
Freight train scheduling via decentralised multi-agent
deep reinforcement learning

A. M. C. Bretas a , A. Mendes a , S. Chalup a , M. Jackson b, R. Clement b and C. Sanhueza b

aThe University of Newcastle, New South Wales, Australia
bHunter Valley Coal Chain Coordinator, Broadmeadow, NSW, Australia

Email: c3308652@uon.edu.au

Abstract: Rail traffic planning and scheduling problems have been challenging academy and industry for a
few decades. Specifically, problems in the short term and real-time horizons deal with simultaneous
decision-making of trains, stations and terminals. Approaches focused on decentralised decision-making
have been successful in delivering real-world committed solutions. This work focuses on decentralised real-
time decision-making in a closed freight rail network and applies multi-agent deep reinforcement learning
(MADRL) to find efficient timetables.

We apply the MADRL model to solve the traffic decisions arising in the Hunter Valley Coal Chain (HVCC) in
New South Wales, Australia. The approach uses the same simulation model currently in use for capacity plan-
ning of the system, thus allowing tests with real data. The environment is modelled as a decentralised, partially
observed Markov decision process (dec-POMDP), where the train, load point, and dump station agents decide
upon train movements based on local observations. The observations follow a novel state encoding strategy
for rail traffic management composed of nine layers. We benefit from this strategy to apply a decentralised
execution with a centralised learning approach through proximal policy optimisation.

The experiments revealed a significant performance improvement for the ten instances tested, which reproduce
the challenges faced in the HVCC operations. The approach is suitable for varied levels of rail network
complexity, generating efficient solutions without scaling issues. The MADRL outperformed the heuristic
in use by HVCC’s simulation model and a high-performance genetic algorithm in all instances, reaching
performance improvements of up to 72.00% and 47.42%, respectively. Therefore, the framework with the
MADRL and the simulation model allows its application with real world instances in an efficient and reliable
way. These results show the method’s consistency and draw a safe path towards a decentralised rail
traffic management system.

Keywords: Multi-agent deep reinforcement learning, simulation-based machine learning, decision-making,
rail traffic management, train scheduling

24th International Congress on Modelling and Simulation, Sydney, NSW, Australia, 5 to 10 December 2021
mssanz.org.au/modsim2021

743

https://orcid.org/0000-0002-9710-9074
https://orcid.org/0000-0003-1759-3765
https://orcid.org/0000-0002-7886-3653

A. M. C. Bretas et al., Freight train scheduling via decentralised multi-agent deep reinforcement learning

1 INTRODUCTION

Freight trains usually follow a tight schedule that matches the needs of train operators, stations, terminals
and crews, among others. Even though medium and long-term train scheduling problems are complex tasks,
efficient exact and heuristic approaches are available (Corman and Meng [2015]). However, when it comes to
short term planning and real-time rail traffic management (RTM), many gaps still exist in terms of scalability,
real-world commitment and decentralisation (Lamorgese et al. [2018]).

In this study, we model the RTM problem with the Hunter Valley Coal Chain (HVCC) as the baseline. The
HVCC is the world’s largest coal export operation, located in New South Wales (NSW), Australia. More than
87% of the coal transportation in NSW is done through railways, highlighting the importance of optimisation
techniques driving the decisions across the coal chain. The HVCC starts at the Port of Newcastle (PoN) and
extends to distances of up to 420 kilometres to reach the 30 existing coal mines.

Figure 1 illustrates the main rail infrastructure elements present in the HVCC. The sections have parallel lines
closer to the terminals (sections between A and H). Trains leave the terminals empty and travel to a load point
(LP) to load with coal, and use a balloon loop to return to the mainline and travel back to a terminal, where
they use one of the dump stations to unload. LPs can be located close to the double line railroads (e.g. LP1),
or at single line railroads (e.g. LPs 2 and 3). In a single line railroads, trains require a passing loop (PL) to
overtake or meet-pass another train. The distance between PLs should not be too large to avoid high dwell
times (or waiting times). PLs are represented in sections J-K, N-O and P-K in Figure 1.

