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Abstract: The influence of anthropogenic climate change on extreme bushfire weather in Australia is 
assessed using a standardised method for projections information. The method steps comprise a review and 
synthesis of a comprehensive range of factors based on observations, modelling and physical process 
understanding. The resultant lines of evidence are then used to guide the production of projections data and 
confidence assessments. Projections are produced based on global climate model output as well as dynamical 
downscaling data using three regional climate modelling approaches (CCAM, BARPA and 
NARCliM/WRF). The projections data are calibrated using quantile matching methods trained on 
observations-based data, with a particular focus on the accurate representation of extremes. The resultant 
projections data include nationally consistent maps of bushfire weather indices corresponding to the 10-year 
average recurrence interval (i.e., return period) around the middle of this century (2040-2059), with a focus 
of the discussion on regions around southern and eastern Australia during summer as needed for some risk 
assessment applications. The projections data are also available for other seasons and time periods 
throughout this century, as well as for other metrics of extreme or average conditions. The results for 
southern and eastern Australia during summer show more dangerous bushfire conditions (high confidence in 
southern Australia; medium confidence in eastern Australia) attributable to increasing greenhouse gas 
emissions. 
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1. INTRODUCTION 
Recent events such as the Black Summer 2019-2020 highlight the need to consider rare and unprecedented 
extremes particularly in a changing climate (Dowdy 2020; van Oldenburg et al. 2021). Climate change 
projections are presented here for extreme fire weather conditions based on applying a standardised method. 
This method uses a comprehensive range of lines of evidence from physical process understanding, 
observations, reanalyses and climate modelling. It is designed to be beneficial particularly in cases with many 
contributing factors and uncertainties (such as for some extremes and for mean rainfall, wind, flood, etc.), 
including for the selection of projections methods and datasets as well as for confidence assessments. For 
example, this method can help provide guidance when producing the projections data products on whether a 
particular modelling approach could be useful to include or not (or perhaps weighted differently within a 
broader ensemble of datasets). That type of targeted guidance can be used along with other more general 
sources of guidance relevant to projections data, such as based on broader assessments of models and 
methods relating to climate change projections (CSIRO and BoM 2015; Thatcher et al. 2021). This 
standardised method is used here together with a new set of calibrated climate projections for Australia, 
including using three regional downscaling approaches, with the aim of providing the best-available 
projections information for dangerous bushfire weather conditions under future climate change. For further 
details around this method and applications such as presented here see Dowdy et al. (2021). 
Here we focus on extremes corresponding to the 10-year average recurrence interval (ARI), representing an 
event with a return period of 10 years on average (noting that the return period is equal to the reciprocal of 
the annual probability of exceedance). This included maps of the most likely future projected change in 
values corresponding to the 10-year ARI, together with estimates of the 10th and 90th percentile range of 
plausible 10-year ARI values as a confidence assessment measure. National maps of those quantities are 
presented here, together with confidence assessment information, based on considering many lines of 
evidence. The resultant maps and data layers (with supporting confidence assessment information) are 
intended for a broad range of user groups including in sectors for which extreme bushfires are relevant. The 
projections are presented for the future climate around the middle of this century, as well as for the historical 
climate, but are also available for other time periods throughout this century as well as for other metrics of 
extreme or average conditions throughout Australia (with data available on request).  
Bushfires can be considered as a form of compound event given the range of factors that influence their 
occurrence, including based on the combined influence of many weather factors (from near-surface 
conditions to higher-level atmospheric processes including convection). Bushfire occurrence is also 
influenced by other factors including vegetation conditions (such as relating to fuel load and type) and 
ignition sources (such as associated with human activities or with lightning), some of which can be 
challenging to model (given current climate modelling capabilities). The primary focus of the analysis is on 
dangerous weather conditions for bushfire hazards, with other factors also considered to some degree (i.e., 
relating to vegetation conditions and ignition sources), noting that climate change influence on other 
components of risk (exposure and vulnerability) are less clear than for the hazard component examined here. 
2. DATA AND METHODS 
Bushfire weather conditions are often represented by indices as a useful way of combining numerous weather 
conditions known to influence fire behaviour. Examples of such indices include the McArthur Forest Fire 
Danger Index (FFDI) commonly used in Australia, including as the focus of the analysis presented here, 
which is based on near-surface humidity, wind speed and temperature as well as rainfall (McArthur 1967). 
There are also many other examples of similar indices to the FFDI, such as the Fire Weather Index (FWI) 
that was originally developed in Canada but now widely used throughout the world (van Wagner 1974; Field 
et al. 2015). Indices have also been developed for grass fires, while noting that grass fires were not identified 
as a key hazard of interest by stakeholders for this research. Indices are also available for several other fuel 
types including a multi-index system currently in development for Australia (known as the Australian Fire 
Danger Rating System: AFDRS). Some indices such as the Continuous-Haines index (C-Haines) are based 
on conditions at higher levels of the atmosphere that can be useful for indicating risk factors associated with 
the occurrence of extreme fire events, including very dangerous fires that generate thunderstorms in their fire 
plumes known as pyrocumulonimbus or pyroCb clouds (Mills & McCaw 2010; Dowdy and Pepler 2018; Di 
Virgilio et al. 2019). 
Several datasets are available for future projections of values corresponding to 10-year ARI of daily fire 
weather based on the FFDI. These datasets have all been calibrated using the quantile matching for extremes 
(QME) method described in Dowdy (2020) which also includes details on how the FFDI was calculated as 
used here, noting that the FFDI is just used here as a broad-scale indication for aspects of fire weather 
climatology (i.e., as a useful way to combine several factors known to influence fire behaviour including 
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humidity, wind, temperature and accumulated rainfall, noting many other factors such as ignition and fuel 
conditions). These calibrated projections datasets provide a 16-member ensemble, as follows: 

