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Abstract: Hydrological predictions – and environmental predictions in general – are inevitably affected by 

substantial uncertainty due to limitations in data quality and model simplifications. Probabilistic predictions, 

where predictive uncertainty is represented using probability distributions, provide a vehicle for reflecting these 

uncertainties. Initially limited to research applications, probabilistic predictions are increasingly appealing in 

practical applications to help guide risk-based decision-making. For example, in water resource modelling, 

probabilistic predictions can provide reliable estimates of streamflow in the days and months ahead – thus 

avoiding a false sense of security in applications as diverse as dam operation, drought management, ecological 

health monitoring, and so forth. Nevertheless, a number of barriers still exist that impede a wider adoption of 

probabilistic predictions in practical hydrological work. The underlying theory is often perceived as 

complicated, and the predictions themselves are often perceived to be difficult to construct and interpret. 

In this paper we demonstrate that simple practical approaches are increasingly available to achieve high quality 

probabilistic predictions in a wide range of practical hydrological prediction applications. Our target audience 

are hydrologists in research and operations who are familiar with traditional hydrological modelling concepts 

and would like to extend their expertise to probabilistic modelling. A major focus is on providing guidance for 

robust descriptions of uncertainty using residual error models. This guidance includes the choice of 

transformation to handle common features of residual errors (heteroscedasticity, skewness, persistence), on 

estimation techniques for residual error model parameters, guidance on the relative importance of hydrological 

parameter uncertainty, and finally techniques to achieve high quality predictions from hydrological models 

already calibrated using a wide range of common objective functions. A software tool that implements these 

techniques is provided. The approaches are based on key insights from multiple research papers over multiple 

years, and their robustness has been shown over numerous catchments. 

Figure 1. Construction and use of probabilistic predictions in practical hydrological applications
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1. INTRODUCTION

Streamflow predictions from hydrological models are essential inputs to the planning and operation of water 

resource systems; see Figure 1. Amongst the key requirements is the ability to represent the considerable 

predictive uncertainty arising from the combined effect of data and model uncertainties. Probabilistic inference 

and prediction, where uncertainty is described using probability distributions, is of particular interest in this 

regard. Probabilistic techniques are well-known in the hydrological research community, ranging from 

methods-of-moments to frequentist methods to full Bayesian techniques (e.g., Kuczera, 1983; Krzysztofowicz, 

2002; Schoups and Vrugt, 2010; Smith et al., 2010; Kavetski, 2019; Li et al., 2016; McInerney et al., 2017). 

In contrast to the research literature, practical hydrological modelling applications tend to rely on 

“deterministic” approaches, e.g., where rainfall-runoff models are calibrated using goodness-of-fit objective 

functions and are used to generate "point" predictions. Quantification of uncertainty in predictions is often 

considered the domain of applied research (Vaze et al., 2011). One of the key challenges is the perception that 

probabilistic predictions require substantial additional effort (McInerney et al., 2018). However, limiting 

decision-making to deterministic predictions can lead to a “false sense of security” (Vogel, 2017): predictive 

uncertainty is ignored and system risks can be substantially under-estimated. 

This paper aims to increase the uptake of probabilistic predictions in practical applications, by providing 

guidance on the techniques found to achieve high quality predictions in a wide range of scenarios. 

2. PROBABILISTIC MODELLING AT A GLANCE

2.1. How to construct a probabilistic model from a deterministic model? 

Let 
tq denote streamflow predictions at time step t obtained using a deterministic hydrological model h with 

parameters θ  and inputs x1:t (up to step t), 

1:( );t thq θ
θ x (1) 

The simplest approach to describe predictive uncertainty in such a model is to add a "residual error" term 
t , 

) ( )( t t tz Q qz  θ 2~ (0, )t   (2) 

In equations (2)-(3) the error is assumed to be Gaussian with zero mean and constant variance after a 

streamflow transformation z is applied. The choice of transformation is described below. 