Our approach addresses the RTM problem as defined by Corman and Meng [2015]. The method assigns
feasible arrival and departure dates for the trains in each section of their routes to complete their trips, including
loading/unloading activities, in order to minimise dwell times. In a feasible solution, all trains complete their
trips from terminal to load point and back without a deadlock situation arising. The method described in this
work uses multi-agent systems (MAS) and deep reinforcement learning (DRL) to model the problem as a
decentralised system with learning capabilities.

2 LITERATURE REVIEW

This work addresses a multidisciplinary problem that carries concepts related to RTM, agent technology (AT),
Markov decision process (MDP) and reinforcement learning (RL). This section provides a background with
the main concepts related to these topics and discusses the related papers.

2.1 Background

In AI, problems are often modelled using agents that observe their environment and act on behalf of its goals
(Russell [2010]). Multi-agent systems (MAS) contain multiple agents acting simultaneously, either pursu-
ing the same goal (cooperative MAS) or individual goals (non-cooperative MAS). According to Bazzan and
Klügl [2014], the complex decisions arising in traffic and transportation problems can be addressed by MAS
approaches, as those are inherently scalable and decentralised.

Reinforcement learning RL stands for a group of machine learning methods that generates knowledge by
trial, error and reward evaluation. In a single-agent RL application, an agent interacts with its environment
by choosing actions that might better respond to a given observation. After a few episodes exploring different
action outcomes, it learns a policy that unveils the best observation-action pairs, given an initial goal (Russell
[2010]). A popular RL algorithm is the Q-learning method (Watkins [1989]). It is a value-based method that
learns a utility function by building a Q-table of the expected return of observed state-action pairs.

A B E F H I J K L

M

N O P Q

Train

Train

Train

Train

Train

Load

Point 2

Load

Point 3Train

Terminal

2

Terminal

1

Dump

Station 1

Dump Station 3

Dump Station 2

Load

Point 1

C

D

G

Figure 1. Example of the HVCC rail network main elements.

744

A. M. C. Bretas et al., Freight train scheduling via decentralised multi-agent deep reinforcement learning

RL methods such as Q-learning are an efficient option for solving sequential decision problems. However, the
method fails to decide upon unseen states. A powerful alternative to overcome this issue is the policy function
approximation through artificial neural networks (ANN), which originates the concept of Deep Reinforcement
Learning (DRL). DRL has been largely applied since the success of Google Deepmind’s project AlphaGo and
the advent of Deep Q-Networks (DQN) (Mnih et al. [2015]). Proximal Policy Optimisation (PPO) (Schulman
et al. [2017]) is another DRL method that has been popular due to its ability to handle high-dimensional
continuous and discrete state spaces. The combination of RL and deep neural networks opened a promising
research branch with many significant results (Arulkumaran et al. [2017])

Multi-agent learning According to Panait and Luke [2005], multi-agent learning (MAL) is the application
of machine learning techniques to problems with multiple agents. Multi-agent deep reinforcement learning
(MADRL) applications arise when dealing with a MAS where the agents learn through a DRL algorithm.

The actions of all the agents compose together a joint action ak = [a1k, · · · , aNk], ak ∈ A, ank ∈ An and
their policies πn : S × An → [0, 1] compose a joint policy π that influences the state transitions. Since
the agent does not have full access to the complete state of the environment, the problem can be classified
as a partially observed Markov decision problem (POMDP). When the agents interact with a different part
of the environment, a decentralised POMDP (dec-POMDP) problem arises. This approach suits distributed
problems, where agents are independent from each other and act simultaneously.

In a POMDP, the next state of the environment results from the actions of all agents. The simultaneous learning
of multiple agents can change the state transition probabilities and generate a non-stationary environment, rep-
resenting a convergence challenge. Some cooperative applications allow the definition of joint action learners
(JAL) (Claus and Boutilier [1998]). This type of agent replaces two or more agents that have access to each
other’s actions. It learns from the joint action of the original agents, reducing learning concurrence.

