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Abstract: We consider a native species whose environment is stressed due to the presence of an ecosystem
engineer, a specific type of invasive species that has the ability to convert native habitat into one which is more
conducive to its own survival. The re-engineering of the native habitat results in an increase in the intra-species
competition among the resident species. A key aspect of ecosystem engineer dynamics is that their invasion
is limited by the size of the native habitat and their ability to transform it. It has long been recognised that
invasive species play a role in declining biodiversity and the degradation of native habitat.

We explore the effect of a single engineer species on a resident species and its habitat. The invading engineer
species does not prey on the resident species but does compete for available habitat. The engineer species
converts, modifies or re-engineers native habitat. The rate at which this conversion is performed determines
whether or not colonisation will be successful. Over time the converted habitat degrades forming a decayed
habitat that is not suitable to either species. The decayed habitat returns to its native state through a process of
recovery. Once in its native state the habitat can be occupied by either the resident species or modified again
by the ecosystem engineer. This recycling of the habitat is an important and novel feature in the model.

We investigate the dynamics of this model. We assume the dynamics of both species is governed by a logistic-
type differential equation whose carrying capacity is equal to the size of its habitat. In the logistic equation, it
is the carrying capacity that determines the population size. A reduction in habitat will drive the population to
a smaller size, similarly an increase in habitat will increase the population size.

An analysis of the model reveals three different approaches that may be used to control the invading species.
The first is based on reducing the ability for the engineer species to convert native habitat. The model shows
the existence of a minimum conversion rate below which the engineer species can not colonise the native
habitat. Therefore conservation strategies should focus on reducing the engineer’s ability to convert habitat.
A second strategy is a well known strategy, the harvesting of the invading species. And the third is based
on ‘quarantining’ the decayed habitat for a certain period of time. Although quarantining does not alter the
conversion rate it does however favour the resident species by not permitting the engineer species to become
the dominant species. However, large quarantine periods cause oscillations within the system which may not
be desirable.

Finally, we propose directions for future work.

Keywords: Population modelling, invasive species, mathematical modelling, harvesting

24th International Congress on Modelling and Simulation, Sydney, NSW, Australia, 5 to 10 December 2021 
mssanz.org.au/modsim2021

267

https://orcid.org/0000-0003-4006-9523
https://orcid.org/0000-0002-3260-3661
https://orcid.org/0000-0002-4308-6129
https://orcid.org/0000-0003-3282-7195


S. Watt et al., The population dynamics of ecoengineers ...

1 INTRODUCTION

Invasive species are species that have spread beyond their natural range, usually with human assistance, and
have the potential to affect the native ecosystem and its biodiversity. Invading species, in and of themselves,
are rated high as a cause of native biodiversity loss and economic damage. Moreover, invading species interact
with all other factors that compromise the integrity of native ecosystems, such as habitat destruction, pollution
and climate change.

Invasive species have long been considered as one of the primary threats to the conservation and maintenance
of native species and their habitat (Butchart et al., 2010; Duncan et al., 2013; Lohr et al., 2017). Invasive
species can change species’ interactions by altering the nutrient flow and the trophic structure of ecosystems.

Of particular interest are ecosystem engineers, an invasive species that modify a habitat (biotic or abiotic)
through physical changes in the available resources (Jones et al., 1994). All species modify the environment
to some extent (Franco and Fontanari, 2016). However, there are some species which modify the environment
to the detriment of other species. Two commonly cited examples are humans and beavers. Humans have the
ability to utilise available resources to continually change the landscape by building cities and roads to connect
them to accommodate increasing populations. This conversion of the natural environment is to the detriment
of the natural world, endangering habitats and species. Beavers must build dams to protect themselves from
predators such as coyotes, wolves and bears and to ensure easy access to food during winter. However, the
creation of dams can lead to flooding and destruction of forests (Choi, 2008).

Different types of habitat modification is described in Jones et al. (1994), where the term ‘extended phenotype
engineering’ was used to distinguish it from ‘accidental engineering’, where the habitat modification does not
help the engineer (or invasive) species in their reproduction and survival.

