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Abstract: The Australian Water Resource Assessment Landscape (AWRA-L) model as used by the Bureau 
of Meteorology (BoM) provides daily continental scale soil moisture (SM) estimates (among other landscape 
water variables) at ~5-km resolution. At such a coarse scale these data cannot represent the high spatiotemporal 
variability of SM across heterogeneous land surfaces. Downscaling of coarse SM products based on machine 
learning (ML) has become increasingly popular due to its robust predictions and potential for large-scale 
applications. As a first step towards high-resolution daily Australia-wide SM estimation, a downscaling 
framework was developed to generate monthly SM with 500-m spatial resolution using analysed SM from 
AWRA-L and multisource geospatial predictors in random forest (RF) regression. Candidate predictors include 
digital elevation model (DEM), soil properties from the Australian soil and landscape grids, and several 
retrievals from the MODerate-resolution Imaging Spectroradiometer (MODIS). Ten experiments were 
conducted to decide the best combination of predictors. In the chosen model, DEM and available water capacity 
(AWC) were consistently identified as the most important predictors based on the ranking of variable 
importance. 

The downscaled SM shows greatly enhanced spatial details at the local scale while maintaining consistent 
patterns with AWRA-L analysis at the continental scale. Validations against in-situ measurement networks 
using Pearson correlation coefficient (R) show that there is very little difference in the performance between 
the downscaled and AWRA-L SM. Average R values for the downscaled SM against CosmOz, OzFlux and 
OzNet were 0.87, 0.68 and 0.75, respectively, while the original AWRA-L SM average R were 0.86, 0.68 and 
0.76, respectively. Furthermore, the time series comparison based on a wetness unit shows that the downscaled 
SM can well catch up the fluctuations of in-situ SM. In general, this study explores the potential of ML 
approach for the SM downscaling applications at the continental scale. It could be a promising direction to 
exploit the modelling capability of integrating multisource geospatial data including satellite retrievals, land 
surface models (LSM) and interpolated ground observation data. Future directions should concentrate on 
integrating this approach into an operational framework with a daily frequency. Exploration of the relationships 
between SM and auxiliaries under difference scales would be essential, in order to better understand the 
dominant physical controls on spatial variability of SM. 
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1. INTRODUCTION 

Surface soil moisture (SM) usually refers to a measure of water in the uppermost part of the soil profile 
(Romano, 2014), which is known to be crucial in the partitioning of precipitation into runoff, evaporation and 
infiltration by affecting the distribution of water and radiation at the land-atmosphere interface (Kolassa et al., 
2017; Maggioni and Houser, 2017). Satellite-based SM retrievals and land surface model (LSM) data are able 
to provide spatiotemporally continuous SM data at a global or continental scale, but their applications are 
usually constrained by the coarse spatial resolution in the order of 10 km (Djamai et al., 2016). Approaches 
therefore have been developed to downscale SM products by accounting the impact of different environmental 
variables (Peng et al., 2017), aiming at providing better spatial details while maintaining good correlation with 
in-situ measurements. 

Downscaling based on machine learning (ML) approaches has become increasingly popular due to its robust 
predictions and its potential for large-scale applications. There exist several studies that have applied ML in 
the downscaling of SM at regional scales, most of which have indicated random forest (RF) regression as an 
outstanding performance against other ML approaches (Ahmad et al., 2010; Im et al., 2016; Long et al., 2019; 
Mao et al., 2019). However, few of them focused on a continental scale and most concentrated on the 
downscaling of satellite SM products. Furthermore, most existing research utilised satellite SM coarser than 
25-km resolution as the model response, which means the training set was usually far too small (only a few 
thousand training samples or even less) for a ML model.  