2.2 Related work

The number of papers applying MAS and RL to the RTM and related problems has increased as the methods
became more popular. For a summary of the papers that apply agent technology, we refer the reader to Bretas
et al. [2021]. In this section, we focus on the papers applying RL to the RTM problem.

Parvez Farazi et al. [2021] brings a comparative review on DRL methods applied to seven different domains
related to traffic and transportation, including rail transportation. Obara et al. [2019] used a similar centralised
approach for the passenger train rescheduling problem. The authors applied graph theory to model temporal
activities of the rail network and a DQN agent to learn how to change the graph and optimise arrival and
departure dates in all nodes. The main outcome reveals that the method generates positive changes in the
timetable in 57% of the instances tested. Ning et al. [2019] presents an application of DQN to minimise the
average total delay for a high-speed timetable rescheduling problem. The model has a centralised dispatcher
agent that receives an encoded timetable as the state and acts by defining the departure sequence of the trains
in each station. The authors in Ying et al. [2021] focus on the minimisation of total passenger and operating
cost. They build an optimisation framework based on an MDP for centralised decision-making on metro
services scheduling and train composition. The model applies an ANN to represent the decision space and a
mask scheme to facilitate the incorporation of the operational constraints. Experiments with real data from
London’s metro system show that the method outperforms evolutionary heuristics in solution quality, overall
cost and computational efficiency.

A decentralised decision-making approach takes place in the work of Khadilkar [2019] for linear bi-directional
railways with passenger trains. The author presents a Q-learning algorithm with a decentralised execution with
centralised learning framework to solve the RTM problem in scheduling and rescheduling scenarios. In a MAS
with a team of train agents, each train decides for itself based on local observations and using the state-action
table as a common knowledge base. The local observation is an encoded vector that informs the level of
occupation in the surrounding sections. The local observation includes the b sections behind the train, the
train’s current section and the f sections in front of it. The action is a binary variable that determines if the
train moves ahead or stays in the current section. The approach suits large scale applications since the state
vector encoding strategy do not vary with the number of trains and rail network sizes.

3 METHODOLOGY

The Hunter Valley Coal Chain Coordinator (HVCCC) conducts medium and long term planning analysis
using an simulation model produced internally, named enhanced Whole of Coal Chain (eWoCC). eWoCC is a

745

A. M. C. Bretas et al., Freight train scheduling via decentralised multi-agent deep reinforcement learning

discrete-event and agent-based simulation model that reproduces many aspects of the HVCC with a high level
of detail. The model is implemented in the simulation software Anylogic1, and was the starting point to the
development of the intelligent agents that compose the MAS described here.

3.1 The intelligent agents

The MAS in this work comprises three types of agents: train agents (TA), load point (LP) agents and dump
station (DS) agents. Each TA represents a train travelling in the network that has to decide whether to move to
the next section a = 1, or keep its current location a = 0, based on a local observation of the current state of
the environment. Table 1 details the framework to encode the environment information to support the agent’s
decision. The LP and DS agents monitor the occupation and the flow of trains around their balloon loops, and
act by recommending a decision to a train. Since all the agents are part of a cooperative MAS, we model TA
and LP/DS agents as JALs when they are physically close. Thus, when a train is less than f sections from its
next destination (LP or DS), the agents perform a single joint action in the discrete action space AS = {0, 1}.
The occupation state layer holds the most important role in the observation encoding. It is relevant to all
decisions taken by the trains in each part of the network. Analogously, some state layers as the Y-junction
occupation and the conflict detection are more relevant when the train approaches a Y-junction and when
another train is approaching, respectively.

