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Abstract: Wing pitching motion in insect flapping flight has been recognized as a passive phenomenon in-
duced by inertial and aerodynamic forces. Inspired by the insect flight, passively pitching flapping wings
have been implemented in micro aerial vehicles (MAVs) designs. The pitching angle of the flapping wings
is passively modulated by an elastic hinge using a torsional spring. In order to understand the complex pas-
sive pitching mechanisms, various experimental and numerical efforts have been made. However, the passive
pitching mechanisms in tandem ipsilateral wings (e.g. dragonfly) remain unclear as the wing-wing interac-
tions are complex. Here, passive pitching of tandem rectangular wings in free hovering condition is numer-
ically simulated using an immersed boundary-lattice Boltzmann method (IB-LBM). Validation of the solver
was performed by simulating rectangular flapping plate within prescribed kinematics and a rigid fruit fly wing
with passive pitching. Good agreement of results between current computations and published data were
observed, suggesting that the present computational fluid dynamics (CFD) solver can accurately compute pas-
sively pitching flapping wing systems. The high-fidelity and efficiency were also investigated by performing
grid convergence studies and comparing the computational time with previously published data. This study
provides additional data for benchmarking of CFD solvers in the simulation of passive flapping wings. The
benchmark is also extended by simulating passive pitching of tandem dragonfly wings in hovering flight.
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1 INTRODUCTION

Many insects have spring-like elements in the form of elastic materials in their thoraxes, muscles, and tendons
that may reduce the energetic demands of flapping flight and improve flight efficiency (Lynch et al. 2021).
During the flapping flight, insects apply their muscle forces through the axis close to the leading edge, which
creates a moment with respect to the mass centre of the wing, leading to the passive pitching of the wing due to
the interaction between the wing and the surrounding airflow (Ennos 1988). Inspired by insect flight, passively
pitching flapping wings have been implemented in micro aerial vehicles (MAVs) designs Farrell Helbling &
Wood (2018). In order to understand the passive pitching mechanism of flapping wings, various experimental
and numerical studies have been conducted (Mazharmanesh et al. 2021, Lei & Li 2020). However, passive
pitching of tandem ipsilateral wings (e.g. dragonfly) has not been fully explored. Here, the computation of a
rigid rectangular flapping plate with prescribed flapping and pitching motions and a rigid fruit fly wing with
passive pitching in hovering flight are conducted to validate the present immersed boundary-lattice Boltzmann
method (IB-LBM) solver. The validated solver is then applied to simulate the passive pitching of tandem
rectangular wings.

2 MODEL DESCRIPTION

The unsteady incompressible flow is governed by the continuity and Navier-Stokes equations

∇ · u = 0,
∂u

∂t
+ u · ∇u = −1

ρ
∇p+ ν∇2u + f , (1)

where u is the fluid velocity, ρ is the constant density, f is the body force and p and ν are pressure and
kinematic viscosity, respectively.

3 NUMERICAL METHOD

The D3Q19 lattice Boltzmann method (LBM) with multi-relaxation-time (MRT) model is adopted for simu-
lation of the fluid dynamics. The two-way fluid-structure interactions are coupled by a feedback immersed
boundary method (IBM). In the LBM, the macroscopic dynamics of the fluid are the result of the statistical
behaviour of the particles, which are described by the distribution function gi (x, t). The evolution of this
distribution function is according to

gi (x + ei∆t, t+ ∆t)− gi (x, t) = Ωi (x, t) + ∆tGi, (2)

where gi(x, t) is the distribution function for particles with velocity ei at position x and time t, ∆t is the time
increment, Ωi(x, t) is the collision operator and Gi is the forcing term accounting for the body force f . The
D3Q19 model (D’Humieres et al. 2002) is used on a cube lattice. The MRT collision model is adopted and is
given by

Ωi = −(M−1SM)ij [gi(x, t)− geqi (x, t)], (3)

where M is a 19× 19 transform matrix for D3Q19 model and S = diag(τ0, τ1, . . . , τ18)−1 is a non-negative
diagonal relaxation matrix. The determination of S in three-dimensional model can be found in D’Humieres
et al. (2002). The equilibrium distribution function geqi is defined as

geqi = ρωi

[
1 +

ei · u
c2s

+
uu : (eiei − c2sI)

2c4s

]
, (4)

where cs = ∆x/(
√

3∆t) is the speed of sound, ∆x is the lattice spacing, I is the unit tensor and the weighting
factors ωi are given by ω0 = 1/3, ω1−6 = 1/18 and ω7−18 = 1/36. The velocity u, mass density ρ and
pressure p can be obtained according to

ρ =
∑
i

gi, p = ρc2s, u = (
∑
i

eigi +
1

2
f∆t)/ρ, (5)

The force scheme proposed in Guo et al. (2002) is adopted to determine Gi,

Gi = [M−1(I − S/2)M ]ijFi, (6)

Fi =
(

1− 1

2τ

)
ωi

[ei − u

c2s
+

e · u
c4s

ei

]
· f , (7)
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Figure 1. Schematic diagram of the rectangular wing model used in the study.

where τ is the non-dimensional relaxation time.