In this study, the Australian Water Resource Assessment Landscape model (AWRA-L) analysed SM is utilised 
as the model response for the downscaling. Specifically we use the analysed top soil layer SM generated by 
Tian et al. (2021) which assimilated two satellite SM products simultaneously into the operationalised AWRA-
L model. Compared to satellite SM products, it fills in the spatial gaps caused by a 3-day revisit cycle of 
sensors, thus can provide continuous spatiotemporal information. However, its application potential is still 
constrained by its relatively coarse spatial resolution (5-km). Due to the lack of fine-scale forcing and other 
auxiliary data, the AWRA-L analysis cannot run at a finer scale with confidence. As a first step towards 
Australia-wide available water estimation, the application of downscaling technologies on AWRA-L analysis 
would help well demonstrate the high spatiotemporal variability of SM across heterogeneous land surfaces. 
The downscaling based on AWRA-L analysis (about 260,000 grid cells for Australia) can also meet the size 
requirement of the training set for a typical ML model. 

The main objective of this study is to generate monthly SM with 500-m spatial resolution for Australia using 
5-km AWRA-L SM analysis and multisource geospatial data including satellite retrievals (e.g., albedo, 
vegetation indices), topographic data and soil textures in ML approach. This study evaluates the downscaled 
SM by spatiotemporal comparisons with AWRA-L analysis, and validations against in-situ SM data from three 
individual sites. This study provides an approach of generating moderate-resolution SM at a continental scale, 
and is expected to derive insights into how downscaling can be incorporated as part of the AWRA-L operational 
system to produce fine-scale soil moisture estimates. 

2. DATASETS 

2.1. AWRA-L soil moisture analysis 

The AWRA-L model is designed to support the monitoring and assessment of water resources and water 
accounting, which is currently being operationalised by the Bureau of Meteorology (BoM) (Frost et al., 2018). 
AWRA-L is a grid-based landscape hydrological model with a 5-km spatial resolution and daily temporal 
resolution. AWRA-L simulates SM at three layers (upper: 0–10 cm, lower: 10–100 cm, and deep: 1–6 m). In 
this study, we used the SM analysis for the upper soil layer after the assimilation of satellite SM retrievals from 
the Soil Moisture Active Passive (SMAP) and Soil Moisture and Ocean Salinity (SMOS) using a Kalman filter 
type sequential state updating process (Tian et al., 2021). The depth of AWRA-L upper layer is different from 
the general depth of the surface SM (5-cm). Pinnington et al. (2021) found the assimilation results of LSM are 
usually consistent while running with either a 10-cm top layer or a 5-cm top layer. The comparison between 
AWRA-L upper layer and other independent surface SM can be considered fair. The AWRA-L SM analysis 
shows improved agreement with in-situ SM measurements compared to the model open-loop simulations.  

2.2. MODIS retrievals   

Products from MODerate-resolution Imaging Spectroradiometer (MODIS) onboard Terra and Aqua satellites 
have been widely applied in monitoring the dynamics of landscape, hydrology and lower atmosphere. We 
chose a total of six MODIS products for this study including 500-m daily Albedo (MCD43A3), 500-m 8-day 
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evapotranspiration (ET; MOD16A2), 500-m 16-day enhanced vegetation indices (EVI; MOD13A1), 500-m 8-
day leaf area index (LAI; MCD15A2H) and 1-km 8-day land surface temperature (LST; MOD11A2 and 
MYD11A2). We acquired the relevant data from corresponding MODIS collections. All of them can be freely 
accessed through the NASA’s Earth Observing System Data and Information System (EOSDIS; 
https://search.earthdata.nasa.gov/search).  

2.3. Topographic and soil texture data 

We used the Smoothed Digital Elevation Model (DEM-S) data from the Geosciences Australia 
(https://www.ga.gov.au/). DEM-S excludes the influences of ground vegetation features and has been 
smoothed to reduce the impacts of noise. Its spatial resolution is 1-arcsecond (about 30-m). 

Soil texture can describe the spatial variations of various soil attributes from different depths at a regional or 
continental scale. We used four soil attributes including available water capacity (AWC), clay, sand and silt 
from soil and landscape grid data (available at https://data.csiro.au/). The resolution is 3-arcsecond (about 90-
m) and the depth of soil texture data chosen for this study is 0-5cm to be consistent with AWRA-L analysis.  