Following model calibration, the simplest approach to generate probabilistic streamflow predictions is by 

sampling replicates from the assumed probability model with optimal parameters θ̂ , 

pred

1:

, ˆ( , )tt t

rq Q θ x (3) 

The full set of predictive replicates, r = 1,…Nrep, either at a given step t or a series of steps, will be referred to 

as the “predictive distribution”. Here, the predictive distribution is a (transformed) Gaussian distribution with 

a time-varying median set to the deterministic predictions. Figure 2 provides a simple schematic illustration. 

Figure 2.  Constructing a probabilistic model from a deterministic model by adding a residual error model. 
For simplicity, the schematic shows a constant variance error model. 
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Multiple technical questions arise when implementing the probabilistic model and interpreting its predictions: 

1. How to select the streamflow transformation and represent the error persistence?

2. How to estimate the hydrological and residual error model parameters?

3. How important is parameter uncertainty versus total predictive uncertainty?

4. How to evaluate the goodness of fit of a probabilistic prediction

5. How to produce probabilistic predictions from already calibrated hydrological models?

The following sections attempt to "de-mystify" these questions for a general hydrologist. 

3. IMPLEMENTING A PROBABILISTIC MODEL IN PRACTICE

3.1.1. How to select the streamflow transformation?

A key feature of residual errors of hydrological models is their overall dependence on the flow magnitude: 

predictions of high flows are typically more uncertain than those of low flows; see Figure 3. The streamflow 

transformation is intended to stabilise the error variance – in technical terms, reduce error "heteroscedasticity". 

A common choice is the Box-Cox transformation z(q) = (q - 1) / , which reduces to the log transformation 

z(q) = log q when  = 0 (Box and Cox, 1964). An offset parameter can be added to avoid numerical problems 

when q  0. The log transformation corresponds to the assumption that the errors are multiplicative rather than 

additive, which intuitively provides a better match to the actual errors. An additional benefit is the 

representation of skew and fatter tails in the distribution of errors: the probabilistic prediction is log-normal 

with its (time-varying) median equal to the deterministic prediction. For these reasons, the log transformation 

tends to outperform Weighted Least Squares approaches that make the error variance flow-dependent but retain 

the symmetric Gaussian error model (Figure 4a; McInerney al., 2017). 

However, the log transformation is sensitive for zero and near-zero flows, degrading predictions in arid and 

semi-arid ephemeral catchments. A "milder" transformation, given by  = 0.2, tends to be preferable. Another 

choice,  = 0.5, which corresponds to the square-root transformation, can be advantageous if emphasis is on 

capturing high flows (Figure 4b). Tradeoffs in the choice of  are discussed in McInerney et al. (2017). 

3.1.2. How to represent the persistence of hydrological model errors? 

Another notable feature of residual error is their persistence. Figure 3 shows streamflow errors at consecutive 

time steps often form long stretches with the same sign and similar magnitude. This behavior arises because of 

the storage memory effects in hydrological models – and indeed in the underlying physical catchment 

processes. The presence of persistence has two implications on predictions: (i) it enables more precise short-

term predictions, because the error at the next time can be related to the error at the current (observed) time 

step; and (ii) it impacts on aggregated predictions, in particular causing an under-estimation of uncertainty if 

the error model ignores this persistence and instead assumes independent errors (Evin et al., 2014). 

Error persistence can be represented using an auto-regressive model, in the simplest case an AR(1) model. 

Some case is needed when combining the treatment of heteroscedasticity and persistence: as shown by Evin et 

al. (2013), heteroscedasticity should be treated first followed by the application of the AR(1) assumptions. 

Figure 3.  Residual errors of hydrological models and their key characteristics.
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(a) Perennial catchments: BC0.2 transformation provides better reliability and precision than the WLS

scheme with error variance proportional to streamflow: Representative catchment: Spring River, USA,

(b) Ephemeral catchments: BC0.2 transformation achieves much better precision and low bias than the log

transformation. Representative catchment: Rocky River, Australia 

Figure 4.  Streamflow transformation and probabilistic performance. From McInerney et al. (2017). 

