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Abstract: In many different applications, it is important to know if time series data is generated from a
single underlying mechanism or not. This problem, known as a change-point problem, can be formulated as a
multiple hypotheses testing problem. In this paper, we propose a harmonic change-point test (HarmonicCPT)
to identify and validate change-points in an autoregressive process. The method consists of two steps. First,
we develop likelihood ratio based scan statistics on gathering the local information by comparing two adjacent
sequences within each scanning window. The corresponding p-values are collected from each test. Any
changes in mean, autoregressive coefficients, or variance lead to rejections of the null hypothesis that the data
is generated from the same process within the scanning window. Next, we calculate a harmonic mean p-value
by combining all of the tests on which the decision that whether to reject the global null hypothesis depends.
The simulation study shows that the proposed scan statistic is quite sensitive to the variance change, and the
harmonic mean p-value procedure is efficient in detecting the significant p-values.
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1 INTRODUCTION

Change-point detection is an advanced statistical methodology that helps to understand the underlying struc-
ture of the time series data by providing change-point estimates. Various change-point detection methods have
been applied to data in different fields including genomics (e.g., Li et al. (2016), Cao & Wu (2015)), astronomy
(e.g., Fisch et al. (2019)), climatology (e.g., Lu et al. (2010), Li & Lund (2012)), cyber-security (e.g., Adams &
Heard (2016)), neurophysiology (e.g., Messer et al. (2017)), economics (e.g., Sofronov & Ma (2017)), and fi-
nance (e.g., Zhu et al. (2013), Ma & Sofronov (2020)). Any changes in mean, variance or autoregressive (AR)
coefficients could cause the significant structural change and, therefore, it is important for decision makers to
know the number of change-points and their locations.

It has been a long history that the change-point problem can be formulated in form of hypothesis tests. The null
hypothesis is set to be no change-point; the alternative hypothesis includes one or more than one change-point
setting, categorized as single and multiple change-point detection. It is more challenging to accurately identify
the change-points when the alternative hypothesis is at least one change-point. In order to estimate multiple
change-points, the global alternative is usually decomposed to multiple local hypothesis tests, and then the
estimations are made by aggregating local information. The previous studies from this perspective include but
are not limited to Niu & Zhang (2012), Hao et al. (2013), Fryzlewicz (2014), Yau & Zhao (2016), Eichinger
et al. (2018), Ma et al. (2020).

Change-point methods typically aim to identify the number of change-points and their locations. In this paper,
our objective is to test if an AR process is generated from a single underlying mechanism or not. To solve this
problem, we propose a harmonic change-point test (HarmonicCPT). The method consists of two steps. Firstly,
we utilize likelihood ratio based scan statistics on gathering the local information by testing two symmetric
sequences within each scanning window. The distribution of the local likelihood ratio test statistic was derived
so that we can get the p-value from each test. Next, instead of analyzing individual p-value, we combine all
the p-values using the Bonferroni correction and harmonic mean p-value method, both of them are robust to
dependent p-values. The rationale of combining multiple tests is that aggregated tests are more sensitive to the
extremely small or significant p-values.

In many applications, the number of change-points is unknown; hence the estimated number of change-points
using different methods can vary. The methods that share the same assumptions are expected to be in agree-
ment between each other’s estimated change-points or seek external approaches to validate their estimates.
The proposed HarmonicCPT method can provide solid evidence to exclude zero change-point cases, and the
p-value plot after scanning procedure is applicable for validating the estimated change-points.

2 HARMONIC CHANGE-POINT TEST

2.1 Model setting and multiple hypothesis testing

Given the observations {Xt}t=1,...,T , it is assumed that the stationary time series

{xLt(h), Lt(h) = t− h+ 1, . . . , t}, {xRt(h), Rt(h) = t+ 1, . . . , t+ h} (1)

are partial observations of stochastic process {Xt}. So that the scanning window is defined as (Lt(h), Rt(h)).
It is of interest to test, for t = h, h+ 1 . . . , T − h,

H0(t) : xLt(h) and xRt(h) are generated from same stochastic process
H1(t) : Not H0. (2)

The model under the null hypothesis is assumed to be

Xt +

pX∑
j=1

θjXt−j = εt, (3)

where εt ∼ i.i.d. N(0, σ2), {Xt} is assumed to be a weakly stationary AR(pX ) process.