We propose a mathematical model to explore ways that the the engineer species can be controlled so its impact
on native habitat is minimised. Specifically we look at the relative importance of model parameters, such as
the habitat conversion rate, the effect of harvesting the invasive species, and the role of ‘quarantining’ a habitat.
A key aspect of these models is that the growth of the engineer species is limited by the rate at which a native
habitat is modified by the engineering population.

Our starting point is a model first developed by Gurney and Lawton (1996) and later extended by Gonzalez
et al. (2008) with the inclusion of indirect inter-species competition between the engineer species and the
native species.

2 MATHEMATICAL MODEL

The model presented by Gurney and Lawton (1996) and augmented by Gonzalez et al. (2008) is depicted
in Figure 1. The engineer (invasive) species, I , has the ability to modify the native habitat, H1, used by the
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Figure 1: A schematic showing the dynamics among the habitats: the invasive species alters the native habitat,
H1, to the engineered habitat, H2, then H2 decays to an intermediate degraded state, D. Finally, the degraded
state returns to its native state through the process of recovery. The resident species population, R, is limited
by the size of the native habitat, and the invasive species, I , is limited by the size of the engineered habitat.
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resident species,R, into a modified habitat,H2, one more suited to meet its own ecological needs. The invasive
species can transform the native habitat at a rate proportional to the population size of the invasive species,
f(I) = bI with b being a constant conversion rate. The modified habitat then transitions to a decayed habitat
at a rate δ. The decayed habitat can not be utilised by either species. Finally, the decayed habitat returns to its
native state through the process of recovery at a rate ρ. It is assumed that the population dynamics of both the
native and invasive species are characterised by logistic-type growth models whose carrying capacity is equal
to their respective habitat size, H1 and H2. The total habitat (native; modified; decayed) is assumed to be of a
constant size, that is, H1(t) +H2(t) +D(t) = T for all time, t. The mathematical model is

dR

dt
= r1R

(
1 − R

H1

)
,

dI

dt
= r2I

(
1 − I

H2

)
, (1)

dH1

dt
= ρD − bIH1,

dH2

dt
= bIH1 − δH2,

dD

dt
= δH2 − ρD, (2)

where r1 and r2 are the intrinsic growth rates. In the rest of the paper, unless otherwise specified, we will use
the values r1 = 1, r2 = 2, δ = 0.5, ρ = 2, b = 1, R(0) = H1(0) = 9, I(0) = H2(0) = 1 and D(0) = 0,
which gives T = 10.

3 SPECIAL CASES

We discuss two cases, one where the engineered habitat does not degrade and another when the degraded
habitat does not regenerate.

3.1 Case 1 - No decay

For the case where there is no decay, we set the decay rate (δ) to zero. Once the engineer species is introduced
into a native habitat, the process of habitat conversion begins and eventually all of the native habitat is con-
verted into engineered habitat. As a result, the native species will become extinct, in this non-spatial model.
The conversion rate (b) controls the rate of extinction, the higher the value, the quicker the process takes. This
is shown in Figures 2 for b = 0.1 and b = 1. Note that in these figures the population and habitat have been
normalised by the total habitat size, T .
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Figure 2: Population and habitat densities for the case with no decay for two different conversion rates b = 0.1
(left) and b = 1 (right).

3.2 Case 2 - Decay with no recovery

The introduction of an engineer species into a native habitat initiates the process of habitat conversion from
habitat H1 to habitat H2. Case 2 depicts a situation where the engineered habitat decays with rate δ, entering
the degraded stateD. As there is no recovery from the degraded habitat, both the native habitat and engineered
habitat will eventually be depleted. Consequently, both species will become extinct. Figure 3 illustrates the
extinction of both species and their habitats.
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Figure 3: The case with no recovery from the decayed state, showing the extinction of both the native and
engineer species.

4 THE GENERAL MODEL

In the case, the decayed habitat recovers to its native state at a rate ρ. In what follows we show that in this case
co-existence between the native and engineer species is possible.