- Dynamical downscaling using the CCAM modelling approach (Thatcher and McGregor 2011) applied to 5 
GCMs (ACCESS1-0, CanESM2, GFDL-ESM2M, MIROC5, NorESM1-M); 
- Dynamical downscaling using the recently developed BARPA modelling approach (Su et al. 2021) applied 
here to one GCM (ACCESS1-0 GCM for eastern Australia); 
- Dynamical downscaling using the NARCliM modelling approach (Evans et al. 2014) applied to 3 GCMs 
(ACCESS1-0, ACCESS1-3, CanESM2) with 2 configurations of each (providing 6 ensemble members); 
- Calibrated data based on the QME method applied to four GCMs (ACCESS1-0, CNRM-CM5, GFDL-
ESM2M, MIROC5 GCMs). 

The standardised method consists of two steps, referred to here as producing the Lines of Evidence Table 
(Step 1) and then producing the Projections Likelihood Information (Step 2). The Lines of Evidence Tables 
are provided to document the supporting science details, as well as to help guide the production of the 
Projections Likelihood Information including the confidence assessment. For the purposes of this study, the 
Projections Likelihood Information is shown as maps for the most probable change in values corresponding 
to the 10-year ARI, together with estimates of the 10th and 90th percentile range of plausible change in those 
10-year ARI values (as one measure for providing confidence information). 

Step 1 – Produce the Lines of Evidence Table 

 Collect a wide range of information on climate change that could be of relevance to consider when 
populating the Lines of Evidence Table. This information could be obtained from new analyses as well 
as from a review of existing literature, considering aspects such as observations, reanalyses, model data 
and physical process understanding. For example, relevant aspects to consider could potentially include 
analysis of long-term observed trends, model simulations of future climate, uncertainties in observations, 
uncertainties relating to a modelling approach’s ability to simulate physical processes and observed 
features (such as the seasonal cycle or spatial detail of extremes), as well as the influence of large-scale 
drivers (e.g., El Niño-Southern Oscillation) in the historical and future projected climates. 

 Collate that information into short text summaries on each aspect being considered, with accompanying 
figures and references provided to support those summaries, aiming for a general balance of evidence 
based on the available science. The summaries can be grouped into broader categories (e.g., physical 
processes, historical climate and future climate). 

