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Abstract: Wildfire behaviour prediction is a complex and challenging endeavour that incorporates 
information relating to various factors such as vegetation, local and ambient weather conditions, and 
topography within a particular modelling framework. Often, a single model cannot provide a complete 
description of the phenomenon due to significant differences in the temporal and spatial frames required to 
resolve the relevant physical process. The low computational cost and simplified nature, statistical-based 
models of fire spread are an obvious choice for operational purposes. However, most statistical regression 
models of rate of spread still possess significant degrees of uncertainties. Despite considerable progress in 
modelling fire behaviour, fires can still create unexpected scenarios for emergency services personnel during 
real situations, and result in loss of containment, significant injury, or even fatalities. Recently, there has been 
significant interest in utilising machine learning techniques to better predict wildfire for improved management 
of forests and parks. The present work uses an artificial neural network to estimate the rate of fire spread in 
shrubland. The model is trained upon data from the published literature to establish a non-linear relation 
between the rate of fire spread and twelve input variables, namely: vegetation height, vegetation cover, fine 
dead and live fuel load, air temperature, relative humidity, wind speed at 2 m height, slope, moisture content 
of dead and live fuel, and ignition length. The network model-based estimates of the rate of fire spread yield 
results close to the measured data, with a correlation coefficient r2=0.87. Furthermore, the model was able to 
quantify the significance of all input variables on rate of fire spread. This capability of neural network model 
can be helpful in determining how much a factor contribute to rate of fire spread which otherwise be 
overshadowed by the assumptions involved in a regression model. For this dataset, the moisture content of 
dead fuel, wind speed at 2 m height, and vegetation height were the most significant variables for determining 
the rate of fire spread in shrublands. This agrees with other statistical regression model studies in the literature. 
The neural network model was also able to quantify the dependency on ignition line length a variable that was 
deemed insignificant by the existing regression model. This preliminary study provides a benchmark for further 
application of neural networks and other machine learning techniques to model wildfire rate of spread. Further 
work could also involve testing the predictive capability of the neural network model on other independent 
datasets pertaining to shrubland fires and its extension to other fuel types.  
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1. INTRODUCTION 

Wildfire is a complex phenomenon; its occurrence and behaviour are the product of several interconnected 
factors, which include the type of ignition source, types of fuel involved and their composition, local and 
ambient weather conditions, and topography. The science of fire behaviour prediction is established in some 
parts of the world, however, even in countries with prominent investment in fire behaviour research and 
operational fire aptitude (e.g. situational awareness, fire spread forecasting, wildfire disaster policies, etc.), 
fires can still surprise fire and emergency agencies and sometimes cause fatalities. Recent Californian fires 
2020 in the USA, Black Summer 2019-20 in Australia, and the Evia Island fires in Greece 2021 are prime 
examples of such scenarios, which perplexed the local emergency services. One of the most challenging aspects 
of the wildfire problem is the fact that fire propagation is driven by a variety of processes that encompass a 
wide range of spatiotemporal scales: the combustion process occurs at a spatial scale of a few centimetres over 
a period of seconds, whereas fire spread and growth occurs over spatial scales from meters to kilometres and 
over time frames of minutes to days. Thus, it is not possible to have a single model for all the physical processes 
contributing to wildfire propagation.  

Sullivan (2009a, 2009b, 2009c) provided detailed information about the features of existing fire behaviour and 
propagation models used both in academia and operational fire prediction. Every modelling approach has its 
own inherent strengths and limitations. To begin with, empirical fire models (Sullivan, 2009b) are 
straightforward to implement and use, and neither require high technical skills nor computational budget. These 
fire models have proved to be fairly accurate, under certain restrictions due to their simplified nature, and can 
predict some aspects of fire-spread dynamics in an acceptable way. However, most of these models are derived 
from controlled experiments conducted under relatively benign conditions, and so can become unreliable for 
fires that take place under different conditions and in different landscapes, especially for local fire dynamic 
behaviours. Physics-based or quasi-physics based fire models (Sullivan, 2009a) are mostly based on first 
principles. These models are intrinsically nonlinear, multi-scale, and capture complex phenomena, however, 
their prediction accuracy cannot always be ensured. Additionally, these models require high technical skills to 
implement and need considerable computational resources to support simulation. The computational time is 
typically far greater than the simulated time, making such models unsuitable for tactical intervention scenarios. 
Cruz and Alexander (2013) have evaluated the accuracy of various empirical-based fire spread models, used 
mainly in Australia, and observed that the mean error in estimating fire spread varied between 20-310%. 
Similar observations are made by Cruz et al. (2018) for two sets of empirical models (an older and a newer 
model) used for dry eucalyptus, coniferous, shrubland and grassland vegetation found in Australia are 
compared. They observed mean error lies in estimating rate of spread lies in the range of 41-124% and 33-
122% for the older and newer empirical model respectively. Uncertainties associated with fire spread modelling 
have significant implications for the utility of model predictions. For example, uncertainty in rate of rate spread 
predictions relating to a wildland-urban-interface (WUI) fire scenario, could lead to significant over-prediction 
in the amount of time available for evacuation, or significant under-estimation of the behaviour of the fire as it 
impacts the WUI (Ronchi et al., 2017).  

