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Abstract:  Mapping surface water extent is an important step in estimating water volume within a catchment,
which is needed for managing flood events, as well as water supply for human consumption, agriculture, and
the environment. Satellite-based remote sensing technologies provide an affordable means of capturing surface
water extent with reasonable spatial and temporal coverage suited to the purpose of water monitoring. A new
multi-index method (MIM) has been developed for mapping surface water across the Murray-Darling Basin
(MDB) based on Landsat surface reflectance data available in Digital Earth Australia. More than thirty years
of two-monthly images of surface water extent across the whole MDB have been produced using this method,
along with Water Observations from Space (WOfS) to fill in any gaps associated with cloud cover due to the
different cloud masks used (this combined product is referred to as MIM_WOfS max). This product is
currently being combined with a DEM to produce estimates of water depth across the basin and can be used
with hydrology models for assessing connectivity between waterbodies. This product can also be used to assess
long-term trends of surface water extent across the basin, as well as used for seasonal or bi-monthly analysis.

The methods used to produce the two-monthly WOfS and MIM products across the MDB are different and
were based on utilizing the available cloud masks attached to the native products, and computational efficiency
for generating the products. A comparison of the MIM and WOfS method shows that MIM identifies major
perennial rivers and wetlands better than WOfS, as well as in some of the floodplain areas, while WOfS can
identify more surface water in general areas where cloud cover still exists in the MIM product. A small mis-
registration (up to 30 metres in some areas) between the MIM and WOfS products was also found — possibly
due to the different native spatial projections of the datasets.

The MIM_WOfS max product is used for identifying long-term and seasonal trends across the MDB. Over
the 33-year time period (1988 to 2020) a reduction in surface water extent of 0.15% was found for the whole
basin. The long-term trends of four sites were also investigated: two irrigated regions and two wetlands. They
also showed a long-term reduction in surface water extent. The southern sites (one irrigated agriculture and
one wetland) had regular annual flooding which gradually reduces in size through time, while the northern sites
showed irregular flood patterns — with respect to the flood’s timing and magnitude.

Details of the method used and challenges associated with producing the bi-monthly images of surface water
across the MDB are provided in the paper, as well as further discussions on some of the long-term and seasonal
trends that can be derived from this product for the entire MDB and selected regions within.
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1. INTRODUCTION

Mapping surface water extent is an important step in estimating water volume, and monitoring these changes
is necessary for managing water supply for human consumption, agricultural use, as well as maintaining the
environmental health of wetlands and rivers. A growing population and changing climate are leading to
increased pressure on water supply, meaning accurate information on available water is vital. This is
particularly so in much of Australia, which is becoming hotter and dryer in recent times (Commonwealth of
Australia 2021a). Furthermore, with flood frequency likely to increase as a result of environmental changes
(Karamouz et al. 2011; Bhuiyan and Dutta 2012; Teng et al. 2012), there is a growing demand for accurate
flood maps for disaster risk management.

Ground observations of surface water extent can provide valuable information, but are not always available. It
is also difficult to obtain large scale synopsis of current and historical water extent through gauging stations
and high water marks. Remote sensing technologies provide an affordable means of capturing surface water
extent with reasonable spatial and temporal coverage suited to the purpose of water monitoring. The spatial
resolution of the Landsat satellite series (30m) makes it suitable for capturing much of the fine spatial detail of
a large river basin (e.g. Pekel et al. 2016), at a temporal scale of 16 days (subject to cloud cover). It also has a
rich archive of data dating back to 1987 for the thematic mapper series.

The Water Observations from Space dataset is generated by Geoscience Australia and available through Digital
Earth Australia (Mueller et al. 2016). WOfS uses a decision tree approach based on a selection of Landsat
spectral bands and indices, as well as ancillary products (including topography and hydrology layers) to
constrain water extent to likely areas. Individual WOfS images of surface water extent, along with summary
statistics (from 1980’s to present) are available for Australia for the whole Landsat archive. The WOfS data
was designed to provide a conservative estimate of surface water extent, making it a robust product, but it is
more likely to underestimate, rather than overestimate water extent (Sims et al. 2016). However, its cloud-
masking layer works well, with very low commission errors.