The occupation Sr of each resource r assumes a value between 0 and R, calculated by Equation 1. It is an
adaption from Khadilkar [2019] for problems that consider trains travelling in the same section and different
sizes for trains and tracks. Sr = 0 indicates that the resource r has no associated section (e.g. next resource
after the last section of the route). Qr is a binary parameter that detects empty resources. Nr is the number
of parallel tracks in the section, and τr represents the number of those tracks currently occupied. w indicates
whether there is enough space for the current train to fit behind another train in the next section (w = 0.5), or
if the next section is fully occupied (w = 1). Finally, R is a threshold for the maximum occupation value. We
use R = 3 for all experiments – which represent low, medium and high occupation.

Sr = Qr(R−min(R− 1, bNr − wτrc)) (1)

Reward calculation Our approach uses immediate rewards and delayed rewards, given only at the end of an
episode and calculated by Equation 2 and Equation 3, respectively. Since this is a cooperative MAS, both are
global rewards assigned to the whole team of agents.

ItRW =M t/Mtot + T t/Ttot (2)

DRW = −1 + (FCFSDT
1TS/RL

DT) (3)

The immediate rewards are given after each decision step. Its objective is to guide the agents towards a
feasible solution. If all agents have an action a = 0 in the time step t, then ItRW = 0. Otherwise, it assumes
the normalised number of sections travelled (M t/2Mtot) by all trains plus the normalised number of train
trips completed (T t/2Ttot). Mtot and Ttot represent the total number of sections and trips in a given instance,
respectively. M t and T t are the values achieved for both metrics at the end of the episode. Feasible solutions
have all trains completing their trips to the LPs and back. Thus, M t/Mtot = 1 and T t/Ttot = 1 by the end of
the episode. An episode ends in an infeasible solution when it reaches the maximum number of allowed steps.
In this case, IRW would be less than 2.

The delayed reward DRW reflects the main objective to minimise the total dwell time of all trains. The model
applies Equation 3 to calculate the DRW for feasible solutions, otherwise DRW = −1. In order to achieve
a positive and representative normalisation for the dwell time, we use the dwell time obtained by a improved
FCFS heuristic available in the eWoCC simulation model (FCFSDT

1TS) as a reference. Hence, a reward greater
than 1 indicates that the MADRL has a smaller dwell (RLDT) than the FCFS1TS heuristic.

3.2 MADRL implementation

The MAS works on a decentralised execution with centralised learning framework, where each agent makes
independent decisions based on local information, constituting a dec-POMDP. The agents learn a common
single policy through PPO and the Pathmind2 platform. Pathmind leverages the RLlib library3 with a ded-
1https://www.anylogic.com
2https://pathmind.com/
3https://docs.ray.io/

746

A. M. C. Bretas et al., Freight train scheduling via decentralised multi-agent deep reinforcement learning

State Layer Size Description Examples

Occupation b+ f A vector S of integer variables that uses Equation 1 to
calculate the level of occupation in each resource r. The
resources are given by the b sections behind the train,
the section currently occupied by the train and the f
sections in front of the train.

Sr = 0;
Sr = 3;
S = {1, 1, 2, 3, 2, 3}: example with b = 2,
f = 3 and high occupation in the sections
ahead.

Movement 1 Single binary variable tm that indicates if the train is
currently in movement

tm = 0: train waiting;
tm = 1: train currently in movement.

Load 1 Single binary variable tl that indicates if the train is cur-
rently loaded

tl = 0, empty train;
tl = 1: loaded train.

Y-junction
occupation

b+ f/2 Integer vector J of size b+f/2 that allows values from
0 to 2. Jr measures the occupation of the junction in
resource r for the b sections behind the decider train
(train currently checking the state) and the f/2 sections
in front of it. Values greater than 0 indicate a train in the
first section of a Y-junctions’s alternative branch com-
ing towards the decider train.

Jr = 0: No trains coming;
Jr = 1: All trains coming will reach the Y-
junction later the decider train;
Jr = 2, At least one train will reach the Y-
junction before the decider train.

