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Abstract: Ships traverse the world’s oceans for a diverse range of reasons, including the bulk transportation 
of goods and resources, carriage of people, exploration and fishing. The size of the oceans and the fact that 
they connect a multitude of different countries provide challenges in ensuring the safety of vessels at sea and 
the prevention of illegal activities. To assist with the tracking of ships at sea, the International Maritime 
Organisation stipulates the use of the Automatic Identification System (AIS) on board ships. The AIS system 
periodically broadcasts details of a ship’s position, speed and heading, along with other parameters 
corresponding to the ship’s type, size and set destination. 

The availability of AIS data has led to a large effort to develop automated systems which could identify and be 
used to prevent undesirable incidents at sea. For example, detecting when ships are in danger of colliding, 
running aground, engaged in illegal activity, traveling at unsafe speeds, or otherwise attempting manoeuvres 
that exceed their physical capabilities. Despite this interest, there is a lack of a publicly available ‘standard’ 
dataset that can be used to benchmark different approaches. As such, each new approach to automated maritime 
activity modelling is tested using a different dataset to previous work, making the comparison of technique 
efficacy problematic. 

In this paper a new public dataset of shipping tracks is introduced, containing data for four vessel types: cargo, 
tanker, fishing and passenger. Each track corresponds to a leg of a vessel’s journey within an area of interest 
located around the west coast of Australia. The tracks in the dataset have been validated according to a set of 
rules, consisting of journeys at minimum 10 hours long, with no missing data. The tracks cover a three-year 
period (2018 to 2020) and are further categorised by month, allowing for the analysis of seasonal variations in 
shipping. The intention of releasing this dataset is to allow researchers developing methods for maritime 
behaviour analysis and classification to compare their techniques on a standard set of data. 

As an example of how this dataset can be used, we use it to build a model of ‘expected’ behaviour trained on 
data for three vessel categories: cargo, tanker, and passenger vessels, using a convolutional autoencoder 
architecture. We then demonstrate how this model of ship behaviour can be used to test new data that was not 
used to build the model to determine whether a track fits the model or is an anomaly. Specifically, we verify 
that the behaviour of fishing vessels, whose movement patterns are quite different to those of the other three 
vessel types, is classified as an anomaly when presented to the trained model. 

Keywords: Maritime Track Dataset, Automatic Identification System (AIS), anomaly detection, machine 
learning 
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1. INTRODUCTION 

Many aspects of society are dependent on the movement of ships across the world’s waterways, where a 
disruption caused by accident or incident can have large consequences in terms of loss of life and economic 
impact. Analysing maritime shipping movements has many applications in preventing accidents, identifying 
vessels in distress, uncovering illicit activities and in general optimising the flow of traffic between ports. 

Data on the worldwide movement of ships is widely available, through the Automatic Identification System 
(AIS) (IMO, 1998). AIS is a radio frequency-based system where a ship broadcasts its position, among other 
static and kinematic parameters, at regular intervals. As stipulated by the International Maritime Organisation 
(IMO), all passenger ships, and all other ships over a defined gross tonnage are required to carry an AIS 
transceiver and operate it when safe to do so (IMO, 2015). This produces data that can be used for navigation 
and tracking purposes, enabling a ship to be aware of traffic around it and to make other traffic aware of itself. 
Besides real-time use, a number of commercial and government organisations collect and curate AIS data. The 
historical data can be analysed to determine past event sequences and occurrences. 

Automated analysis of maritime traffic is an active field of research, somewhat mirroring the automated traffic 
analysis revolution that is occurring for cars. Consequently, a wide spectrum of modelling techniques has been 
employed: statistical models, machine learning models and rule-based models. Riveiro et al. (2018) provide a 
review of techniques that have been used. More recent techniques include the use of recurrent neural networks 
(Yang et al. 2020) and the use of autoencoder neural networks (Iltanen, 2020). An important aspect of work in 
this area is being able to test and validate new techniques. However, researchers typically employ a process 
where they gather their own sub-set of raw AIS data, employ their own custom procedure for cleaning it, and 
(as it is often obtained under commercial conditions) have no means to distribute it. Although some attempts 
have been made at producing a standard database of clean maritime traffic data suited to machine analysis 
(Mao et al. 2018), after an extensive search, we have been unable to find an available data set. 