There is always significant uncertainty associated when forecasting natural hazards behaviour such as flooding, 
landslides, avalanches, and wildfires due to their inherent complexity and dominance of particular factors in 
each situation (Riley et al., 2016). Mandel et al. (2005) proposed a flood forecasting technique that was based 
on a neural network model which shows the relative importance of different environmental variables used to 
predict floods. Kim et al. (2015) developed a time-dependent surrogate model for storm surge to use for 
forecasting evacuation and facility closures from impact of hurricanes using a neural network. More recently, 
there has been significant interest in the research community in utilising machine learning techniques for 
forecasting such events and estimating their behaviour as these techniques can increase computational 
processing capability and data availability. This interest has also extended to the wildfire research community, 
and, Jain et al. (2020) have provided a detailed review of the application of machine learning in the discipline 
of wildfire science and emergency preparation. They observed that most of the work is focused only on fire 
susceptibility mapping and management aspects – other aspects of the fire modelling problem, such as 
understanding fire spread and fire growth, have received less attention from the research community. Vakalis 
et al. (2004) developed a two-fold reasoning GIS (Geographic Information System) simulator, which consists 
of a discrete contour propagation model for estimating fire consequences and a fuzzy-neural system for the 
estimation of fire spread as a function of influencing factors such as terrain characteristics, vegetation type and 
density and meteorological conditions. They developed their fire spread model based on area burnt and a set 
of influencing factors that occurred during 1983-1996 in Attica, Greece. Their work did not involve developing 
a fire spread model based on individual fire events. Markuzon and Kolitz (2009) tested several classifier 
methods such as random forests, Bayesian networks and k-nearest neighbour to estimate if a fire would become 
large either one or two days following its initial observation. They concluded that each of the tested methods 
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performed similarly, with random forest based classification performing correctly by classifying large fires at 
a rate of over 75%, albeit with a number of false positive cases. Kozik et al. (2013) presented a fire spread 
model that used a novel artificial neural network implementation that more closely resembled a cellular 
automata model than a traditional neural network. 

Zheng et al. (2017) simulated fire spread by integrating a cellular automata model with an extreme learning 
machine (a type of feed-forward neural network). Transition rules for the automata model were determined by 
the extreme learning machine, which was trained with data obtained from five historical fires in the Western 
parts of the United States, as well as vegetation, topographic, and meteorological data. Recently, Hodges and 
Lattimer (2019) trained a convolutional neural network to predict fire spread using environmental variables 
(topography, weather, and fuel-related variables). Outputs of this model were spatial grids corresponding to 
the probability that the grid burns on a map. Their method achieved a mean precision of 89% and mean 
sensitivity of 80% with reference 6 hourly burn maps computed using the semi-empirical based FARSITE 
simulator. 

The present research attempts to fill the gap in previous applications of neural network techniques by 
developing a rate of spread model that can be used in place of current operational models. To carry out such 
work requires a large amount of data, verification and validation. This work discusses a preliminary study 
carried out using artificial neural network (ANN) on the dataset for shrub fires published by Anderson et al. 
(2015). The objective of this work is to demonstrate the capability of ANNs to model linear and non-linear 
systems without the need to make implicit assumptions about the functional form of models, as is required in 
most traditional statistical approaches. 