2.2 A Likelihood Ratio Scan Statistic

Define Lt(h) andRt(h) as the left and right windows at location t; in order to test if the observations {xLt(h)}
and {xRt(h)} are from the same stationary process, we then apply the modified parametric method proposed
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by Grant & Quinn (2017) to discriminate the spectral density. For h ≤ t ≤ T − h, consider the process within
a scanning window

XLt(h)(t) +

pLt∑
j=1

θXLt ,j
XLt(h)(t− j) = εLt(h)(t),

XRt(h)(t) +

pRt∑
j=1

θXRt ,j
XRt(h)(t− j) = εRt(h)(t), (4)

where the left and right segments have the same length denoted by Th (or h − 1). It is assumed that for all t,{
εLt(h)

}
and

{
εRt(h)

}
are i.i.d. normal.

Following the derivation from Grant (2018), the spectral densities of {XLt(h)(t)} and {XRt(h)(t)} can be
written as,

fXLt(h)
(ω) =

σ2
Lt

2π | 1 +
∑pLt
j=1 θXLt ,j

e−ijω |2
, fXRt(h)

(ω) =
σ2
Rt

2π | 1 +
∑pRt
j=1 θXRt ,j

e−ijω |2
.

There are two perspective considered for the hypothesis test in (2). By testing whether the ratio of fXLt(h)
and

fXRt(h)
is constant, the hypothesis test in (2) is equivalent to

H0(t) : θXLt ,j
= θXRt ,j

, for all j
H1(t) : Not H0. (5)

Testing whether that fXLt(h)
and fXRt(h)

are the same, the hypothesis test in (2) is equivalent to

H0(t) : θXLt ,j
= θXRt ,j

, for all j, σ2
Lt

= σ2
Rt

H1(t) : Not H0. (6)

In Ma et al. (2020), we have applied modified spectral discrimination test developed by Grant & Quinn (2017)
to compare time series at certain location, which can be adapted to test each time point with a sliding window.
Thus, under the hypothesis test (6), the change in mean is not considered as a change-point, the scan statistics
can be derived as

Λh(t) = 2(l̂lt;1 − l̂lt;0)

= Th log

(
σ̂2
0

σ̂2
Lt;1

)
+ Th log

(
σ̂2
0

σ̂2
Rt;1

)
, (7)

where l̂lt,1 and l̂lt,0 are the maximised log-likelihood functions under H0 and H1, while σ̂2
Lt;1

and σ̂2
Rt;1

are
the estimators of σ2

Lt
and σ2

Rt
under alternative hypothesis, σ̂2

t;0 is the estimator of the residual variance of
scanning window under H0.

Theorem 1. Under null hypothesis of (6), for t = h, h+ 1, . . . , T − h, the distribution of Λh(t) converges to
the χ2

p+1 as Th →∞.

The proof can be found in Grant (2018). The p-value is the probability that obtain Λh(t) or more if the H0 is
true,

p(t) = Pr(λt ≥ Λh(t) | θ ∈ ΘH0)

= Pr(χ2
p+1 ≥ Λh(t) | θ ∈ ΘH0), (8)

where p = b(log Th)
vc, v > 1. In addition, it is feasible to take the mean shift into account, the model that we

consider

(XLt(h)(t)− µLt
) +

pLt∑
j=1

θXLt ,j
(XLt(h)(t− j)− µLt

) = εLt(h)(t),

(XRt(h)(t)− µRt
) +

pRt∑
j=1

θXRt ,j
(XRt(h)(t− j)− µRt

) = εRt(h)(t), (9)
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and the null hypothesis is

H0(t) : θXLt ,j
= θXRt ,j

, for all j, σ2
Lt

= σ2
Rt

µLt
= µRt

. (10)

Unlike the hypothesis in (6), it implies that the variability in autoregressive coefficients, mean or variance is
considered as a change-point. The scan statistics is derived as

Λh(t) = Th log

(
σ̂2
0

σ̂2
Lt;1

)
+ Th log

(
σ̂2
0

σ̂2
Rt;1

)
. (11)

Theorem 2. Under null hypothesis of (10), for t = h, h + 1, . . . , T − h, the distribution of Λh(t) converges
to the χ2

p+2 as Th →∞.

The proof can be found in Grant (2018). Similarly, the p-values of the scan tests can be obtained.