In this paper, the Open Maritime Traffic Analysis Dataset (OMTAD) is introduced. This is a dataset of cleaned 
and processed maritime tracks that has been produced from AIS-based data curated by the Australian Maritime 
Safety Authority (AMSA) for shipping within Australia’s maritime search and rescue region (AMSA, n.d.). 
As AMSA provides their dataset in a form where the vessel identification is anonymised and under an open-
source license, OMTAD can be used by the research community with minimal hurdles to explore a wide range 
of research questions. To demonstrate the use of this dataset, several experiments are presented. Using a sub-
set of the dataset a model of ‘expected’ behaviour is constructed. It is then shown that this model can be used 
to find ‘unexpected’ vessel behaviour as deviations from the model. 

The rest of the paper is organised as follows: In Section 2, details of the OMTAD dataset are provided, 
including the workflow used in its construction, structure, and details of the data contained. Section 3 details a 
set of experiments, building a model based on the dataset and presenting two ways of using the model for 
anomaly detection. Section 4 includes a discussion, possible future work, and a conclusion. 

2. THE DATASET 

The OMTAD dataset has been constructed from a sub-set of publicly available data, distributed by AMSA 
(AMSA, n.d.) under the terms of the Creative Commons Attribution-Non-commercial 3.0 Australia Licence. 
Since 2012, AMSA has been providing a monthly data record of vessel traffic within Australia’s search and 
rescue region. The data released by AMSA, which has been sourced from AIS messages, is provided in a 
processed format. The processing includes a thinning of the data so that points from any vessel are no less than 
sixty minutes apart. Data is anonymised by removing vessel identifying information (such as vessel name, 
Maritime Mobile Service Identity number etc.) and replacing it with a unique ID number. 

2.1. Dataset Construction Approach 

Dataset construction consisted of choosing a region of interest and cleaning the data within that region to 
remove tracks that did not meet length and destination criteria, and to interpolate gaps. A ‘clean’ track is defined 
as a significant part of a vessel’s journey that begins and ends either out of the region of interest or at a port 
and contains no gaps larger than one hour. For a month’s worth of data for a particular vessel type, the following 
cleaning procedure was undertaken: 

1. Each vessel’s journey over the month was divided into individual candidate tracks. 
2. Inclusion/Exclusion criteria applied to each track. 
3. Interpolation of missing points. 
4. Manual Verification. 
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The specific destination can be either a port or coastal anchorage, or for fishing vessels: a fishing area. 
Generating an initial list of candidate tracks (step 1) involved splitting the data for a vessel’s journey at points 
where a speed of zero is encountered four consecutive times or where there is a gap between data points greater 
than 3.5 hours. The resulting journey segments were considered candidate tracks if they contained a minimum 
of 10 data points. Segments shorter than this (i.e. shorter than 10 hours) were discarded. Each candidate track 
was then examined (step 2), and if its initial and final point corresponded to either a port or the bounded area 
of interest, it was brought forward to step 3. In step 3, interpolation is performed, where gaps between points 
that are greater than 1.5 hours are filled. For gaps between 1.5 and 2.5 hours one new point is generated halfway 
between the points on either side of the gap, using linear interpolation to generate attributes for the new point. 
For gaps between 2.5 and 3.5 hours, two new points are generated, equally spaced in the gap, also using linear 
interpolation to generate their attributes. In the final step (step 4), each track was manually inspected as a final 
check of meeting the inclusion criteria before being added to the dataset. This verification step was performed 
as a form of quality control, since the previous parts of the process are mostly automated using rule-based 
scripts, and thus susceptible to inconsistent data. In turn, issues identified in the manual verification step were 
used to improve the automated scripts, making manual verification less necessary in future expansions of the 
dataset. 

