MODSIM2023 banner

Author Index

A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

S

  • Saintilan, N.
  • Sanches, V.H.
    • A review of quantitative resilience measurements: Gaps in the operationalisation of agency and diversity in resilience metrics
      Sanches, V.H., Crépin, A.S., Dakos, V., Donges, J.F., Guillaume, J.H.A., Haider, J.L., Iwanaga, T., Kwakkel, J.H., Lade, S.J., Quinlan, A.E., Quiñones, R., Rocha, J.C. and Vivas, J.
      https://doi.org/10.36334/modsim.2023.sanches
  • Sargent, R.
    • Hydroclimatic drivers of stream water quality over 27 years: The role of streamflow, temperature and seasonality
      Lintern, A., Sargent, R., Hagan, J., Wilson, P., Western, A.W., Plum, C. and Guo, D.
      https://doi.org/10.36334/modsim.2023.lintern
    • Identifying and quantifying key sources of nutrient pollution from irrigated agriculture
      Sargent, R., Henry, R., Wong, W.W., Schang, C., Tseng, C.W., Cook, P., Western, A.W., McCarthy, D. and Lintern, A.
      https://doi.org/10.36334/modsim.2023.sargent
  • Savage, C.
    • Assessing the contribution of hydrologic and climatic factors on vegetation condition changes in semi-arid wetlands: An analysis of the Narran Lakes
      Liu, M., Jakeman, A.J., Lerat, J., Hamilton, S.H., Jin, H., Croke, B.F.W. and Savage, C.
      https://doi.org/10.36334/modsim.2023.liu198
  • Schang, C.
    • Identifying and quantifying key sources of nutrient pollution from irrigated agriculture
      Sargent, R., Henry, R., Wong, W.W., Schang, C., Tseng, C.W., Cook, P., Western, A.W., McCarthy, D. and Lintern, A.
      https://doi.org/10.36334/modsim.2023.sargent
  • Schopf, J.
  • Schroeder, T.
    • Application of denoising diffusion models in the augmentation of a regional dataset of inherent optical properties and applications for remote sensing
      Drayson, N., Diakogiannis, F., Cherukuru, N., Blondeau-Patissier, D. and Schroeder, T.
      https://doi.org/10.36334/modsim.2023.drayson
  • Schull, D.
  • Schwenke, A.
  • Schwenke, G.D.
  • Seaton, S.P.
    • Design and implementation of a software tool supporting the Inter-Provincial Water Apportionment Accord in Pakistan
      Perraud, J.-M., Freebairn, A.C., Seaton, S.P., Yu, Y., Podger, G.M., Ahmad, M.D. and Cuddy, S.M.
      https://doi.org/10.36334/modsim.2023.perraud130
  • Sellers, E.
    • Building a simulation application for blasting: Case study of software component re-use and customisation in a workflow framework
      Cummins, S.J., Thomas, D.G., Sellers, E., Fathi Salmi, E. and Cleary, P.W.
      https://doi.org/10.36334/modsim.2023.cummins
  • Sexton, J.
    • Development of an online weather and irrigation forecast decision support tool using an action learning process
      Sexton, J., Philippa, B., Melville, B., Schepen, A., Attard, S., Davis, M. and Everingham, Y.
      https://doi.org/10.36334/modsim.2023.sexton
  • Shanafield, M.
    • Virtual hydrological laboratories: Developing the next generation of conceptual models to support decision-making under change
      Thyer, M., Gupta, H., Westra, S., McInerney, D., Maier, H.R., Kavetski, D., Jakeman, A.J., Croke, B.F.W., Simmons, C.T., Shanafield, M., Partington, D. and Tague, C.
      https://doi.org/10.36334/modsim.2023.thyer
  • Shao, Q.