3.1.3. How to estimate the hydrological and residual error model parameters? 

A probabilistic model, in addition to the parameters of the (original) hydrological model, θ, also has error
model parameters. In particular, the error variance 2

 is seldom known a priori – but can be estimated in the

calibration period. Traditional statistical estimation focuses on "joint" (simultaneous) estimation of 

hydrological and error model parameters using a likelihood function (e.g., Kuczera, 1983). However, in 

practice we recommend a "postprocessor" strategy, where Stage 1 estimates hydrological parameters using an 

objective function and Stage 2 estimates error model parameters keeping the hydrological parameters fixed. 

The postprocessor approach offers two important pragmatic benefits: 

1. Stage 1 can be implemented using common objective functions such as NSE or RMSE, for which

correspondence to common Gaussian likelihood functions can be shown (e.g., McInerney et al., 2018).

Moreover, in cases where a calibrated hydrological model is already available – the postprocessor

approach spares the modeler the considerable effort of re-calibrating it (Section 5.1.1). A key

simplification is that error persistence is ignored in Stage 1 (see point 3 below). Note that the objective

functions can themselves employ the Box-Cox transformation for consistency with the error model;

2. Stage 2 can employ conceptually simple statistical methods, e.g., using the Method of Moments to

estimate the error variance and autoregressive coefficient from the (fixed) time series of residuals

3. More robust numerical behavior, avoiding problematic interactions between mass balance parameters

and the autoregressive error parameter reported by Evin et al. (2014) in joint inference.

As such, the postprocessor approach is an appealing pragmatic choice for practical work (Hunter et al., 2021). 
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4. HOW "GOOD" IS A PROBABILISTIC PREDICTION?

Probabilistic performance can be viewed in terms of three key attributes: reliability, precision and bias. 

Reliability refers to the degree of statistical similarity between the predictive distribution and the distribution 

of observed data. This perspective connects to traditional statistical tools such as quantile-quantile plots (and 

metrics such as the Kolmogorov-Smirnoff statistic) – but is applied in a way that recognizes that the predictive 

distribution is time-varying. Visual tools include the Predictive Quantile-Quantile (PQQ) plot (Thyer et al., 

2009), which – similar to regular quantile-quantile plots – follow a 1:1 line if the predictions are reliable. 

Numerical reliability metrics can be devised to quantify this discrepancy (Evin et al., 2014). 

Precision (also known as sharpness or resolution) refers to the width of the predictive distribution, once again 

generalised to accommodate its time-varying nature. E.g., the standard deviation of the predictive distribution, 

averaged over the time steps, can be used (McInerney et al., 2017). Note the distinction between precision 

versus the width of the marginal distribution of streamflow (flow duration curve). The former is a measure of 

probabilistic performance (tighter is generally better), whereas the latter is a characteristic of streamflow itself. 

Volumetric bias (overall water balance error of the predictions) is of key importance in many hydrological 

applications, especially those concerned with long-term yield estimation. It can be quantified as the difference 

between the mean of the predictive distribution (across time) and the mean of the observed data. 

In practice, there are tradeoffs between performance attributes. For example, tight (precise) predictions often 

come at the expense of lower reliability (e.g., McInerney et al. 2017). In general, reliability is seen as paramount 

in probabilistic modelling, because an (overconfident) prediction that is tight but unreliable is ultimately 

misleading to the user. On the other hand extremely vague predictions are themselves of little value. It is also 

possible to devise composite metrics, such as the Continuous Rank Probability Score (CRPS; Hersbach, 2000) 

that combine all three attributes – though we find it more informative to use more targeted metrics. 

5. MAKING PROBABILISTIC PREDICTIONS FROM ALREADY CALIBRATED MODELS

5.1.1. The linear-mean error model to avoid biases with "inconsistent" objective functions

In practice, a hydrological model may already have been calibrated using some pre-selected objective function. 