 
Figure 1. West coast region of interest, indicated (black rectangle) along with one month’s worth of AMSA 
data (from January 2019). 

2.2. Dataset Contents 

The region of interest chosen consisted of the west coast of Australia, between 105 and 116 degrees in longitude 
and between -36 and -15 degrees in latitude, referred to here as the Western region of interest. To give a visual 
indication, Figure 1 shows a map displaying all the points provided by AMSA for January 2019, with the 
Western region of interest indicated using a rectangle around its bounds. The traffic patterns seen in the January 
data are consistent throughout the year, apart from fishing vessel tracks which vary seasonally. 

The Western region was chosen, rather than the entire AMSA search and rescue region due to time constraints 
in producing the dataset, as it contains less traffic than the eastern side of Australia, whilst still containing a 
mix of shipping lanes with various vessel traffic. Also due to the time constraint, the dataset is focused on four 
vessel types: cargo, tanker, fishing and passenger, over three years: 2018, 2019 and 2020. The Western region 
of interest dataset contains 19,124 total vessel tracks. Table 1 provides a breakdown of the number of tracks 
for each vessel type for each year. The dataset is available from: https://github.com/EdithCowan/OMTAD.  

The directory structure of the dataset contains a sub-directory for each year. Each year directory contains a 
sub-directory for the vessel type (cargo, fishing, passenger and tanker). Each vessel type directory contains 12 
sub-directories, one for each month of the year. Each of the month directories contains a Master Processed File 
(MPF) containing a set of processed track data for that vessel type as comma separated values (csv). The MPF 
datafile uses the following naming convention: ‘MPF_[month]_[year]_Grid_[TYPE].csv’. The directory 

983



Masek et al., The Open Maritime Traffic Analysis Dataset 

structure is provided for convenience, but users of the dataset are free to copy all MPF files into a single 
directory, as the naming convention includes the same information as provided by the directory structure. 

Table 1. Breakdown of vessel tracks in the dataset by year and vessel type. 

Year Cargo Tracks Tanker Tracks Fishing Tracks Passenger Tracks 

2018 4,974 1,343 75 101 

2019 4,943 1,373 155 65 

2020 4,467 1,304 236 88 

Total 14,384 4,020 466 254 

 

Each MPF file is organised such that the first row is a header with the names for each column. Following the 
header is the data, with each row containing the field values for a single point on the track. Tracks are separated 
by a row that consists of the word “END”. The field names, along with the corresponding type and description 
used in the MPF files are given in Table 2. 

Table 2. Fields in the dataset Master Processed Files. 

Field Name Type Description 

CRAFT_ID Text Unique identifier for each vessel – matches AMSA CRAFT_ID 

LON Double Longitude in decimal degrees 

LAT Double Latitude in decimal degrees 

COURSE Double Course over ground in decimal degrees 

SPEED Double Speed over ground in knots 

TIMESTAMP Text Vessel position report UTC timestamp in dd/mm/yyyy hh:mm:ss, 24 hour format 

Track_ID Text Unique track identifier in the format yyyy[Type][Month][sequence number] (eg. 
“2020CargoJan1” for the first track in the 2020, January cargo vessel MPF file). 

3. EXPERIMENTS 

In this section some guidance to those wishing to build models of maritime activity using the OMTAD dataset 
is provided. The typical workflow starts at selecting a model appropriate to the task, tuning the model 
parameters, and then building and using/evaluating the model. The chosen example application is to model the 
‘expected’ kinematic behaviour for a particular behaviour type and then test the model using vessels of a type 
that typically exhibits different behaviour, treating them as a previously ‘unseen’ test set. Examining the 
behaviour of vessel types visually, the behaviour of cargo, tanker and passenger vessels is very similar (in 
terms of the routes travelled, moving in straight line segments between ports), whereas fishing vessel behaviour 
is noticeably different. Thus, for a model trained on the behaviour evident in cargo, tanker and passenger 
vessels, it would be expected for the fishing vessel track set to be identified as anomalies, whilst new, unseen 
tracks of cargo, tanker and passenger vessel types should be classified as fitting the model. The model 
architecture, tuning procedure and experiments will now be described. 

