

For each calibration period, results from individual catchments are combined into a distribution reflecting 
performance across all catchments. Mann-Whitney tests (Mann and Whitney, 1947) are computed to compare 
the distributions from the different calibrations.  We use 𝛼𝛼 = 0.05 as threshold for significance and evaluate 
global significance using the false discovery rate (FDR) method (Benjamini and Hochberg, 1995). We compare 
the performance during the drought of models calibrated on periods 1, 2 and 4 above; where comparison 
between the performance using parameter sets from calibrations 1 and 2 indicate whether the performance 
improves significantly by adding the MD in the calibration sequence, while calibration 4 is used as a benchmark 
indicating the maximum expected performance of a model during the drought. Similarly, for the period after 
the end of the drought, we compare performance with parameter sets from calibrations 1, 2, 3 and 5: here 
calibration 5 is the benchmark and the comparison of calibrations 1, 2 and 3 are useful to identify whether 
performance improves significantly by adding the drought or the post-drought to the calibrations sequence. 
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3. RESULTS 

Including the Millennium drought in the calibration sequence does not significantly improve the ability of 
models to project streamflow during the Millennium drought itself. Model performance during the drought for 
calibration periods 1 (PreMD), 2 (PreMD and MD) and 4 (MD) is shown in Figure 1. When models are 
calibrated on the PreMD period, their median KGE in evaluation during the MD across this set of catchments 
ranges from 0.17 (GR4J) to 0.63 (IHACRES). Model performance increases an average of 0.012 points on the 
KGE scale when the Millennium drought itself is shown to the models in calibration; the model with the biggest 
improvement in performance is GR4J, where the median KGE goes up by 0.048 points. Based on the results 
of the Mann-Whitney tests, these improvements in performance are never significant (Figure 1). The addition 
of the Millennium drought to the calibration sequence contributes on average to closing 1.9% of the gap in 
performance from the benchmark (i.e. calibration 4), with SimHyd closing the biggest gap (14.5% of the gap 
filled). In terms of bias, the same considerations apply: models overestimate streamflow volumes during the 
drought, regardless of whether the parameter sets used were optimised on the pre-drought period only or also 
including the drought itself. Again, we see a marginal improvement in the estimation of flow volumes– on 
average, median bias decreases by 5.3%, with GR4J again leading the other models with a 14.0% median bias 
reduction – but this again does not add up to a significant improvement according to the Mann-Whitney tests. 

Using parameter sets calibrated including the Millennium drought also doesn’t improve model performance 
after the drought. Figure 2 shows model performance in the PostMD period, here we compare performance 
using parameter sets from calibrations 1, 2, 3 (entire period) and 5 (PostMD only). Changes in post-drought 
median KGE between calibrations 1 and 2 (i.e. by adding the MD in the calibration sequence) are between 0.09 
points (GR4J) and −0.07 points (HBV), averaging 0.01 across all models. None of these changes are significant 
according to the Mann-Whitney tests. This very marginal improvement results in 3.2% of the performance gap 
during the post-drought period being filled by adding the drought to the calibration period – this value jumps 
to 18.2% if only the models where the PostMD median performance improved in calibration 2 compared to 
calibration 1 are considered, i.e. excluding HBV and Sacramento. Again, we see similar results for the bias. 
The only model where adding the MD to the calibration sequence significantly improved bias estimation after 
the drought is GR4J, whose PostMD median bias reduced by 9.4% by using parameters from calibration 2 
instead of calibration 1, closing 28.8% of the bias gap and bringing its post-MD bias in line to that of the other 
models. For all other models, however, the reduction in bias is not significant and is on average 3.2%, ranging 
between 0.8% (Sacramento) to 5.8% (SimHyd). 

Showing models the data after the drought during calibration resulted in some marginal PostMD performance 
improvement for the KGE, but never for the bias. Comparing the second and third boxes of the plots in Figure 
2 reveals that, adding the PostMD period itself to calibration did significantly improve PostMD KGE scores 
for SimHyd, Sacramento and HBV. Median KGE for these three models improved on average by 0.09 points 
from calibration 2 to calibration 3: albeit statistically significant, this is unlikely to make operational difference 
in most cases. Adding the PostMD to the calibration sequence of SimHyd and Sacramento closed 32.4% and 

Figure 1. Model performance during the Millennium drought (MD), depending on the period used for 
calibration. Significance of Mann-Whitney test indicates significant difference in performance. 
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28.4% of the KGE gap to calibration 5, respectively – this is less than the gap filled in GR4J’s KGE (31.7%) 
where the improvement, however, is not significant. For HBV, the gap filled is larger (34.4%). Significance of 
the improvement in KGE value of HBV, however, is largely due to the fact that the model with parameters 
from calibration 2 saw a decrease in model performance after the drought compared to calibration 1 parameters. 
In fact, the difference in PostMD median KGE between calibrations 1 and 3 is again not significant (not shown). 
With regards to bias, again the inclusion the PostMD period in calibration provides only a marginal 
improvement to PostMD median bias for all models – on average bias is reduced by 3.7% and up to 6.7% 
(SimHyd) – however, this never results in a significant change from the bias resulting from simulations with 
parameter sets from calibration 2. 