A multi-index method (MIM) was developed for mapping surface water extent within the Murray—Darling
Basin (Ticehurst et al. in review). It is based on existing indices: modified Normalised Difference Water Index
(mNDWI; Xu 2006), Fisher’s water index (FWI; Fisher et al. 2016), and the Tasseled Cap Wetness Index
(TCW; Dunn et al. 2019) already used for mapping surface water extent, where each index is applied in the
area where it performs at its best. The resulting rule-set uses the NDWI>-0.3 to map water in major perennial
rivers, TCW>-0.035 to map water in wetlands, and the maximum of NDWI>0 and FWI>0.63 for mapping
water in the remaining areas. Based on 440 validation plots in the Murray—Darling Basin, this resulted in an
overall balanced accuracy of 92.7%.

2. STUDY SITE

The MDB is located in south-eastern Australia (Figure 1).
It covers an area more than one million square kilometres,
with 40,000 kilometres of major rivers (Commonwealth
of Australia 2021b). The MDB contains over 30,000
wetlands, with 16 of those being internationally
significant. It also produces around 40% of Australia’s
agricultural produce (MDBA 2021). The northern section
of the MDB consists of mostly unregulated ephemeral
rivers and streams, while the southern section contains
mostly regulated rivers with major water storages in
many of them (Commonwealth of Australia 2021b).

3. DATA AND METHOD
Landsat data from 1988 to 2020 were extracted and  Figure 1. Location of the Murray-Darling Basin

processed using Digital Earth Australia (DEA; Dhu et al. within Australia. Blue lines show perennial
2017, Australian Government 2021) as analysis-ready rivers overlaid on Landsat 8 geo-median image
Landsat surface reflectance. The MDB covers 62 from Digital Earth Australia.

individual Landsat path/row scenes. WOfS water maps
were also available through Digital Earth Australia.
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Processing was performed on the Australian National Computational Infrastructure (NCI Australia 2021) using
Virtual Desktop Infrastructure (VDI), tested using jupyter notebooks, and batch-processed as python scripts.

The method for extracting data within DEA was different for Landsat surface reflectance and WOfS. This was
due to the different way that Landsat surface reflectance and WOfS have cloud masking applied. Landsat
surface reflectance uses the standard Fmask layer (Zhu and Woodcock 2012), while WOfS uses Fmask as well
as the automatic cloud cover assessment method (Irish 2000) to further reduce the chance of remnant cloud or
cloud shadow in the imagery.

For WOfS, images within a degree tile (latitude and longitude) covering the MDB for every two months were
extracted, and the maximum water extent maps produced. The MIM water images require six Landsat bands:
blue, green, red, near-infrared and the two shortwave infrared bands. These Landsat images were extracted
using DEA’s load _ard function (Geoscience Australia 2021) as third-of-a-degree tiles (which will now be
called a sub-tile). This function is an efficient way of reading Landsat data as it extracts from all relevant
sensors (Landsat Thematic Mapper (5), Enhanced Thematic Mapper (7) and Operational Land Imager (8))
within the specified time period. Each sub-tile was chosen to be one third of a degree extent in latitude and
longitude as it reduced the computing memory requirements (since six bands are required for producing the
multi-index method water map), making it fast, and to help reduce remnant cloud cover/shadow being included.
This is because cloud shadow can have a very similar spectral response to water, resulting in incorrect estimates
of maximum water extent within the sub-tile. The load ard function has an option of specifying the maximum
percentage of cloud cover (based on Fmask) allowed to be extracted from images within the defined extent. A
threshold of 20% cloud cover was chosen, so only images that are at least 80% cloud free within the sub-tile
were used in creating maximum surface water extent. Hence, the load ard function works better on smaller
tiles when this cloud cover threshold is utilised. All tiles were then merged for every two months for both the
WOTIS and MIM products.