 Use those short text summaries to populate the Lines of Evidence Table. This table contains a different 
row for each of the different aspects being considered. Key details can be listed on each row including 
the degree of influence that this aspect has on the variable in the region being considered, as well as what 
this implies for the direction of projected future change (colour-coded to show either an increase, 
decrease, little change or increased uncertainty). This is intended as a standardised way to help collate 
and synthesise a broad range of information. 

Step 2 – Produce the Projections Likelihood Information 

 For the projected change of interest (e.g., a change from the historical period to a future period in values 
corresponding to the 10-year ARI), use the Lines of Evidence Table to determine the best available data 
and methods for estimating a given likelihood measure. For example, likelihood measures could include 
the most probable projected change, together with estimates of the 10th and 90th percentile range of 
plausible change. The method to determine the best available estimate for a given likelihood measure 
may vary between different weather variables of interest (e.g., depending on the degree of confidence in 
models to simulate relevant physical processes). For example, this variation could include the selection 
of different datasets and methods (e.g., the use of direct model output or statistical diagnostic methods) 
or scaling some data differently in a model ensemble. 

 For quantities that have a reasonably robust range of evidence, with good agreement between those 
different lines of evidence (e.g., about two thirds of the Lines of Evidence Table having a consistent sign 
of future change), model output may be the best option for producing the Projections Likelihood 
Information, while still considering the uncertainties and strengths/weaknesses of different modelling 
approaches for helping to guide the production of the data products. For quantities with lower confidence 
(i.e., more limited evidence and/or lower agreement between lines of evidence), a more qualitative best 
estimate could be appropriate. For example, in some cases with very high uncertainty the best estimate 
for the Projections Likelihood Information might simply be ‘an increase is more likely than a decrease’ 
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for a particular region, if that is the best information that can be provided based on the balance of 
available knowledge from the Lines of Evidence Table. It is acknowledged that given the broad range of 
different information sources and data types (e.g., direct model output or statistical diagnostic methods) 
this step of the process may require some degree of expert judgement to be used. 

 The Projection Likelihood Information can include confidence assessment information, such as based on 
the degree of evidence and agreement from the Lines of Evidence table. For example, estimates of the 
10th and 90th percentile range of plausible change is one measure that could be used to help indicate the 
degree of confidence in a projected future change, as well as noting wording systems used in IPCC that 
have a range of quantitative probabilities associated with them (Mastrandrea et al. 2011). 

3. APPLICATION OF METHOD FOR EXTREME BUSHFIRES 

For this study, the standardised method is applied for the projected change in climate from the time period 
1986–2005 (i.e., a commonly used historical reference period for CMIP5 data (CSIRO & BoM 2015)) to the 
time period 2040–2059 (i.e., a time period centred on the middle of this century around 2050), with a focus 
on summer, as requested by energy sector stakeholders for this research. The information collected here for 
Step 1 for the Lines of Evidence Table is intended to be relevant for the National Energy Market (NEM) 
region around southeast Australia, including listing any regional variations that might be important to 
consider, noting results presented here are derived from work done recently for energy sector applications. 

The RCP8.5 scenario, representing a high emissions pathway for anthropogenic greenhouse gases, is used 
here for the future projections for a number of reasons. Of the set of modelled greenhouse gas emission 
pathways provided in CMIP5 (which start to deviate from each other after 2005), observed climate change 
trends for temperature indicate that the high emissions pathway RCP8.5 has been followed more closely than 
low emissions pathways (e.g., RCP2.6) (Schwalm et al. 2020). Additionally, although there is potential for 
reductions in greenhouse gas emissions and the associated rate of temperature increase later this century, 
RCP8.5 is used here for the application of this method given that it takes many years after changes in 
emissions for an emergent change in a climate trend, noting the focus for this application on the period from 
now until around the middle of this century. However, for applications in which projections are needed based 
on lower emissions pathways than RCP8.5, methods could be used for scaling these projected changes 
according to the global warming magnitude for a particular time period or emissions pathway (NESP 2020). 