2.3 Combining Dependent P-Values

From multiple hypothesis tests, under (6) or (10), we can obtain a series of p-values, such as p(h),
p(h+1), . . . , p(T−h). Generally, there are two directions to make inference from the p-values. One option
is to perform second-stage multiple tests for identifying whether there are local clustered signals, which re-
quire the change-point detection techniques for dependent data. For example, Cao & Wu (2015) proposed a
boundary detection algorithm to utilize the clustered signal, allowing each p-value segment following differ-
ent distributions under the alternative hypothesis, and construct test statistics based on smoothed p-values, the
global null hypothesis and alternative hypothesis are assumed to be

H0(t) : p(t) ∼ U(0, 1)

H1(t) : p(t) � U(0, 1). (12)

Due to our forward-moving window spectral discrimination procedure, a series of neighbouring hypotheses
tend to be rejected continuously from when the right side window runs into the change-point. In this situation,
multiple rejections appear to occur in a row without any assumptions on the distance between change-points,
which may be caused by one change-point or more than one change-points. So it is impossible to locate the
change-point precisely. Therefore, we consider another option by making the inference from the combined
p-values rather than investigating individual p-values. By combining multiple tests, the clump of significant
signals could be used as an indicator to the hypothesis testing

H0(t) : there is no change-point in {Xt}
H1(t) : there is at least one change-point in {Xt}. (13)

We propose to apply the harmonic mean p-value technique in order to combine all dependent p-values. Mo-
tivated by the genome-wide association studies, Wilson (2019) developed the harmonic mean p-value (HMP)
to control the familywise error rate of combined tests with improving the statistical power. Similar to the con-
trolling procedure, Bonferroni correction, both of them can be used to compare individual tests and combine
dependent tests. By using Bonferroni correction, one can compare the minimum adjusted p-values with the
usual significant level. While HMP can be simply expressed as the reciprocal of the arithmetic mean of the
reciprocals of the p-values. It has the desirable property to excel in detecting the grouped subtle values, it is
expected to be more powerful than Bonferroni correction, which is the rationale for using the HMP approach.

Wilson (2019) provides two versions of HMP implementation: (i) one can compare the weighted HMP calcu-
lated by a set of p-values, with the harmonic significance threshold αHMP · wT? ; (ii) when the asymptotically
exact HMP is available, it can be directly compared with the significance level α · wT? . The method is imple-
mented in an R package harmonicmeanp, which can be found at https://cran.r-project.org/
web/packages/harmonicmeanp/index.html. In this paper, we follow implementation (i). The al-
gorithm can be described as follows.

53

https://cran.r-project.org/web/packages/harmonicmeanp/index.html
https://cran.r-project.org/web/packages/harmonicmeanp/index.html


L. Ma and G. Sofronov, A Change-Point Test for Autoregressive Processes Using a Harmonic Mean P-Value

Algorithm 1 Combining p-values procedure via HMP
1: A sequence of p-values is computed from defined scan statistics, p(h), p(h+1), . . . , p(T−h).

2: Calculate pHMP and HMP significant threshold αHMP · wT? ,

pHMP =

∑T−h
t=h wt∑T−h

t=h wt/pt
,

where wT? =
∑T−h
t=h wt = 1, wt is the weight for each p-value, it is assumed that each test is equally

weighted. T ? is the total number of p-values.

αHMP =
1

F−1
Landau(α | µ, ψ)

=
1

xα

we define FLandau(xα | µ, ψ) as the cumulative distribution function of the Landau distribution,

FLandau(xα | µ = c · (log T ? + 0.874367), ψ = c · π/2) = α

α is the predefined type I error rate, c is a constant with respect to p in (8). If p + 1 > 2, c = T?

pHMP
·

(1 − FGamma(log T?

pHMP
| ν = p+1

2 , κ = 1)), where FGamma is the cumulative distribution function of a
Gamma distribution.

3: Reject the global null hypothesis under (13) when pHMP ≤ αHMP · wT? .

3 NUMERICAL EXPERIMENTS

3.1 Single change-point in AR process

In this section, we are interested in testing the null hypothesis as follows

H0(t) : θXLt ,j
= θXRt ,j

, for all j, σ2
Lt

= σ2
Rt

µLt
= µRt

,

and compare the validity between two multiple testing controlling procedure. A change-point is generated
at location tc, the time series model within the scanning window at tc is assumed to be piecewise stationary
AR(1) process with different parameters.

(XLtc (h)
(t)− µLtc

) +

pLtc∑
j=1

θXLtc
,j(XLtc (h)

(t− j)− µLtc
) = εLtc (h)

(t),

(XRtc (h)
(t)− µRtc

) +

pRtc∑
j=1

θXRtc
,j(XRtc (h)

(t− j)− µRtc
) = εRtc (h)

(t). (14)

During the scanning process, the p-values are sequentially collected from t = h. It is reasonable to consider
the scenarios tc ∈ (h, T − h). In addition, we consider the cases that the shift in AR coefficients, variance, or
mean respectively; the change in both AR coefficients and variance, both AR coefficients and mean, or both
variance and mean; also, we consider the change in all of the parameters. In this study, 100 sequences of time
series data are simulated for each case under each scenario, and T = 1000.
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tc/T {θXLt ,j
, θXRt ,j