Alternative
path density

b+ f/2 Integer vector D of size b + f/2, where Dr indicates
the occupation in the following f/2 sections of the al-
ternative path of the Y-junction in the resource r, after
the first section. Dr assumes a density value between 0
and 2, given by the rounded average of the occupation
(calculated by Equation 1) over the sections.

Dr = 0: Low density of trains coming from
an alternative path of a Y-junction
Dr = 1: Medium density of trains coming
from an alternative path of a Y-junction;
Dr = 2: High density of trains coming from
an alternative path of a Y-junction

Track length
detection

4 It is a binary vector tld of length 4 that tells if the size of
the current and the next three sections are greater than
the length of the train. We chose this number because
it represents the maximum distance between a passing
loop and an LP in the HVCC.

tldr = 0: the train is longer than section r
tld = {1, 0, 1, 1}: the train does not fit in the
next section

Conflict de-
tection

3 Binary vector that indicates, for the next three sections,
if there are trains coming towards the decider train.

cfd = {0, 0, 0}: no train coming in the op-
posite direction
cfd = {0, 1, 0}: there is an incoming train
in the second section ahead.

Load point
agent

1 Calculated by the LP agent, it informs through a binary
variable if the LP is ready to receive the train.

lp = 0: there is enough space to receive the
train in the arrival track or the arrival track
fits the train, but is still partially occupied by
a train that is currently loading.
lp = 1: no track to receive the train in the LP

Dump sta-
tion agent

1 It is a binary variable ds that indicates the occupation
of the dump station (or unloading point) and the number
of trains on the way to the dump station.

ds = 0: there is at most one train in / ap-
proaching the dump station;
ds = 1: there is more than one train currently
in / approaching the dump station.

icated cloud-based testing environment and provides a friendly integration with Anylogic. Pathmind ap-
plies population-based training (PBT) to conduct the hyperparameter tuning, which is a method developed
by Google’s Deepmind to find the best hyperparameter configuration of a neural network by running several
trials in parallel (Jaderberg et al. [2017]).

4 EXPERIMENTS

This section discusses the experiments using ten instances based on the HVCC railway network. These in-
stances have between 16 and 80 trains, and different numbers of sections, LPs and terminals. The second
column of Table 2 shows the details of each instance. The first goal of the test phase refers to the learning and
convergence of the MADRL approach. This is analysed by observing the reward function and the number of
steps taken over the training episode. The first metric should increase from small (or even negative, i .e. in-
feasible) values to positive values. From iteration 250 onward, Pathmind checks if the reward mean variation
over the last 50 iterations does not exceed 1%. If this convergence criterion is satisfied, training is stopped. For
the number of steps, values would likely start at the highest levels and decrease as the method finds feasible
solutions. Figure 2 shows the analysis of both metrics for SLP-01 and MLP-06.

The experiment’s configuration allows the learning process to happen until it matches the convergence criteria
or at least one of the following thresholds is reached: 200,000 episodes, 12 hours of training time, or 500
iterations. While MLP03 converged since iteration 100, SLP01 takes more steps to find the best value for the

Table 1. Description of the state layers that compose each observation of the train agents

747

A. M. C. Bretas et al., Freight train scheduling via decentralised multi-agent deep reinforcement learning

0 50 100 150 200 250-1.0

-0.5

0.0

0.5

1.0

1.5

2.0
����
�������������
������������	���

����
����� �����
��������

0 50 100 150 200 250

0.0

1.0

2.0

3.0

����
�������������
������������	���

400

450

500

550

600

650

700

800

1000

1200

1400

1600

1800

2000

Figure 2. Analysis of the behaviour of the reward mean and the episode length mean (number of steps
taken by the DRL) with the number of iterations for instances SLP01 and MLP03.