2.4. In-situ SM  

We used the in-situ measured data 
from three SM measurement 
networks across Australia to conduct 
validation and comparison with the 
modelling data. These SM 
monitoring networks include (1) the 
Australian Cosmic-Ray Neutron Soil 
Moisture Monitoring Network 
(CosmOz; https://cosmoz.csiro.au/) 
that uses fast neutrons to measure soil 
moisture over a 40-hectare (0.4-km2) 
region for each site; (2) the 
Australian and New Zealand Flux 
Research and Monitoring (OzFlux; 
http://www.ozflux.org.au/) that uses 
flux towers and; (3) the OzNet 
Hydrological Monitoring Network 
(OzNet; http://www.oznet.org.au/). Among them, CosmOz and OzFlux are national scale networks, while 
OzNet is a regional scale network located in the Murrumbidgee Catchment. Figure 1 gives the distribution of 
the networks used in this study. The depth of the in-situ data used for comparison is 0-5cm. 

3. METHODOLOGY 

3.1. Random forest regression 

The Random Forest (RF), proposed by Breiman (2001), is an ensemble machine learning approach based on 
decision trees. It can be used for both classification and regression tasks and has been widely applied in various 
fields due to its robust predictions and strength in reducing overfitting. The principle of RF is to build a series 
of decision trees based on the bootstrapping sampling of the training set, and make the final prediction by either 
choosing the class selected by most trees (classification) or averaging the individual predictions of all trees 
(regression). There are some key hyperparameters in the RF modelling, including the number of variables 
selected at each split (mtry) and the number of trees (ntree). In this study, we chose a mtry of 7 and a ntree of 
800 based on the results of model tuning. RF is also able to estimate the contribution of different predictors 
using two variable importance function, including permutation importance and Gini index importance, both of 
which are presented in percentage (%). In this study, we chose the permutation importance to rank the 
contribution of predictors. The percent of the permutation importance means that how much the out-of-bag 
error of the model would increase when that predictor is randomly permuted. 

3.2. Downscaling framework 

The idea behind ML downscaling is to fit a regression model between SM and predictors (resampled to the 
same resolution with SM) at coarse resolution, and predict downscaled SM using fine-resolution predictors. 

 
Figure 1. (a) The distribution of three in-situ SM networks across 

Australia; (b) the locations of in-situ sites distributed in the 
Murrumbidgee Catchment, southeast Australia. 
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The detailed process is 
as follows: Firstly, we 
composited the monthly 
mean values of MODIS 
and SM data. This is to 
avoid the potential of 
large-scale data missing 
in MODIS products and 
unify the temporal 
resolution of different 
products. We then 
resampled all the 
predictors to the same 
resolution with AWRA-
L analysis data (5-km) 
using the nearest 
neighbour (NGB) 
function, based on 
which we built the 
database for RF model 
for every month. For 
each database, we randomly chose 70% of the samples as the training data, and the remaining 30% of the 
samples were used as the testing data. The same seed was used for each model to make the randomised 
sampling process repeatable. We conducted ten experiments to decide a best combination of the predictors 
based on the root mean squared error (RMSE) of test set. The strategy was to start from five static predictors 
(i.e., DEM and four soil texture) and then incorporate new predictors accordingly, in order to observe when 
the RMSE of model can become stable. The order of incorporation is albedo, ET, LAI, LST Aqua daytime 
(LSTAD), LST Aqua nighttime (LSTAN), LST Terra daytime (LSTTD), LST Terra nighttime (LSTTN), EVI 
and NDVI. Finally, we built the RF regression between AWRA-L analysis and all the chosen predictors. Once 
the model training was completed, it predicted the monthly downscaled SM based on the 500-m rasters of 
different predictors, which were also resampled using NGB function. Among them, resampling the coarse LST 
(1-km) data to a fine resolution using NGB function cannot properly deliver the information at a 500-m 
resolution. The impacts of LST predictors are further measured based on the RF variable importance. Figure 2 
shows the flow chart of the modelling process.  