    • Uncertainty and its propagation estimation for an integrated water system model: An experiment from water quantity to quality simulations
      Zhang, Y. and Shao, Q.
      https://doi.org/10.36334/modsim.2023.zhang180
    • An operational framework to automatically evaluate the quality of weather observations from third-party stations
      Shao, Q., Li, M., Dabrowski, J.J., Bakar, S., Rahman, A., Powell, A. and Henderson, B.
      https://doi.org/10.36334/modsim.2023.shao114
  • Shao, X.M.
    • Impacts of a severe drought on vegetation and hydrological systems in the Yangtze River Basin, China
      Zhang, Y.Q., Tian, J., Zhang, X.Z., Ma, N., Tang, Z.X., Kong, D.D., Cao, Y.J., Shao, X.M., Wei, H.S., Chen, Y.Y., Wang, J., Wang, L.H., Xu, Z.W., Li, C.C., Yang, X.N. and Ren, C.Y.
      https://doi.org/10.36334/modsim.2023.zhang223
    • Detecting ecosystem resilience to drought across 119 flux tower stations
      Shao, X.M., Zhang, Y.Q., Tian, J., Ma, N., Zhang, X.Z. and Xu, Z.W.
      https://doi.org/10.36334/modsim.2023.shao343
  • Sharifazari, S.
    • Resolving temporal-scale differences between paleoclimate reconstructions and a groundwater model for recharge estimation
      Sharifazari, S., Andersen, M.S., Johnson, F.M., Palmer, J.G. and Turney, C.S.M.
      https://doi.org/10.36334/modsim.2023.sharifazari
  • Sharman, C.
  • Sharpee, T.
    • Earth systems to Anthropocene systems: An evolutionary, system-of-systems, convergence paradigm for interdependent societal challenges
      Little, J.C., Kaaronen, R.O., Hukkinen, J.I., Xiao, S., Sharpee, T., Farid, A.M., Nilchiani, R. and Barton, C.M.
      https://doi.org/10.36334/modsim.2023.little
  • Sharples, W.
    • Streamflow regime shifts in a changing climate: A case study from Victoria, Australia
      Bende-Michl, U., Thomas, S., Bahramian, K., Kociuba, G., Sharples, W., Pepler, A. and Tolhurst, G.
      https://doi.org/10.36334/modsim.2023.bende-michl
    • From surface runoff to streamflow: An application of statistical post-processing for seasonal streamflow forecasting
      Pickett-Heaps, C.A., Sunter, P., Cornish, A., Sharples, W., Pegios, M. and Wilson, C.
      https://doi.org/10.36334/modsim.2023.pickettheaps
    • Improving seasonal streamflow calibration through consideration of raw ensemble spread
      Graham, T.D.J., Wang, Q.J., Pickett-Heaps, C.A., Sharples, W., Wu, W. and Western, A.W.
      https://doi.org/10.36334/modsim.2023.graham171
    • What is the flood risk in Australia under future climate?
      Khan, Z., Bende-Michl, U., Srikanthan, S., Vogel, E., Sharples, W., Peter, J., Hope, P., Dowdy, A. and Wilson, L.
      https://doi.org/10.36334/modsim.2023.khan432
    • Towards a seamless probabilistic flood inundation modelling capability across the disaster response timeline
      Hou, J., Sharples, W., Bahramian, K., Pickett-Heaps, C.A., Woldemeskel, F., Rüdiger, C. and Carrara, E.
      https://doi.org/10.36334/modsim.2023.hou353
  • Shaw, M.
    • A light-hearted approach to a serious problem: Building “educated trust” in models
      O'Brien, K.R., Adams, M.P., Egger, F., Maxwell, P., Weber, T., Maier, H.R., Vilas, M.P., Shaw, M., Turner, R., Birkett, G.R., Hamilton, D.P., Langsdorf, H. and Baird, M.E.
      https://doi.org/10.36334/modsim.2023.obrien
  • Sheridan, G.