All of the MIM two-monthly water images were visually inspected for any remaining artefacts, with cloud
cover/shadow being the main culprit, which were manually masked from that image. However, some small
artefacts remain as they were not visible when looking at the image at a regional scale — and inspecting all
areas in all images in detail was not feasible. Snow was also being identified as surface water, so a snow zone
mask was created for the alpine region and applied to the two-monthly images for the colder months (i.e. May-
June, July-August, September-October). Three large lakes exist within the snow zone, which were not included
in the snow mask. Instead, they were inspected to make sure they appeared to be free of snow and only manually
masked if needed.

To minimise null values and maximise surface water extent for every two months, the maximum water extent
was calculated from the MIM and WOTS products. Pixels of null values (which were due to cloud masks or no
data) were replaced with the other data product. The 33 years of this new two-monthly product (called the
MIM_WOfS max) were combined to create an image of the percentage of time (i.e. based on each two-
monthly period) that a pixel is wet. An equivalent product was also generated from the two-monthly MIM
images and the two-monthly WOfS images, and compared between them.

The MIM_WOfS max product is then used to explore long-term and seasonal trends across the basin as well
as two irrigated agriculture sites (the Coleambally Irrigation Area and lower Balonne floodplain) and two
wetland sites (Barmah forest and Macquarie Marshes) (See Figure 2a for locations).

4. RESULTS

The percentage of observations that a pixel has water in it, based on the two-monthly MIM_WOfS max from
1988 to 2020, is shown in Figure 2a. This is similar to Geoscience Australia’s WOfS summary layer (Mueller
et al. 2016), but with some minor differences due to the rule set used to produce the multi-index method
product. Figure 2b shows the difference between the percentage of time that a pixel has water in it based on
the two-monthly MIM and the two-monthly WOfS products. Blue and green colours show where the multi-
index method identifies more water, while red and orange colours show where WOfS does. In general, major
perennial rivers can show as slightly wider and/or more frequently detected in the MIM product (Figure 2c).
However, there is also a slight mis-match between the MIM and WOfS two-monthly products in some areas —
up to one Landsat pixel (~30 m) (see top left corner of Figure 2¢). This mis-match occurs even when the
Landsat surface reflectance and WOfS DEA products are extracted the same way, but may be related to their
different native projections within the DEA. (The latest Landsat surface reflectance used here is collection 3 in
Universal Transverse Mercator (UTM) projection, while the WOfS two-monthly product was generated before
collection 3 was available and is Albers Equal Area projection).
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The MIM method identifies more water in flooded wetlands compared to WOfS, as can be seen in the Barmah
Forest (Figure 2d). Both Figure 2¢ and Figure 2d show areas where MIM identifies more water (light green
tones) and other areas where WOfS identifies more water (light orange tones) across the general landscape.
This is most likely due to the different cloud-masking algorithms available within each of the DEA datasets.
All available WOfS images were used to create maximum water extent, whereas only the Landsat surface
reflectance with less than 20% cloud cover were extracted within each sub-tile. Despite these issues, the
MIM_WOfS max product is useful for combining with a DEM for water volume estimates, as input to
inundation models, and for investigating trends and spatial patterns of water across the MDB.