4. DISCUSSION AND CONCLUSIONS 

The results presented clearly indicate that the “naïve” approach of extending calibration sequences to include 
as much climate diversity as possible is not sufficient to significantly improve model reliability in the face of 
future climate uncertainty. This is particularly striking given that, in the methodology used for this study, 
models were given the advantage of being evaluated on data they had already seen during the calibration 
process. Nevertheless, our results also show that, albeit rarely significant, the extension of the calibration period 
does provide a marginal improvement in performance for almost all models and both periods tested. This 
indicates that while it is good practice to expose models to a variety of climate conditions, further provisions 
are necessary when training models for use in ungauged climates. This may be caused by a faulty design of the 
calibration framework, which fails to give enough emphasis on the dry periods in the calibration sequence, or 
may be the results of inadequate model structures, which, no matter how they are trained, result in models 
unable to perform satisfactorily in all three periods: before, during and after the drought. 

Evidence suggests that different calibration methods which treat dry and non-dry periods distinctly can be 
helpful to improve model performance under changing conditions. Fowler et al. (2016) demonstrated that in 
some cases models can perform well during both dry and non-dry climate when these two conditions are given 
equal weight in the calibration process – in their case, using a multi-criteria optimiser. Another possible 
approach that could be implemented without the use of multi-objective optimisers is to average values of an 
objective function calculated on specific subperiods, similarly to the split-KGE approach which proved 
superior to others according to Fowler et al. (2018), this explicitly prevents the generation of a parameter set 
biased towards the wettest years or periods of the calibration sequence. 

Despite our best efforts, however, it is possible and likely that new model structures that are more flexible to 
changes in hydrologic conditions caused by climate variability are necessary for models to be able to 
satisfactorily extrapolate into future climate scenarios. Many of the catchments in this study underwent changes 
in their hydrologic behaviour induced or exacerbated by the prolonged dry period during the MD, which 
persisted after the end of the dry spell (Peterson et al., 2021). In the catchments where drastic behavioural 
changes occurred, improvements in calibration may not be sufficient to train models to simulate both regimes 

Figure 2. Model performance after the Millennium drought (PostMD), depending on the period used for 
calibration. Significance of Mann-Whitney test indicates significant difference in performance. 
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and new model structures which include time variant parameters or store sizes, or otherwise more flexible 
components are likely to be needed to appropriately reproduce such changes in behaviour. This is likely to 
become more common as climatic changes exacerbate in the future, however, the lack of a comprehensive 
understanding of the causes of the observed shifts entails this approach is challenging both in terms of model 
design and eventual calibration of such modified models. In this context, fully distributed, process-based 
models might be better at modelling future conditions thanks to more physically based components that better 
reproduce catchment changes. Nevertheless, uncertainty due to overparametrisation and equifinality are grave 
limits of these more complex models and their calibration methods (Franks et al., 1998). 

With this short study, we demonstrated that long time series which include extensive climate variability are not 
sufficient to calibrate models able to perform under future climate conditions. We used climate and streamflow 
data from catchments affected by the Millennium drought in south-eastern Australia and compared the 
performance of models in these catchments during and after the drought. Model performance during these 
periods of interest was almost never significantly improved even when the drought or the post-drought period 
themselves made up a significant proportion (at least 30%) of the calibration sequence. We argue that distinct 
treatment of different climatic conditions observed in the calibration period is more appropriate to properly 
inform models and train them to perform in a variety of future climates. Nevertheless, we recognise that it is 
also probable that, given the observed hydrologic non-stationarity that developed during the drought in these 
catchments, existing models may not altogether have the appropriate flexibility and resilience to perform in 
such drastically changing conditions. We hope with this piece of research to increase awareness of the limits 
our existing frameworks for modelling and calibration have when projected into unknown, uncertain and 
previously unseen conditions. While we encourage modellers, researchers and hydrologists to exercise humility 
and constraint in this regard, we also hope to inspire them by joining the numerous calls to spur action towards 
the development of novel and innovative approaches to hydrologic modelling and simulation under uncertainty. 
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