3.1. Model Architecture 

The model is based on the convolutional autoencoder neural network, which uses convolutional layers within 
the autoencoder architecture first proposed by Rumelhart et al. (1985). Autoencoders can learn to encode a 
compressed representation of their input, accomplished by training the network to reproduce its input as its 
output, whilst constricting the number of neurons in its middle layers, forming a bottleneck. This is a form of 
unsupervised learning, as it does not need the training data to be labelled (the expected output should simply 
be equal to the input) and is thus ideal for use in anomaly detection, where an anomaly is defined as ‘different’ 
from the expected, rather than having a specific label in the dataset. As such convolutional autoencoders have 
been used for anomaly detection in a variety of fields, including detection of network anomalies (Chen et al. 
2018) and anomalies in video (Ribeiro et al. 2018). 

The input for the model is a set of sequential data points, each comprising a small ‘window’ of an entire track 
(the optimal window size is the subject of the tuning step). The architecture of the autoencoder is shown in 
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Figure 2 for a window size of 16. This means that the input layer takes in a sequence of 16 datapoints from a 
track, where in each data point three values are included: latitude, longitude and speed of the ship at that point 
(48 values altogether). Similarly, the output also consists of 48 values. The middle, bottleneck, layer however 
only accommodates 16 single values, thus compressing the 48 input values into 16 values at that point in the 
network. 

 
Figure 2. Architecture of the autoencoder neural network, here for a window size of 16, where the input is 16 
consecutive data points, each made up of a latitude, longitude and speed attribute. 

The model is trained using a training set of track windows, with the aim of minimising the reconstruction error. 
The reconstruction error is calculated as the mean square error between the input and output vectors. After 
training, the model can be presented with a new ‘unknown’ window of data, with the response of the network 
being used to determine whether that data fits the model or is an anomaly. For this anomaly detection, 
experiments focused on two approaches of using network response to flag anomalies. 

In the first anomaly detection approach, the reconstruction error was used as an indication of how well a new 
window of data fits the model. A static threshold was defined for the reconstruction error, using a percentage 
of the maximum reconstruction error when the model is tested on the training data. 

In the second anomaly detection approach, the trained autoencoder was taken, and the output of its ‘bottleneck’ 
layer used as input to a one-class support vector machine (OC-SVM) (Schölkopf et al. 2001). The aim of this 
OC-SVM is to predict if a vessel track window is an outlier. This approach was used by Wang et al. (2021) to 
detect structural damage anomalies, where the autoencoder and OC-SVM were trained using sensor data from 
undamaged structures. The OC-SVM is trained using the same training data as used for the training of the 
autoencoder. 

3.2. Tuning Approach 

Each modelling technique will include some parameters that need to be set. Typically, the optimal value of 
these settings is application-dependent, and thus some kind of tuning needs to be performed. In our case, the 
main data-related parameter is the window size. Four different sliding window sizes were tested: 3, 6, 10, and 
16. In the absence of normal/abnormal labels for each track, tracks of different vessel types were used to tune 
the window size. In this approach, the models were trained on tracks of specific vessel types such as cargo 
(using 80% of the dataset for training and 20% for validation). The models were then tested on all four vessel 
types in the dataset. An ‘optimal’ window size was chosen based on the one that produced a model that 
classified as anomalies a low percentage of the vessel type it was trained on and a high percentage of the vessel 
type it was not trained on. Of the window sizes tested in this way, a size of 16 was found to have the best 
performance. 