4.1 Equilibrium solutions and successful colonisation

The equilibrium solutions of the system described in equations (1)–(2) are

R = H1 =
δ

b
, I = H2 =

ρ(bT − δ)

b(δ + ρ)
, D =

δ(bT − δ)

b(ρ+ δ)
.

To ensure that the population and habitat sizes are all non-negative requires that there be a minimum critical
conversion rate, bcr = δ/T . For conversion rates above bcr, there exists the possibility of co-existence between
the resident and engineer species. For conversion rates below bcr, the engineer species becomes extinct while
the resident species reaches its maximum carrying capacity R = H1 = T . Figure 4 shows a bifurcation
diagram of equilibrium states of the resident and invasive species as a function of the conversion rate b. We
can calculate the dominance point, when the population size of the engineer species exceeds that of the resident
species, identified by bdom in Figure 4. The dominance point can be calculated as

bdom = bcr

(
δ + 2ρ

ρ

)
.

5 CONTROLLING THE POPULATION THROUGH HARVESTING

One way to control the impact of the invasive engineer species is through culling or harvesting. To model this,
a harvesting term can be added to the logistic-type growth equation for the engineer species. The new system
becomes

dR

dt
= r1R

(
1 − R

H1

)
,

dI

dt
= r2I

(
1 − I

H2

)
− βI,

dH1

dt
= ρD − bIH1,

dH2

dt
= bIH1 − δH2,

dD

dt
= δH2 − ρD,

where β is the harvesting rate. The equilibrium of the system is

R = H1 =
δ

b
+
βδ

b∆
, I =

ρ(bT − δ)

b(δ + ρ)
− βρT

r2(δ + ρ)
, H2 =

ρ(bT − δ)

b(δ + ρ)
− βδρ

b(δ + ρ)∆
, D =

δ(bT − δ)

b(ρ+ δ)
− δ2β

b(δ + ρ)∆
,
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Figure 4: Bifurcation diagram for the equilibrium of the native (R) and engineer species (I) as a function of
the conversion rate (b).

with ∆ = r2 − β > 0. When ∆ ≤ 0 the harvesting rate equals or exceeds the intrinsic growth rate, the
engineer species will become extinct. As before, to ensure non-negative population and habitat sizes the
critical conversion rate now becomes

bcr =
δ

T

(
1 +

β

∆

)
.

The dominance point now becomes

bdom =
bcr
ρ

(
δ + 2ρ+ (δ + ρ)

β

∆

)
.

By setting β = 0, we get ∆ = r2 and recover the model without harvesting.

From the analysis above, if ∆ decreases (due to an increase in β) the size of the engineer species can be
controlled. This is achieved by increasing the point of dominance, thus ensuring that the resident species
remains more abundant.

6 MODEL WITH FIXED RECOVERY TIME

We consider an idea explored by Gurney and Lawton (1996), where the degraded habitat remains in that state
for a fixed amount of time, τ . Mathematically, this can be expressed as

D(t) = δ

∫ t

t−τ
H2(s) ds,

The model can now be written as

dR

dt
= r1R

(
1 − R

H1

)
,

dI

dt
= r2I

(
1 − I

H2

)
,

dH1

dt
= δH2(t− τ) − bIH1,

dH2

dt
= bIH1 − δH2,

dD

dt
= δ [H2(t) −H2(t− τ)] .

The equilibrium solution becomes

R∗ = H∗
1 =

δ

b
, I∗ = H∗

2 =
(bT − δ)

b(1 + δτ)
, D∗ =

δτ(bT − δ)

b(1 + δτ)
.

For non-negative population and habitat sizes, we require that bcr = δ/T (as for the general model) and
the dominance point becomes bdom = δ(2 + δτ)/T . Before analysing this system, we will make some
simplifications. Note that the resident population (R) does not have an effect on habitat dynamics nor on the
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engineer species. Furthermore, since the total habitat size is constant we can writeH1(t) = T −H2(t)−D(t),
hence eliminate the equation for the native habitat. The new system becomes

dI

dt
= r2I

(
1 − I

H2

)
,

dH2

dt
= bI(T −H2 −D) − δH2,

dD

dt
= δ [H2(t) −H2(t− τ)] .