In the present study a feedback IBM (Huang et al. 2021a) is adopted to handle the no-slip boundary conditions
on the flapping wing. In this method a body force f is added in the Navier-Stokes equation to mimic a
boundary condition according to

f(x, t) = −
∫

F ib(s, t)δ(x−X(s, t))dA, (8)

F ib(s, t) = αρ(x, t)(U ib(s, t)−U(s, t)), (9)

U ib(s, t) =

∫
u(x, t)δ(x−X(s, t))dx, (10)

where F ib(s, t) is the Lagrangian force density, dA is the element surface area of the immersed boundary,
δ(x −X(s, t)) is Dirac’s delta function, x is the coordinate of the fluid lattice nodes, X is the coordinate
of the structure (i.e. the flapping wing here), α is the feedback coefficient and α = 2s in LBM simulations.
In dimensionless form α∗ = α/(Uref/Lref ) = 40, and α∗ ranges from 20 to 104 (Huang et al. 2021a).
Here Uref and Lref are the reference velocity and length, respectively. U ib(s, t) is the immersed boundary
velocity obtained by interpolation at the immersed boundary and U(s, t) is the velocity of the wing. The
4-point discrete delta function δh(x) is used to approximate the Dirac delta function Peskin (2002),

δh(x) =
1

∆x∆y∆z
ζ(

x

∆x
)ζ(

y

∆y
)ζ(

z

∆z
), (11)

ζ(r) =
1

8

(
3− 2|r|+

√
1 + 4|r| − 4r2

)
0 ≤ |r| ≤ 1, (12)

1

8

(
5− 2|r|+

√
−7 + 12|r| − 4r2

)
1 ≤ |r| ≤ 2, (13)

0 |r| > 2. (14)

4 VALIDATIONS

The numerical method used here has been extensively validated and applied in confined flows (e.g. 2D collapsi-
ble channel flows and 3D collapsible tube flows) in our previous publications (Huang et al. 2020a, 2021a,b).
Here the simulations of a rectangular flapping wing and a fruit fly flapping wing are further considered to vali-
date the computations of 3D flapping wings. To reduce the computational effort, a multi-block LBM (Yu et al.
2002) is adopted to provide high resolution near the solid body, with low resolution in the farfield. A hybrid
open multi-processing (OpenMP) and message passing interface (OpenMPI) parallel computing strategy has
been incorporated into the code to accelerate the computation.

4.1 A rigid rectangular flapping plate with prescribed flapping and pitching motions

A thin and rigid rectangular plate in hovering flight with prescribed flapping and pitching motions is con-
sidered, as shown in figure 1. The wing has a chord length c and a span of L = 2c. The aspect ratio is
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Table 1. Fluid domain size in x−, y−, and z− directions, finest grid size, grid number, and CPU time tw of
one stroke cycle for the computation of the rectangular wing model. h: hour.

Sources Domain size Finest grid size Grid number
(
106
)

tw(h)/ cycle
Dai et al. (2012) [14c, 15c, 15c] 0.05c 1.72 14
Present IB-LBM [14c, 15c, 15c] 0.05c 3.14 0.18
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Figure 2. Rectangular wing: wing kinematics in two stroke cycles and the time history of the lift coefficient.

AR = L/c = 2.0. The leading edge undergoes two degrees-of-freedom rotations as the torques activate the
wing at the pivot point (Dai et al. 2012),

φ =
Aφ
2

sin
(

2πft+
π

2

)
, θ =

Aθ
2

sin(2πft), (15)

where φ is the flapping angle, θ is the pitching angle, f is the flapping frequency, and Aφ = 2π/3 and
Aθ = π/3 are the flapping and pitching amplitudes, respectively. The wing arm (from the pivot point to the
wing root) has length 0.1c. The Reynolds number, drag and lift coefficients are defined as

Re =
Uc

ν
= 176, CD =

2Fx
ρU2A

, CL =
2Fz
ρU2A

, (16)

where U is the mean wingtip velocity at the leading edge and U = 2Aφf(L+ 0.1c) = 8.797cf . Here Fx and
Fz are the force acting on the wing by the ambient fluid in x and z direction, respectively. A is the surface
area of the wing (A = cL for a rectangular plate). As shown in table 1, the rectangular computational domain
has a size of 14c × 15c × 15c, which is the same size as that of Dai et al. (2012). The most refined grid
around the wing is 0.05c, and the total grid number is 3.14 × 106. The CPU time per one stroke cycle of the
present IB-LBM solver is almost two orders of magnitude lower than that in Dai et al. (2012). Five stroke
cycles are simulated to ensure that all the force histories (e.g. CD and CL) have reached steady state. Dirichlet
boundary conditions for the velocity and pressure are applied on all six computational boundaries. The grid
size of the wing is maintained at half of the fluid grid size. Figure 2(a) shows the wing kinematics, where
the flapping motion leads the pitching motion by a phase of 90o. A grid convergence study was performed
where the grid size (dx) was systematically decreased from 0.1c to 0.025c. Figure 2(b) shows the comparison
of lift coefficient CL in three different grids densities. The variation in CL was consistent across the last two
consecutive cycles for all three grid sizes, indicating that the flow field had reached a periodic state. The
converged solution for CL produced by dx = 0.025c agrees well with the computational result of Dai et al.
(2012).