0 50 100 150 200 250

0.5

0.6

0.7

0.8

0.9

1.0
��������	��������
��
���

��������	��������
����������������
��������	��������
������������
���������������������

0 50 100 150 200 250
0.75

0.80

0.85

0.90

0.95

1.00
��������	��������
��
���

20

30

40

50

60

70

20

40

60

80

100

120

Figure 3. Analysis of the behaviour of the three metrics that compose the reward: normalised number
of train movements, normalised number of train trips and normalised total dwell time for instances MLP02
and MLP06.

reward mean. The episode length curve for SLP01 suggests that it initially finds a few deadlock solutions;
followed by infeasible solutions with the maximum allowed episode length, and finally, feasible solutions with
fewer DRL decision steps.

We also decomposed the reward function to evaluate the behaviour of the number of train movements, the
number of train trips completed and total dwell time over the training episodes. As the number of train
movements and train trips reach their maximum values, feasible solutions are found, and then the learning
focuses on reducing the total dwell time. Figure 2 shows a graphical analysis of these metrics for MLP02
and MLP06. While the curves for MLP02 showed a smooth behaviour, the MADRL found a few low quality
solutions for MLP06, and even infeasible ones, before it converged. That can be explained by the complexity
of the instance, plus the multi-agent learning with a shared policy.

Once the learning curve of the MADRL method was satisfactory, the performance evaluation was extended
to all instances. In these experiments, we compare the MADRL against the F CF S1T S and the Genetic
Algorithm (GA) presented in our previous paper (Bretas et al. [2021]). In the previous approach, the MAS
uses a GA to learn a common policy for all agents. Table 2 shows the results.

Number of Dwell time Dwell time Dwell time GAP GAP GAP
Instance Trains | Sections FCFS1TS Average GA MADRL eFCFS / Avg GA eFCFS / MADRL Avg GA / MADRL

| LPs | Terminals (hours) (hours) (hours) (%) (%) (%)
SLP-01 16 | 30 | 1 | 1 9.26 5.27 4.84 43.09 47.73 8.16
SLP-02 20 | 30 | 1 | 1 13.47 8.92 8.63 33.78 35.93 3.25
MLP-01 30 | 32 | 3 | 1 25.71 9.10 7.20 64.61 72.00 20.88
MLP-02 40 | 35 | 4 | 1 27.77 25.79 13.56 7.13 51.17 47.42
MLP-03 40 | 35 | 4 | 1 29.65 14.07 10.18 52.55 65.67 27.65
MLP-04 60 | 49 | 6 | 2 32.19 22.71 15.01 29.45 53.37 33.91
MLP-05 60 | 57 | 6 | 2 35.59 19.61 15.30 44.90 57.01 21.98
MLP-06 60 | 60 | 6 | 2 22.86 19.28 18.29 15.66 19.99 5.13
MLP-07 60 | 73 | 6 | 2 26.28 27.95 21.73 -6.35 17.31 22.25
MLP-08 80 | 66 | 8 | 2 49.54 39.26 31.12 20.75 37.18 20.73

Table 2. Compilation of the results for the performance experiments between F CF SSZ , F CF S1T S and the
GA-based MAS. Each instance was tested with 20 different seeds.

748

A. M. C. Bretas et al., Freight train scheduling via decentralised multi-agent deep reinforcement learning

The experiments show that the MADRL method outperformed both the FCFS1TS and the GA in all instances.
Even for the only instance where the GA fails to outperform the FCFS1TS (MLP-07), the MADRL achieves
a total dwell time of 21.73 hours, which is 17.31% less than the heuristic. In terms of CPU time, the MADRL
experiments ran for an average of 3.12 hours, and the GA experiments ran for 5.54 hours, on average. However,
since they run on different platforms, there is no direct way to compare their computational times.