The stability analysis of this reduced system gives rise to a characteristic polynomial of degree three whose
coefficients depend on τ . A general geometric criteria for stability switching as a function of τ is discussed in
Beretta and Kuang (2002) and Jianquan and Zhien (2004).

The characteristic polynomial of this delayed system can be shown to be

λ3 + a1λ
2 + a2λ+ a3e

−λτ + a4λe
−λτ + a5 = 0,

where a1 = bH∗
2 + δ + r2, a2 = (2br2 + bδ + bδr2τ)H∗

2 + r2(δ − bT ), a3 = −bδr2H∗
2 , a4 = −bδH∗

2 and
a5 = bδr2H

∗
2 . A Hopf bifurcation occurs when the eigenvalue λ is purely imaginary, that is λ = iω, giving

rise to periodic solutions.

We found that a Hopf bifurcation occurs for a critical recovery time τc ≈ 11.22. For τ < τc, the oscillatory
solutions decay to a steady-state solution, and for τ > τc, the oscillatory solutions persist. These results are
shown in Figures 5(a) and 5(b). By including harvesting of the engineer species into the above system, it
can be seen in Figure 5(c) that harvesting decreases the amplitude of the oscillations. The system decays to a
stead-state solution as the harvesting is further increased, as shown in Figure 5(d).
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Figure 5: The solution with a delay in the system with no harvesting (a) τ = 10 and (b) τ = 12 and the system
with harvesting (c) τ = 12 and β = 0.2 and (d) τ = 12 and β = 0.4.

7 DISCUSSION AND CONCLUSION

We have investigated the effects of introducing an invasive species, specifically an ecosystem engineer, into a
native habitat with a single resident species. To survive, the invasive species must convert the native habitat
into one that sustains it.
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Successful colonisation by the engineer species depends on the rate of native habitat modification. If the
ecosystem engineer is inefficient in its effort to convert habitat then its ability to secure a permanent presence
within the native habitat is greatly diminished. There exists a threshold, bcr, below which invasion into the
native habitat is not sustainable. It was demonstrated that stable co-existence can be achieved. A bifurcation
analysis indicates that if the conversion rate is above bdom the invasive species dominates the resident species.
To avoid the possible extinction of the resident species, conservationists should try to reduce the conversion
rate b, thus making the invasive species less effectual in their ability to modify native habitat. Whether this is
done by bio-manipulation or the release of certain toxins, not harmful to the resident species, will depend on
the type of traits of the invasive species concerned. Another way to reduce b (and ideally below bcr) is to use
a barrier, such as a fence.

The effect of harvesting of the engineer species was also considered. It was seen that without inhibition and
with a large enough engineering conversion rate, the invasive species will dominate the native species. Har-
vesting can be an effective means of intervention to prevent the engineering species from becoming dominant.
Here the important parameter is ∆ = r2 − β. It can be interpreted as the ‘effective’ intrinsic growth rate. A
reduction in ∆ results to an increase in both bcr and bdom. Even if it is not possible to eliminate the invasive
species a higher bdom will ensure the native population remains more abundant.

We also investigated the scenario where the degraded habitat remained in that state for a fixed amount of time,
τ , before it recovers. This may be thought of as a type of ‘quarantine’ measure. The model with fixed recovery
time exhibits a Hopf bifurcation. When the recovery time is greater than some critical value τc, the resident
population undergoes large amplitude oscillations of a fixed period. The critical conversion rate, bcr is not
affected by τ , but the point of dominance, bdom = δ(2 + δτ)/T , is. By quarantining the decayed habitat for
longer lengths of time the value of bdom can be increased, thus maintaining a higher abundance of the native
species. Care, however, must be taken as increasing τ induces larger amplitude oscillations in both species
which may not be desirable, thus determining an optimal τ is a worthy future goal.

Finally, random environmental fluctuations affect both intra-species and inter-species competition for limited
resources. Models with fixed parameters may not be adequate for conservation purposes. Future model refine-
ments could include stochastic processes that better capture the impact of environmental change on species
survival.
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