Here we examine projections of the 10-yr ARI of daily FFDI from the available modelling approaches based 
on GCMs, CCAM, BARPA and NARCliM. These datasets all have QME calibration applied to the input 
variables for each individual model prior to calculating the FFDI, with the ARI values then calculated from 
the FFDI data using a generalised extreme value (GEV) approach. The results show increases in the severity 
of fire weather conditions projected from the historical climate to the future projected climate during summer 
(i.e., DJF), as represented by the 10-yr ARI value of daily FFDI (Fig. 1). Some variation is apparent between 
the different model ensembles in the magnitude of increases, with somewhat larger increases for NARCliM 
in some regions, but with general agreement over these modelling approaches on projected future increases.  

 
Figure 1. Projections for values corresponding to the 10-year ARI for daily fire weather conditions as 
represented by the FFDI. This is shown based on GCMs (left panels), CCAM (second to left panels), 

BARPA (second to right panels) and NARCliM (right panels), all calibrated using the QME method. Model 
ensemble averages are shown for historical period (1986–2005; upper panels) and future simulated climate 

(2040–2059 under a high emissions pathway RCP8.5 from CMIP5; lower panels). 
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In addition to projections data from modelling such as shown above based on the FFDI, a wide range of other 
lines of evidence can also be considered for helping produce the projections information provided to end 
users, including for confidence assessment. Examples of such information are presented in Table 1, noting 
that this is derived from a large amount of content based on extensive literature reviews, with details on each 
line available in a larger project technical report: Dowdy et al. (2021). These lines of evidence include 
reviews on a wide range of physical processes, historical climate (from observations and reanalysis data) and 
future climate (from multiple modelling approaches in addition to, and including, Fig. 1) with additional 
factors also noted on lightning and fuel conditions. 

Table 1. Lines of Evidence Table for extreme fire weather conditions, with a focus on summer in regions 
around southern and eastern Australia. In the second column, the degree of influence is listed in black, 
followed by whether this information implies an increase (red), decrease (blue) or little change (black) in the 
frequency and severity of extreme fire weather conditions, as well as by increased uncertainty (purple) in the 
direction of change. The rows of information are not in order of importance. Confidence information is noted 
for some cases when available. Additional factors are noted on lighting and fuel conditions. 

4. SYNTHESIS AND CONCLUSIONS 

The Lines of Evidence Table shows considerable agreement on more dangerous fire weather conditions in a 
warming climate for Australia, including in relation to 10-year ARI fire weather conditions in regions around 
southern and eastern Australia during summer (as is a key focus here). Although there are some physical 
processes noted that add uncertainties, particularly based on GCM projections data, the RCM approaches can 

Physical processes 
Individual weather factors Strong influence. More extreme temperatures and heatwaves; lower relative humidity; 

small decrease in wind speed. 
Drought and fuel 
moisture 

Strong influence. Projected increase in frequency of meteorological drought and dry fuel 
conditions. Considerable uncertainties for some factors; regional models likely add value. 

Combined near-surface 
weather conditions, FFDI 

Strong influence. Projected increase in frequency and severity of dangerous conditions in 
general based on numerous studies; poor agreement between models near east coast. 

Combined near-surface 
weather conditions, FWI 

Strong influence. Projected increase, but not statistically significant, and only based on one 
study. 

Upper-level conditions, C-
Haines 

Strong influence (including extreme pyroconvection). Increased frequency of dangerous 
conditions in southeast (including simultaneous occurrence with dangerous near-surface 
conditions) and decrease in northeast. 

Subtropical ridge Moderate influence in southeast. Potential increase in intensity. 
Blocking Moderate influence. Future change uncertain. 
Fronts Moderate influence. Future change uncertain. 
El Niño-Southern 
Oscillation 

Strong influence. Uncertain future change; potentially more frequent strong ENSO events 
but with low-medium confidence. 

Indian Ocean Dipole Strong influence. Uncertain future change; potentially more frequent strong IOD events but 
with low-medium confidence. 

Southern Annular Mode Strong influence in central east. Positive trend in SAM reducing dangerous fire weather in 
central east region with medium confidence. 