} {µLt , µRt} {σ2
Lt
, σ2
Rt
} BonferroniCPT HarmonicCPT

0.5 {0.5, 0.5} {0, 1} {1, 1} 0% 0%
{0.4, 0.6} {0, 0} {1, 1} 4% 1%
{0.5, 0.5} {0, 0} {1, 2} 99% 98%
{0.4, 0.6} {0, 1} {1, 1} 2% 2%
{0.4, 0.6} {0, 0} {1, 2} 98% 98%
{0.5, 0.5} {0, 1} {1, 2} 98% 98%
{0.4, 0.6} {0, 1} {1, 2} 99% 99%

Table 1. The table first outlines the value of parameters used in each numerical experiment, 100 sequences of
piecewise stationary AR process are generated for each experiment. Also, it shows the positive detection rate
(the proportion that rejects H0 over 100 sequences) for BonferroniCPT and HarmonicCPT method.

The sequences are divided into two equal-length segments under this scenario. Table 1 shows that, in most
cases, both BonferroniCPT and HarmonicCPT methods can successfully identify the change-point. It has been
noticed that the procedure has a very high type II error rate for cases 1, 2, and 4. Under case 1, the coefficients
and variance remain the same; the mean increased by a unit, the results show that our method lost power
for this case. From case 2, we can see that our method cannot detect the change-point when there is only a
weak change in the AR coefficient. Comparing cases 2 and 4, with both coefficients and mean shifting weakly
together, the method still lost the power. In comparison, it is interesting to see that when the variance adds a
unit regardless of the variety in coefficients and mean, our method achieves a good detection power.

3.2 Comparison with classical models

Next, we compare the Bonferroni controlling procedure with the HMP method through Models(A-I) described
in Ma et al. (2020). 100 sequences from each model are generated. The scanning window setting is same
as in Ma et al. (2020). The results in Table 2 show that the controlling performance of BonferroniCPT and
HarmonicCPT are pretty similar except for the slightly higher type II error rate of HarmonicCPT under Model
G. The reason that Model D has the lowest detection power among Models(A-I) is the location of the change-
point (it is very close to the beginning of the sequence). The results from other models indicate that our method
is very efficient for the global alternative.

BonferroniCPT HarmonicCPT
N tc/T N̂ N̂

Model A 0 ≥ 1 0 ≥ 1
β = 0.4 0 ∅ 100 0 100 0
β = 0.7 0 ∅ 100 0 100 0
β = −0.1 0 ∅ 100 0 100 0
β = −0.7 0 ∅ 99 1 99 1

0 ≥ 1 0 ≥ 1
Model D 1 (50/1024) 10 90 11 89
Model I 1 (128/256) 1 99 1 99

0 ≥ 1 0 ≥ 1
Model B 2 (512/1024,768/1024) 0 100 0 100
Model C 2 (400/1024,612/1024) 0 100 0 100
Model E 2 (400/1024,750/1024) 0 100 0 100
Model F 2 (400/1024,750/1024) 0 100 0 100

0 ≥ 1 0 ≥ 1
Model G 3 (125/1024,532/1024,704/1024) 0 100 2 98
Model H 3 (125/1024,532/1024,704/1024) 0 100 0 100

Table 2. The simulation performance of BonferroniCPT method and HarmonicCPT method, where N
represents the true number of change-points, corresponding location(s) denoted by tc/T , N̂ is the estimated
number of change-points.
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4 CONCLUSIONS

For change-point detection in autoregressive time series data, we have developed autoregression discrimina-
tion based scan statistics in order to compare the underlying structure of the data within each scanning window.
The scan statistic moves through each time point from the beginning to the end of the data. Because of the
nature of proposed scan statistics, any change(s) in mean, AR coefficients, or variance lead to the continuous
rejections of the null hypothesis that the data is generated from the same process within the scanning window.
The Bonferroni multiple testing controlling procedure and harmonic adjusted p-value procedure are used to
combine all the tests. Both of them are very efficient in detecting the significant p-values, it does not seem pos-
sible to conclude which method is superior. The key messages that we can obtain from the single change-point
simulated cases is that, compared with the change in autocorrelation coefficient and the mean, the proposed
scan statistic is more sensitive to the variance change. Otherwise, the BonferroniCPT and HarmonicCPT
produce similar results. The reason that Model D has the lowest detection power among Models(A-I) is the
location of the change-point, which is very close to the beginning of the sequence. But it still has 90% positive
detection rate due to the dramatic change in AR(1) coefficient. The results from other models indicate that our
method is very efficient for the global alternative.
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