2. NEURAL MODEL 

ANNs can be grouped into two major categories: feed-forward and feedback (or recurrent) networks. In the 
feed-forward networks, no loops are formed by the network connections, while one or more loops may exist 
in the feedback networks. The most commonly used family of feed-forward networks is a layered network 
(commonly called the multilayer preceptor (MLP)) in which nodes called neurons are organised into layers 
with connections strictly in one direction from one layer to another. A feed-forward network is used in the 
present study. Fig.1 represents a typical architecture of a feed-forward ANN which comprises three layers i.e. 
input, hidden and output layers. An input layer consists of input nodes, with each node associated with each 
input variable. The output layer is similar, with each node corresponding to each desired output variable. 
Defining hidden layers is crucial, as there are no set rules nor conditions to define the number of hidden layers 
nor the number of nodes in each hidden layer (Stathakis, 2009). However, heuristic rules suggest that one to 
two hidden layers are sufficient for most engineering applications of neural networks. Higher numbers of 
hidden layers are usually useful only in the deep-learning methods applied to a very complex data set (Beale 
et al., 2010). The number of nodes in the hidden layer is usually selected between the number of input and 
output nodes. Heaton (2008) suggested that the number of hidden layers should not exceed two and the number 
of nodes in a hidden layer should be the mean of the number of nodes in input and output layers. 

 
Figure 1. Architecture of feed-forward layered network type artificial neural network 

The detailed working procedure and theory of ANN are provided by Heaton (2008) and Beale et al. (2010). 
Only MLP feed-forward networks are discussed here since they are used in the present study. In MLP networks, 
neuron nodes in the input layer only act as buffers for distributing the input signals 𝑥𝑥𝑖𝑖 (𝑖𝑖 = 1, 2, … ,𝑁𝑁) to 
neurons in the hidden layer. Each neuron node 𝑗𝑗 (Fig. 1) in the first hidden layer sums up its input signals 𝑥𝑥𝑖𝑖 
after weighting them with the strengths of the respective connections 𝑤𝑤𝑗𝑗𝑖𝑖  from the input layer and computes its 
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output 𝑦𝑦𝑗𝑗  as a transfer function 𝑓𝑓 of the sum, including some bias 𝑏𝑏𝑗𝑗. 𝑓𝑓 can be a simple linear function or a 
sigmoidal function, or it can be a more sophisticated hyperbolic tangent or a radial basis function. 

 𝑦𝑦𝑗𝑗 = 𝑓𝑓 ��𝑤𝑤𝑗𝑗𝑖𝑖𝑥𝑥𝑖𝑖

𝑁𝑁

𝑖𝑖=1

+ 𝑏𝑏𝑗𝑗� 
(1) 

 

The output of neurons in the output layer is computed similarly.  

The weights are determined by training the network upon a data set. The back-propagation algorithm, a gradient 
descent algorithm, is the most commonly adopted MLP training algorithm. It gives the change ∆𝑤𝑤𝑗𝑗𝑖𝑖  of the 
weight of a connection between neurons 𝑖𝑖 and 𝑗𝑗 as follows: 

 ∆𝑤𝑤𝑗𝑗𝑖𝑖 = 𝜂𝜂𝛿𝛿𝑗𝑗𝑥𝑥𝑖𝑖  (2) 

where 𝜂𝜂 is called the learning rate, and 𝛿𝛿𝑗𝑗 is a factor depending on whether the neuron node 𝑗𝑗 is connected to 
an output node or hidden layer node which is defined as follows: 

For the output layer node,  

 𝛿𝛿𝑗𝑗𝑖𝑖 =
𝜕𝜕𝑓𝑓
𝜕𝜕𝑛𝑛𝑛𝑛𝑛𝑛𝑗𝑗

�𝑦𝑦𝑗𝑗
(𝑡𝑡) − 𝑦𝑦𝑗𝑗�. (3) 

For hidden layer node,  

 𝛿𝛿𝑗𝑗𝑖𝑖 =
𝜕𝜕𝑓𝑓
𝜕𝜕𝑛𝑛𝑛𝑛𝑛𝑛𝑗𝑗

�� 𝑤𝑤𝑗𝑗𝑗𝑗𝛿𝛿𝑗𝑗
𝑗𝑗

� (4) 

In Eq. (3), 𝑛𝑛𝑛𝑛𝑛𝑛𝑗𝑗 is the total weighted sum of input signals to neuron nodes 𝑗𝑗 and 𝑦𝑦𝑗𝑗
(𝑡𝑡) is the target output for 

neuron node 𝑗𝑗. As there are no target outputs for hidden neurons, in Eq. (4), the difference between the target 
and actual output of a hidden neuron nodes 𝑗𝑗 is replaced by the weighted sum of the 𝛿𝛿𝑗𝑗 terms already obtained 
for neurons 𝑞𝑞 connected to the output of 𝑗𝑗. 