3.3. Statistical metrics 

Two metrics were chosen to measure the model performance and validate the downscaled SM with in-situ 
measurements, including RMSE and Pearson correlation coefficient (R). The calculation of them is shown as 
follows: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  �
∑ (𝑥𝑥�𝑖𝑖 −  𝑥𝑥𝑖𝑖)2𝑁𝑁
𝑖𝑖=1

𝑁𝑁
 

(1) 

𝑅𝑅 =  
∑(𝑥𝑥�𝑖𝑖 − 𝑥𝑥�̅)(𝑥𝑥𝑖𝑖 − �̅�𝑥)

�∑(𝑥𝑥�𝑖𝑖 − 𝑥𝑥�̅)2 ∑(𝑥𝑥𝑖𝑖 − �̅�𝑥)2
 

(2) 

where N represents the number of months in the study period; 𝑥𝑥�𝑖𝑖  and 𝑥𝑥𝑖𝑖 represent modelled SM and reference 
SM, respectively, on the 𝑖𝑖th month; 𝑥𝑥�̅ and �̅�𝑥 represent the mean values of the 𝑥𝑥� and 𝑥𝑥, respectively. 

4. RESULTS 

The RSME of the different combination of predictors are shown in Figure 3 (a). The medium RMSE reduces 
first from around 0.43 to 0.33 mm with the incorporation of new predictors, and gradually levels off at around 
0.33 mm. After the 9th experiment, despite the incorporation of a new predictor, RMSE does not reduce any 
more. We then chose the 9th experiment due to its best quartiles, with the combination of DEM, AWC, clay, 
silt, sand, albedo, ET, EVI, LAI, LSTAD, LSTAN, LSTTD and LSTTN. The ranking of variable importance 
of different predictors are shown in Figure 3 (b). DEM is always ranked as the most outstanding predictor in 
the regression with a medium value of about 53%. AWC is ranked second with a medium value of about 35%. 
The contribution of LAI, sand and EVI are ranked as lowest with medium values lower than 20%. Furthermore, 

 
Figure 2. The flow chart of the downscaling framework. 
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it should be noted that the 
importance of LST predictors are 
ranked between 7-10, revealing 
that their relatively lower 
contribution to the prediction. 
Then the adverse effects of 
resampling LST from 1-km to 
500-m may be of little 
consequence. 

The validation between AWRA-L 
analysis and downscaled SM 
against in-situ measurements are 
shown in Figure 4, indicating that 
the performance of AWRA-L 
analysis and downscaled SM are 
comparable. The average R of 

AWRA-L analysis are 0.86, 0.68 and 0.76 for CosmOz, OzFlux 
and OzNet, respectively; while the average R of downscaled SM 
are 0.87, 0.68 and 0.75, respectively. The 500-m downscaled SM 
maintains a same performance with 5-km AWRA-L analysis at 
most sites and does offer some improvements at a few sites, 
mostly from the two national-scale networks (i.e., CosmOz and 
OzFlux). Figure 5 gives six examples of the monthly time series 
comparisons between the AWRA-L analysis, downscaled SM 
and in-situ SM. All the datasets are using the monthly average 
value, while we also converted the SM unit to wetness (%) for 
both modelled and in-situ data due the difference in their original 
units. For these sites, the R between in-situ and AWRA-L 
analysis is ranging from 0.83 to 0.96, while R of downscaled SM 
is ranging from 0.84 to 0.96. The time series of downscaled SM 
match well with AWRA-L analysis, and are consistent with the 
seasonal fluctuations of in-situ data, especially perform well in 
Daly and Gnangara (Figure 5b and 5c). 

 
Figure 5. Six examples of the temporal comparison between monthly time series of AWRA-L analysis, 

downscaled SM and in-situ data from the network of (a-c) CosmOz; (d) OzFlux and; (e-f) OzNet. 

 
Figure 3. (a) The boxplot of the ten experiments to decide the best 

combination of predictors; (b) The boxplot of variable importance of 
different predictors for the chosen model. 