A natural question is then whether such a model can be used directly as the basis for probabilistic predictions, 

i.e., without recalibration (or repeating Stage 1). For example, in the postprocessor approach of Section 3.1.3,

could we treat the already calibrated model as the outcome of Stage 1 and proceed directly to Stage 2?

A naïve implementation of this approach using the error model in equation (3) runs into problems. For example, 

if the hydrological model was originally calibrated using the (Stage 1) NSE objective function without 

streamflow transformation (i.e.,  = 1), using an (Stage 2) error model that employs a Box-Cox transformation 

with  = 0-0.5 will tend to introduce strong biases in the predictions (see Hunter et al. 2021 for details). The 

root cause is the "inconsistency" between the stages, here due to differences in their respective transformations. 

A remedy for the bias problem is to allow the mean of the errors to depend on the simulated (deterministic) 

streamflow. The following linear model is suggested, 

( )t tz q     θ (4) 

The parameters  and  of this linear model can be estimated from the residuals along with the error variance. 

As seen in Figure 5, the "linear-mean" enhancement restores the quality of the predictions to similar levels as 

when a "consistent" objective function is used (same value of  in both stages). Remarkably, the improvements 

hold for a wide range of objective functions, from Nash-Sutcliffe and Kling-Gupta efficiencies with Box-Cox 

transformation parameter values of  = 0-1, to composite objective functions combining the NSE with mass 

balance penalty terms, to the Pearson correlation coefficient, across 54 study catchments (Hunter et al. 2021). 

The ability to obtain high quality probabilistic predictions with a wide range of objective functions substantially 

broadens the range of practical modelling problems for which probabilistic predictions can be employed. 

5.1.2. How important is parameter uncertainty versus total predictive uncertainty? 

It is commonly assumed that, given the considerable simplifications made in environmental models, parameter 

uncertainty must be necessarily high (e.g., Beven et al., 2006). However, if predictive uncertainty is represented 

using a residual error model, its magnitude is controlled by the error variance. When a parsimonious rainfall-
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runoff model is calibrated to a sufficiently long time series (e.g., multiple years of daily streamflow), neglecting 

parameter uncertainty often has a very minor impact on probabilistic predictions (e.g., see Figure 9 in Kavetski 

et al., 2019; Sun et al. 2017, and others). When applicable, this pragmatic choice can produce substantial 

computational savings, e.g., by avoiding costly Monte Carlo parameter sampling, etc. 

Figure 5. Achieving high quality predictions from hydrological models calibrated using a wide range of 
objective functions. Results shown for Yackandadah catchment. Adapted from Hunter et al. (2021). 

5.1.3. Software tool 

The residual error modelling methods summarized in this work are implemented in the R package 

"probabilisticPredictions", available at https://github.com/Jasenter/Probabilistic_App. The software can be 

interfaced as either an R-function for batch computation or an R-shiny web application for interactive 

analysis. 

6. SUMMARY AND CONCLUSIONS

Probabilistic methods offer the promise of reliable description of uncertainty in practical hydrological and 

environmental modelling applications – but suffer from a perception that these methods are difficult to apply. 

This paper reviews a number of advances in probabilistic streamflow predictions, with an emphasis on 

practicality. The following key learnings are reported: 
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1. Probabilistic predictions can be obtained by enhancing a deterministic hydrological model with a residual

error model. Their parameters can be estimated in two respective stages. This strategy enables enhancing rather

than replacing existing modelling tools.

2. The use of Box-Cox streamflow transformation with power parameter  = 0-0.5 is important to capture error

heteroscedasticity, with value  = 0.2 offering a good practical tradeoff in most cases. Error persistence can be

represented using an AR(1) model, which can be applied after the streamflow transformation.

3. Allowing the error mean to depend on predicted streamflow enables high-quality predictions to be achievable

with hydrological models already calibrated using common objective functions.

Collectively, these recommendations enable high-quality probabilistic predictions to be obtained in a wide 

range of practical applications – paving the way for enhanced uptake of these methods. 
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