The process begins with the output layer, the 𝛿𝛿 term is computed for neurons in all layers and weight updates 
are determined iteratively for all connections. The weight updating process can happen after the presentation 
of each training pattern (pattern-based training) or after the presentation of the whole set of training patterns 
(batch training). A single step of training, called an epoch, is completed when all training patterns have been 
presented once to the MLP. 

A commonly adopted method to speed up the training is to add a momentum term to Eq. (5) which effectively 
lets the previous weight change influence the new weight change: 

 ∆𝑤𝑤𝑖𝑖𝑗𝑗(𝐼𝐼 + 1) = 𝜂𝜂𝛿𝛿𝑗𝑗𝑥𝑥𝑖𝑖 + 𝜇𝜇Δ𝑤𝑤𝑖𝑖𝑗𝑗(𝐼𝐼) (5) 

Where Δ𝑤𝑤𝑖𝑖𝑗𝑗(𝐼𝐼 + 1) and Δ𝑤𝑤𝑖𝑖𝑗𝑗(𝐼𝐼) are weight changes in epochs (𝐼𝐼 +  1) and (𝐼𝐼), respectively, and µ is the 
momentum coefficient. 

3. DATA AND MODEL IMPLEMENTATION 

Anderson et al. (2015) presented a set of compiled data for a wide range of heathlands and shrubland to develop 
an empirical fire spread model. Their spread model was found to predict fire spread rate within acceptable 
limits against independent data from prescribed fires and wildfires. The present work utilises a subset of the 
data compiled by Anderson et al. which have complete information of each quantity used to develop their 
model. They observed that the rate of fire spread in shrubland and heathlands are dependent on twelve 
variables, namely, vegetation height, vegetation cover, amount of fine dead & live fuel load, air temperature, 
relative humidity, wind speed at 2 m height, slope, moisture content of dead and live fuel, and ignition length. 
MATLAB R2016b (Beale et al., 2010) was used to create an ANN architecture for training, testing and 
validating. A MATLAB script was written to develop an MLP feed-forward neural network and calculate the 
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performance of the network. Twelve input variables on which rate of spread depends are used as input nodes 
in the input layer while the rate of spread is considered as an output variable. Most researchers consider various 
combinations of hidden layers and the number of nodes in the hidden layer to find a suitable architecture that 
best interprets their data. The input data are normalised (𝑥𝑥𝚤𝚤�) according to Eq. 6. 

 
𝑥𝑥𝚤𝚤� =

𝑥𝑥𝑖𝑖 − 𝜇𝜇
𝜎𝜎

 , (6) 

where 𝜇𝜇 is the mean and 𝜎𝜎 is the standard deviation of the 𝑥𝑥 −values, respectively.  

The input data were ordered randomly and then subdivided in the ratio of 60:20:20 for training, testing and 
validating. The Levenberg-Marquardt algorithm (Beale et al., 2010) was used for training the network, which 
is useful for small or medium-sized datasets and is one of the gradient descent method available in MATLAB. 
The training was carried out using a MLP feed-forward network using a tan-sigmoidal transfer function 
described by Eq. 7. 

 𝑛𝑛𝑡𝑡𝑛𝑛𝑡𝑡𝑖𝑖𝑡𝑡(𝑛𝑛) =   
2

(1 + exp(−2𝑛𝑛)) − 1 (7) 

4. RESULTS AND DISUCSSION 

A set of network parameters were tested using different combinations of the number of hidden layers and 
number of nodes in the hidden layers based on Heaton’s recommendations (Heaton, 2008). Table 1 shows the 
performance of six different MLP feed-forward neural networks tested for the Anderson et al. (2015) data set. 
There is little difference between the different neural architectures tested on the present dataset. The mean 
absolute error between the output and estimated data using neural networks shows slight improvement when 
an additional hidden layer is considered. However, the improvement is minimal. Details of each neural network 
parameter (weights and biases of each node for each model) is available in the public domain at 
https://github.com/rdwadhwani0220/shrubfire-neural.git.  