4.2 A rigid fruit fly plate with passive pitching in hovering flight

A fruit fly wing in hovering flight with passive pitching is considered to further validate the current solver. Fig-
ure 3 shows the shape and dimensions of the wing. The passive pitching mechanism is numerically modelled
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Figure 3. Shape and dimensions of the fruit fly wing model.

Table 2. Fluid domain size in x−, y−, and z− directions, finest grid size, grid number, and CPU time tw of
one stroke cycle for the computation of the fruit fly wing model. h: hour.

Sources Domain size Finest grid size Grid number
(
106
)

tw(h)/ cycle
Lei & Li (2020) [30c, 30c, 30c] 0.03c 6.99 −
Present IB-LBM [30c, 30c, 30c] 0.03c 12.8 2.11

by a torsional spring. The wing has a mean chord length c with an aspect ratio AR = L2/A = 3.2, where L is
the wingspan and A is the wing surface area. The kinematics of the wing are defined as a combination of the
prescribed rotation around z−axis and the passive pitching motion around y−axis.

φ(t) = −Aφ
2

cos(2πft), (17)

where Aφ = 7π/9 is the flapping amplitude and f is the flapping frequency. In the numerical simulation, the
pitching angle θ is determined by solving the equation of passive feathering motion of the wing, as described
in (Kolomenskiy et al. 2019),

Jyy θ̈(t) + Cθ̇(t) +Ks (θ(t)− θ0) = Maero + Jzyφ̈(t) cos θ(t) +
1

2
Jyyφ̇(t)2 sin 2θ(t), (18)

where Jyy and Jzy are the moment of inertia, C = 0 is the damping coefficient of the spring, Ks is the
torsional stiffness of the spring, θ0 = 0 is the rest angle andMaero is the aerodynamic pitching moment on the
wing. The non-dimensional groups of the problem include the Reynolds number, mass ratio and the Cauchy
number (a ratio between the aerodynamic force and the elastic spring force), which are respectively given by

Re =
UL

ν
= 300, M =

ρwh

ρc
= 1, Ch =

ρA2
φf

2c3L2

Ks
= 0.15, (19)

where U = 2fAφL is the mean wingtip velocity, ρw is the density of the wing and h = 0.03c is the wing
thickness. Table 2 shows the rectangular computational domain that has a size of 30c × 30c × 30c, same as
that used in Lei & Li (2020). The finest grid around the wing is 0.03c, and the total grid number is 12.8× 106.
Six stroke cycles were simulated to ensure that the flow field reached a periodic state. Figure 4(a) shows the
time history of the pitching angle, which agrees well with the computational result of Lei & Li (2020). The
grid refinement study here shows that the solutions are converged.

5 PASSIVELY PITCHING TANDEM WINGS

Here hovering flight of tandem rectangular wings with passive pitching is simulated. Figure 5 shows the
geometric parameters of the wings that have an aspect ratio of AR = L/c = 3.0. The flapping motions are
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Figure 4. Fruit fly wing: wing kinematics and the time history of the lift coefficient in three different grid
sizes.
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Figure 5. Geometric parameters of the tandem rectangular wings.

prescribed as

Forewing : φf =
φf0
2

cos(2πft) Hindwing : φh =
φf0
2

cos(2πft+ ψ) (20)

where φf and φh are the flapping angle for the forewing and hindwing, respectively. Here φf0 = 4π/9 is
the flapping amplitude and ψ = π is the phase angle between the flapping motion of the wings. The pitching
motion is solved by equation 18 where the spring damping C = 0 and wing thickness h = 0.03c. The
Reynolds number Re = UL/ν = 300, the Cauchy number Ch = 0.15 and mass ratio M = 1 were assumed
for both wings. The distance between fore and hind wing d = 1.25c, which nominally matched that of real
dragonflies. A rectangular computational domain of size of 30c × 30c × 30c was used and the finest grid
around the wing was 0.04c, and the total grid number was 9.21 × 106. Six stroke cycles were simulated.
Figure 6(a) shows the forewing kinematics. The time history of the lift coefficient is shown in figure 6(b). The
grid refinement study here shows the results are grid independent.

6 CONCLUSIONS

Validations of an IB-LBM solver for the computations of the hovering flight of prescribed kinematics for a
rectangular flapping plate and a rigid fruit fly wing with passive pitching were performed. Good agreements
of results between current computations and published data were observed, suggesting the present CFD solver
can accurately compute the flow over flapping wing system. The high-fidelity and efficiency of the solver
have also been highlighted through the grid convergence study and comparing the computational time with
previously published data. The validated solver was then applied to simulate the passive pitching of tandem
rectangular wings. This study provides additional data for benchmarking of CFD solvers in the simulation
of passively pitching flapping wings. Detailed parameter investigations of passively pitching flapping wings
under solitary and tandem configurations will be conducted in future studies.
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Figure 6. Wing kinematics and the time history of the lift coefficient for the forewing in three different grid
sizes.
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