Historical climate 
Seasonal cycle Models reproduce the seasonal cycle and spatial variability well (high confidence). 
Historical trend Increase from observations (medium confidence). Models reproduce the trend well 

(medium confidence). 
Future climate 
GCMs: CMIP5 Increase (very high confidence). 
RCM: CCAM Increase (high confidence in general; medium near east coast). 
RCM: NARCliM Increase (high confidence in general; medium near east coast). 
RCM: BARPA Increase (high confidence in general; based on one model to date). 
Additional factors 
Lightning ignitions Strong influence. Future change very uncertain, but increase more likely than decrease. 
Fuel load and type Strong influence. Future change very uncertain, but increased fuel load more likely than 

decrease. 
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help with the simulation of some of these processes such that the considerable level of agreement between 
RCM approaches (particularly in southern Australia, but somewhat less so in parts of eastern Australia) helps 
add some confidence for projected future changes.  

Observed trends and RCM simulations are available for near-surface and higher-level conditions, including 
combining those different levels using a compound event framework (Dowdy & Pepler 2018; Di Virgilio et 
al. 2019; Dowdy et al. 2019), showing increases in southern Australia with more variation between results in 
eastern Australian including decreases in some regions. Additionally, although there is low confidence for 
projected future changes in vegetation-related conditions such as fuel load and type, as well as in ignition risk 
factors including the occurrence of dry lightning, there is some indication that increases may be more likely 
than decreases in risk factors associated with fuel condition and ignition sources for bushfires (while noting 
considerable uncertainties and more research needed on such topics). 

Considering all of the review details in the sections above, and noting the predominance of an increase from 
the Lines of Evidence Table, projections for 10-year ARI extreme fire weather conditions in 2050 are 
developed here based on combining data from several calibrated modelling approaches including GCMs (4 
ensemble members), CCAM (5 ensemble members), BARPA (1 ensemble member) and NARCliM (6 
ensemble members). FFDI data are available from these models and are the primary data source used here. 
The contrasting modelling approaches are combined based on equally weighting the changes.  

The ensemble median is used as a central estimate of the most probable projected change (Fig. 2). As an 
estimate of the range of plausible values, the second lowest value from the ensemble is used for the 10th 
percentile and the second highest value is used from the ensemble is used for the 90th percentile, with these 
values calculated individually at each grid cell location. However, given some of the uncertainties from Table 
1 in purple (also noting some lines of evidence in blue for reductions), including variations between different 
modelling approaches and studies (e.g., projections based on the FWI showing smaller changes than for 
FFDI), the lower bound of the range provided here has been modified to reflect the potential for lower values. 
This is done based on reducing any projected increases for the 10th percentile by a factor of two (as a 
qualitative estimate based on expert judgement). For example, at a given grid-cell location, if the 10th 
percentile for the future period was higher by a value of 8 as compared to the 1986–2005 value, it would be 
changed to only be a value of 4 higher than the 1986–2005 value at that location. Projections for any regions 
that show decreases for the 10th percentile are not changed. Only the 10th percentile is changed to allow for 
lower values, but no lines of evidence suggest these FFDI projections data systematically underestimate 
future increases such that the 90th percentile is unchanged and is considered a plausible upper estimate for the 
future projected changes for these fire weather conditions. 

Based on this assessment of a broad range of factors that can influence the occurrence of extremely 
dangerous fire weather conditions, there is high confidence in southern Australia and medium confidence in 
parts of eastern Australia for the projected direction of change, with a future increase in 10-year ARI fire 
weather conditions being likely (i.e., 66-100% probability) for southern and eastern Australia. 

 
Figure 2. Projected change in values corresponding to the 10-year ARI for daily fire weather conditions 

during summer. Maps are shown for Australia for the historical period (based on 1986–2005; upper panel), as 
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well as for the future simulated climate (based on 2040–2059 under a high emissions pathway RCP8.5: lower 
panels) including a central estimate with lower and upper estimates also provided. The data are based on the 

FFDI, with some modifications based on considering Table 1 lines of evidence. 
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