Table 1.  Statistical performance of developed MLP models for different network structures 

Model no. No. of Hidden layers No. of nodes in the hidden layers r2 Mean absolute error 
1 1 6 0.88 2.826 
2 1 12 0.87 2.652 
3 2 6-6 0.87 3.033 
4 2 6-12 0.88 2.183 
5 2 12-6 0.87 1.852 
6 2 12-12 0.89 2.446 

 
Figure 2. Scatter plot of neural network (model no. 5) between the estimated rate of spread using neural 
network model and output layer variable (rate of spread data by Anderson et al.). Y=T refers to the line 

where estimated is equal to the output. 
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Fig. 2 illustrates the performance of the neural network in estimating the rate of spread against the field data 
provided by Anderson et al. (2015) used in the output layer node of the neural network. In this plot any biases 
in the ANN results were corrected by applying an affine transformation to the output data. The coefficients of 
the transform were computed using linear regression. In most cases the ANN estimated rate of spread is similar 
to Anderson et al.’s data. However, some outliers are observed and they are suspected due to small dataset 
used in the present study. A bigger dataset would assist in better development of neural network based model. 
The weights that connect variables in a neural network are partially analogous to parameter coefficients in a 
standard statistical regression model and thus can be used to describe relationships between variables. Garson 
(1991) proposed a method to identify the relative importance of variables for specific output variables in a 
supervised neural network by deconstructing the model weights. The relative importance (or strength of 
association) of a specific variable for a specific output variable can be determined by identifying all weighted 
connections between the nodes of interest. That is, all weights connecting the specific input node that passes 
through the hidden layer to the specific output variable are identified. The weights dictate the relative influence 
of information that is processed in the network such that input variables that are not relevant in their correlation 
with an output variable are suppressed by their weights. The contrary effect is seen for weights assigned to 
explanatory variables that have strong, positive associations with an output variable.  

 
Figure 3. Relative importance of each of the input variable on the output variable (rate of spread) 

Fig. 3 shows the relative importance of each of the twelve input variables in estimating the rate of fire spread 
in shrubland and heathland vegetation. The weights are normalised between 0 and 1 by the maximum weight 
associated with the input variable. It is observed that the rate of spread is most affected by moisture content in 
dead fuel load and wind speed at 2 m height followed by vegetation heights and vegetation coverage. This 
finding is also supported by Anderson et al. (2015) where they found a strong correlation between dead fuel 
moisture and wind speed followed by vegetation height and total fuel load. However, they found that the total 
fuel load has more effect in their spread model compared to the vegetation cover. While our model found a 
more profound impact of vegetation cover in estimating the rate of fire spread. Moreover, the statistical 
analyses of Anderson et al. (2015) could not find any significant dependency of the rate of spread on the 
ignition length, which is contrary to other research (Cheney et al., 1993). Our neural network quantifies the 
dependency on ignition length, which is visible by its relative importance in Fig. 3. There are additional 
techniques for quantifying the sensitivity of a model to the input parameters. Global sensitivity analysis studies 
for the Dry Eucalypt model and Rothermel model were conducted by (KC et al. 2020, 2021), who found fuel 
moisture content and wind speed as the most important factors in the Rothermel model; relative humidity 
(which influences fuel moisture content) and wind speed were similarly the most important factors in the Dry 
Eucalypt model.  

5. CONCLUSION 

Neural network techniques have been the subject of significant research interest in past decades especially in 
the prediction and forecast of natural hazards. The present work shows preliminary application of neural 
networks in estimating the rate of fire spread in shrubland and heathland. A MATLAB based neural network 
model is developed based on data available in the literature. The model, which was developed from a limited 
data set shows good accuracy in estimating the rate of fire spread. Importantly, this model is developed with 
little input on the part of the modeller, whereas in statistical regression models, the modeller enforces functional 
dependencies for different input variables. Furthermore, the model can quantify the dependencies between the 
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output and input variables thus assisting existing regression statistical modelling approaches which may not be 
able to capture such dependencies. Larger datasets pertaining to fires in shrublands can expand the capabilities 
and efficacy for prediction situations. Future works will involve collecting more field data and utilisation of 
different machine learning techniques that would assist in prediction of rate of fire spread with operational fire 
models.  
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