5 CONCLUSION

This paper describes the implementation of a MADRL method for the RTM problem reproducing the chal-
lenges faced by the Hunter Valley Coal Chain Coordinator (HVCCC). The MADRL outperformed the heuristic
in use by HVCCC’s simulation model and a high-performance GA in all instances, reaching improvements of
up to 72.00% and 47.42%, respectively. The framework with the MADRL and the simulation model allows
the application to a variety of situations. The approach is efficient, and at the same time reliable, since the sim-
ulation model limits eventual non-consistent solutions that represent a risk in black-box methods using ANN.
The centralised learning scheme allows all agents to share a single policy, even when they are acting at the
same time and in physically distant locations. It enables the exploration of a common knowledge base across
local problems and accelerates the learning process. Hence, the next steps will consider using the method with
larger instances and evaluating the use of transfer learning across different instances.

ACKNOWLEDGMENTS

This work was supported by a joint HVCCC / University of Newcastle 50/50 business and industry PhD
scholarship. Furthermore, the authors praise and thank the Pathmind team for their support.

REFERENCES

Arulkumaran, K., Deisenroth, M.P., Brundage, M., Bharath, A.A., 2017. A brief survey of deep reinforcement
learning. arXiv preprint arXiv:1708.05866 .

Bazzan, A.L.C., Klügl, F., 2014. A review on agent-based technology for traffic and transportation. The
Knowledge Engineering Review 29, 375–403.

Bretas, A.M.C., Mendes, A., Jackson, M., Clement, R., Sanhueza, C., Chalup, S., 2021. A decentralised
multi-agent system for rail freight traffic management. Annals of Operations Research .

Claus, C., Boutilier, C., 1998. The dynamics of reinforcement learning in cooperative multiagent systems, in:
Proceedings of AAAI’98, American Association for Artificial Intelligence, 295800. pp. 746–752.

Corman, F., Meng, L., 2015. A review of online dynamic models and algorithms for railway traffic manage-
ment. IEEE Transactions on Intelligent Transportation Systems 16, 1274–1284.

Jaderberg, M., Dalibard, V., Osindero, S., et al., 2017. Population based training of neural networks. arXiv
preprint arXiv:1711.09846 .

Khadilkar, H., 2019. A scalable reinforcement learning algorithm for scheduling railway lines. IEEE Trans-
actions on Intelligent Transportation Systems 20, 727–736.

Lamorgese, L., Mannino, C., Pacciarelli, D., Krasemann, J.T., 2018. Train dispatching, in: Handbook of
Optimization in the Railway Industry, Springer International Publishing (Ed). pp. 265–283.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., et al., 2015. Human-level control through deep reinforce-
ment learning. Nature 518, 529.

Ning, L., Li, Y., Zhou, M., Song, H., Dong, H., 2019. A deep reinforcement learning approach to high-speed
train timetable rescheduling under disturbances, in: 2019 IEEE Intell. Transportation Systems Conf, IEEE.

Obara, M., Kashiyama, T., Sekimoto, Y., 2019. Deep reinforcement learning approach for train rescheduling
utilizing graph theory, in: 2018 IEEE International Conference on Big Data, IEEE. pp. 4525–4533.

Panait, L., Luke, S., 2005. Cooperative multi-agent learning: the state of the art. Autonomous Agents and
Multi-Agent Systems 11, 387–434.

Parvez Farazi, N., Zou, B., Ahamed, T., Barua, L., 2021. Deep reinforcement learning in transportation
research: A review. Transportation Research Interdisciplinary Perspectives 11, 100425.

Russell, S.J., 2010. Artificial intelligence: a modern approach. N.J, United States.
Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O., 2017. Proximal policy optimization algo-

rithms. arXiv preprint arXiv:1707.06347 .
Watkins, C.J.C.H., 1989. Learning from delayed rewards. Thesis.
Ying, C.S., Chow, A.H.F., Wang, Y.H., Chin, K.S., 2021. Adaptive metro service schedule and train composi-

tion with a proximal policy optimization approach based on deep reinforcement learning. IEEE Transactions
on Intelligent Transportation Systems , 1–12.

749

	Introduction
	Literature Review
	Background
	Related work

	Methodology
	The intelligent agents
	MADRL implementation

	Experiments
	Conclusion