Percentage of water within the MDB for each two-monthly MIM_WOfS max image was calculated, and those
images with a low proportion of null values (<5%) shown in Figure 3. There were periods of large flood events
in 1990, 1998, 2011 and 2016, although the catchments where flooding occured requires inspection of
individual images. The long-term trend shows a reduction in total surface water across the MDB. Over the 33-
year period, this reduction is approximately 0.15% of the basin extent.
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Figure 2. (a) The percentage of observations that a pixel has water in it, based on the two-
monthly MIM_WOfS max from 1988 to 2020 for the Murray—Darling Basin. (b) difference
between MIM and WOfS percentage of observations that a pixel has water in it (based on two-
monthly images) for the Murray—Darling Basin. (c) subset of (b), (d) subset of (b). Coleambally
Irrigation Area (purple), lower Balonne floodplain (orange), Barmah forest (cyan) and
Macquarie Marshes (green) are also shown in (a).

The two-monthly image containing minimum water extent and maximum water extent for each year was
calculated (Figure 4). Figure 4a shows surface water extent tends to be lowest during the winter months, based
on the whole MDB. Surface water extent tends to be at a maximum during the months of January-February,
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and September-October. This water extent not only includes flooding, but also irrigated fields and storage
tanks. No long-term trends can be seen in either of these plots.
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Figure 3. Percentage of water pixels within the Murray-Darling Basin generated from mostly
cloud-free two-monthly MIM_WOfS_max product. Long-term trend shown in dashed line.
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Figure 4. Month containing minimum (a) and maximum (b) water extent for each year for the
Murray—Darling Basin based on the MIM_WOfS max product.

The total percentage of water within four sites for the two-monthly MIM_WOfS max images was calculated,
and those images with a low proportion of null values (<5%) shown in Figure 5. Two of these areas cover
irrigated agriculture (Coleambally Irrigation Area and irrigated cotton in the lower Balonne floodplain) and
two areas cover wetlands (Barmah Forest and Macquarie Marshes) (See Figure 2a for locations). The long-
term trend shows a reduction in water extent for all sites over the 33-year period. It also shows different types
of flooding occurs in these different sites. Barmah forest shows regular flooding each year in September which
starts to drop off from 1994. The Coleambally Irrigation Area shows regular flooding each year around
September-October and November-December which reduces substantially around 2002 dropping away
completely from 2007 until 2010. The Macquarie Marshes in the northern part of the basin show less regular
flooding, but with some very large flood events. This pattern is also seen in the other northern site at the lower
Balonne floodplain.

5. DISCUSSION AND CONCLUSION

Landsat data provided through a nation-wide data cube such as in Digital Earth Australia, can be used to
provide multi-temporal images of surface water extent at reasonable spatial and temporal resolution for
monitoring water dynamics in a large regional catchment such as the MDB. In this paper, Landsat data within
Digital Earth Australia were used to generate two-monthly images of maximum water extent from 1988 to
2020. The new MIM was combined with the WO{S dataset to produce a new product providing maximum two-
monthly water extent, while minimizing data gaps due to cloud cover or null data values. The use of MIM
provides better identification of major rivers and flooded wetlands, while inclusion of the WO{S increases the
chances of finding more cloud-free observations. While the details are not included in this paper, the multi-
index method has been tested for its ability to identify water within the MDB with an accuracy of 92.7%, which
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is higher than the individual water indices that it uses (Ticehurst et al. in review). This MIM_WOfS_max
product can be used to provide summary statistics across the basin, including long-term trends of surface water
extent for the whole basin, or individual sites within the basin. All sites examined in this paper showed a long-
term reduction in surface water extent. It must be noted that a maximum two-monthly product is not necessarily
going to give an accurate indication of minimum water extent during dryer periods, as it was designed to
maximise the chances of capturing flood events by generating maximum extent. Any cloud cover during a
flood event, which often occurs, will reduce any observation of the actual flood extent. However, these types
of products provide basis to estimate water depth across the MDB and can be used in conjunction with
hydrology models to investigate floodplain connectivity and water movement in a complex environment.
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Figure 5. Percentage of water pixels within the areas around Macquarie Marshes, Barmah
Forest, Lower Balonne floodplain and Coleambally Irrigation Area generated from mostly cloud-
free two-monthly MIM_WOfS max product. Long-term trend shown in dashed line
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