 

 
Figure 4. The comparison of R between 
AWRA-L analysis and downscaled SM 

against in-situ SM. 
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Figure 6 shows an example of the continental scale spatial pattern of the downscaled SM in January 2016 and 
four zoom-in comparisons between downscaled SM and AWRA-L analysis from different locations. The 
continental scale SM has more spatial variabilities and higher values (mostly higher than 2-mm) at north, 
northeast and southeast; while the SM at central and western Australia shows relatively lower values (near 0-
mm) and high homogeneity. At the local scale, the downscaled SM can provide significantly enhanced spatial 
details while maintaining consistent patterns with AWRA-L analysis. The downscaled one can well simulate 
both homogeneous groups and thin paths of SM at the 500-m scale. 

 
Figure 6. An example of the continental scale spatial pattern of the downscaled SM in January 2016 and four 

zoom-in comparisons between downscaled SM and AWRA-L analysis at different locations. 

5. DISCUSSION AND CONCLUSION 

In this research, we proposed a downscaling framework to generate 500-m resolution SM data across Australia 
with a monthly frequency. The framework builds a RF regression model using a 5-km resolution AWRA-L 
SM analysis and multiple geospatial predictors to make predictions at 500-m resolution. 

Ten experiments based on different combinations of geospatial predictors were conducted. In the chosen model, 
based on RMSE, the contribution of different predictors was calculated using the variable importance function 
in the RF model. DEM was always ranked with the highest variable importance, followed by AWC. The 
validation with in-situ data show that the R between in-situ data and AWRA-L analysis are comparable with 
downscaled SM at most sites. The average R of AWRA-L analysis were 0.86, 0.68 and 0.76 for CosmOz, 
OzFlux and OzNet, respectively; while the average R of downscaled SM were 0.87, 0.68 and 0.75, respectively. 
Nevertheless, the downscaled SM showed better R in some sites (e.g., Gnangara, Robson, Calperum and 
Gingin) at the two national-scale networks. Moreover, in-situ data from CosmOz sites had the best agreement 
with both SM data among the three networks. This could be because CosmOz utilises fast neutrons generated 
from interactions between cosmic rays and the atmosphere and top soils to measure SM in a 0.4 km2 area, 
which makes CosmOz advantageous in representativeness of a specific region than other networks. 

Compared to AWRA-L analysis, the spatial details of downscaled SM at a local scale have been greatly 
enhanced. Given the downscaled SM can still maintain a same performance with AWRA-L analysis in the 
correlation against in-situ data, there could be several prospects for its potential. Firstly, it can guide the model 
development of AWRA-L at 500-m resolution or higher. The parameters of LSM are usually spatially varying 
and need to be calibrated. As the downscaled product can demonstrate a better representation of the spatial 
heterogeneity of SM, it can be applied for either parameter tuning of continental scale LSM or the improvement 
of surface sub-models that are spatially distributed differently. However, to apply the downscaled SM to a real-
time analysis, a challenge would be the disaggregation of the downscaled SM from monthly to daily frequency. 
We used the monthly frequency in this study to unify the temporal resolution of different products, and avoid 
a large-scale missing area of predictors and overload of computing resources. In the future, some alternative 
strategies would be a direct application of the model at a daily frequency, or integrating this model into an 
operational model, which undoubtedly requires further explorations concentrated on spatial auxiliaries with 
high temporal resolution (e.g., albedo, LST from the Himawari geostationary satellite). 

In general, this study explores the potential of ML approach for the SM downscaling applications at a 
continental scale. It could be a promising direction to exploit the modelling capability of integrating 
multisource geospatial data including satellite retrievals, LSM and interpolated ground observation data. The 
next step could be the establishment of an operational downscaling framework to generate even finer-resolution 
SM at a daily frequency. Further analyses should be conducted to explore the contribution of different 
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predictors to SM spatial patterns under different scales, in order to better understand the dominant physical 
controls on spatial variability of SM. 
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