3.3. Results 

Here results are presented from the two convolutional autoencoder models trained on a combined dataset of 
cargo, tanker and passenger vessel tracks from 2019. As discussed, these three vessel types exhibit similar 
behaviour of traversing port-to-port, typically using shortest path routing. Results are presented in terms of 
how well the trained models can flag tracks belonging to the fishing vessel types (also from 2019) as anomalies. 
The training data was split with 80% of the combined cargo, tanker and passenger tracks (5,105 tracks), with 
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the remaining 20% (1,275 tracks) used as a test set, to verify the resulting model on the behaviour type it was 
trained with. All tracks belonging to the fishing vessel type (155 tracks) were used as an unseen test set of 
anomalies. A sliding window size of 16 was used based on the tuning experiments. The threshold-based 
autoencoder had its static threshold set at 45% of the maximum reconstruction error on the training dataset. 
This was chosen so that nearly 5% of the cargo/tanker/passenger testing tracks were predicted as outliers for 
analysis purposes. The OC-SVM based autoencoder also had its OC-SVM hyperparameters adjusted so that 
nearly 5% of the cargo/tanker/passenger test tracks were predicted as outliers. The training and evaluation 
process for both models was repeated 10 times on randomly shuffled tracks, with Table 3 showing the average 
percentage of tracks predicted as outliers across both the cargo/tanker/passenger test set and the fishing vessel 
track data. 

Table 3. Average percentage of tracks for each vessel type classified as anomalies by models trained on the 
combination of cargo, tanker and passenger vessels in the dataset. 

Model 
                     Vessel Type

 
Cargo, Tanker & Passenger Fishing 

Threshold Autoencoder 5.66% 68.06% 

OC-SVM Autoencoder 5.75% 34.78% 

 

These results validate the visual findings that ‘normally’ cargo vessels, tankers and passenger ships display the 
same behaviour, traversing identical shipping channels (typically travelling in straight lines between ports and 
around coastlines, at consistent speeds). Fishing vessels, however, often move very slowly, and stay within a 
small region for large lengths of time. The performance of the threshold-based method on fishing vessel data 
can be seen visually in Figure 3(a), where the data points that were classified as anomalous are shown in red. 
This figure illustrates that points along the vessel’s journey to a fishing area are considered normal (as this part 
of the track is a straight line) but points corresponding to fishing activity, consisting of manoeuvring back and 
forth within a local area of the ocean, are classified as anomalies. When examining the tracks in the 
cargo/tanker/passenger vessel test set that were also classified as anomalies, such deviations from the usual 
straight-line travel behaviour are also seen. An example for a cargo vessel track flagged as an anomaly, 
displaying a movement pattern that is not straight, is shown in Figure 3(b). 

 
(a)                                                                (b) 

Figure 3. (a) The locations (shown in red) where threshold-based model, trained on a combination of cargo, 
tanker and passenger vessels, predicted anomalies in the Fishing vessel tracks, and (b) an example of a Cargo 
track that was flagged as an anomaly by the same cargo/tanker/passenger-trained model. 

4. DISCUSSION AND CONCLUSION 

In this paper the OMTAD dataset of maritime traffic has been introduced, documenting the process of its 
construction, the data it holds, and example usage for the application of anomaly detection. Though raw AIS 
maritime traffic data is widely available for both live and historical contexts, to the best of our knowledge, ours 
is the only publicly available dataset of cleaned tracks that have been validated against our defined criteria. As 
such, it is suitable for use as a ‘ground truth’ dataset of normal vessel behaviour for the vessel types that have 
been included, in the region of interest. 
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Some examples were shown of how the dataset can be used to build models of maritime behaviour and to 
determine if an ‘unknown’ vessel fits that behavioural model. This has applications in anomaly detection, 
where a vessel is claiming to be particular type but exhibiting different behaviour, and also vessel identification, 
where an unknown vessel could be classified based how close its behaviour is to one of the known vessel types. 
These are limited to vessel behaviour that is present in the dataset. In future work we are aiming to expand the 
types of models used, with a more detailed investigation in terms of effects of various parameters, with a view 
of automating the optimisation process. We are also aiming to expand the region of interest to cover a larger 
proportion of the total Australian search and rescue zone, and to capture data on more vessel types to enable 
modelling of their behaviour. The hope is that the OMTAD dataset can become a standard benchmark for 
testing and comparing methods of maritime behaviour analysis. 
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