    • A seven-day ahead bushfire fuel moisture forecasting system integrating an automated fuel sensor network, weather forecasts and a machine learning model
      Keeble, T.P., Lyell, C.S. and Sheridan, G.
      https://doi.org/10.36334/modsim.2023.keeble
  • Shi, H.
    • A thermal infrared imaging observation system for the measurement of overland flow velocities
      Shi, H., Shui, J. and Yang, X.
      https://doi.org/10.36334/modsim.2023.shi506
    • Estimating sediment delivery ratios using connectivity index and high-resolution digital elevation model at lower Snowy River area, Australia
      Yang, X., Young, J., Shi, H., Chapman, G., Pulsford, I., Moore, C., Gormley, A. and Thackway, R.
      https://doi.org/10.36334/modsim.2023.yang112
  • Shi, X.
  • Sibanda, T.
    • Infectious disease spread in free-range egg-laying hens based on empirical mobility patterns and contact networks
      Palmini, A., Jarynowski, A., Welch, M.C., Belik, V., Sibanda, T. and Ruhnke, I.
      https://doi.org/10.36334/modsim.2023.palmini
  • Siddell, J.P.
    • CattleAssess3D: 3D camera technology integrated with BeefSpecs drafting tool to assist ‘meeting market specifications’
      McPhee, M.J., Walmsley, B.J., Littler, B., Siddell, J.P., Toohey, E., Oddy, V.H., Falque, R., Virgona, A., Vidal-Calleja, T. and Alempijevic, A.
      https://doi.org/10.36334/modsim.2023.mcphee
  • Silva, S.S.M.
    • Dynamic health status monitoring using aged care quality indicators for better care: An innovative approach using mixture hidden Markov models
      Silva, S.S.M., Wabe, N. and Westbrook, J.I.
      https://doi.org/10.36334/modsim.2023.silva
  • Simmons, C.T.
    • Virtual hydrological laboratories: Developing the next generation of conceptual models to support decision-making under change
      Thyer, M., Gupta, H., Westra, S., McInerney, D., Maier, H.R., Kavetski, D., Jakeman, A.J., Croke, B.F.W., Simmons, C.T., Shanafield, M., Partington, D. and Tague, C.
      https://doi.org/10.36334/modsim.2023.thyer
    • Increasing our understanding of the adjoint state method of model sensitivity calculation
      Turnadge, C., Neupauer, R.M., Batelaan, O., Crosbie, R.S. and Simmons, C.T.
      https://doi.org/10.36334/modsim.2023.turnadge
  • Singh, D.
    • Modelling self-evacuation archetypes to improve wildfire evacuation traffic simulations: A regional case study
      Singh, D., Bulumulla, C., Strahan, K., Gilbert, J., Gamage, P., Marquez, L. and Lemiale, V.
      https://doi.org/10.36334/modsim.2023.singh54
  • Singh, K.P.
    • Impact of distance to travel in cervical cancer outcome: National Cancer Database Study
      Bae, S., Pandya, V., Park, H., Wang, Z., Wang, C., Wang, H., Uhm, M., Huh, W. and Singh, K.P.
      https://doi.org/10.36334/modsim.2023.bae
    • Trends in brain injury among United States female students linked to consumer products
      Le, T.D., Cook, A., Keyloun, J.W., Ledlow, G., Pusateri, A.E., Uhm, M., Bae, S. and Singh, K.P.
      https://doi.org/10.36334/modsim.2023.le254
  • Skerratt, J.H.
    • Simulated deposition of aeolian dust on the Australian continental shelf: Preliminary results
      Margvelashvili, N., Skerratt, J.H., Mongin, M., Baird, M.E. and Wild-Allen, K.
      https://doi.org/10.36334/modsim.2023.margvelashvili
    • Integrating field observations and mapping with model outputs (pesticides) to help identify ecologically vulnerable areas and determine suitable field site locations in the Great Barrier Reef
      Skerratt, J.H., Baird, M.E. and Mongin, M.
      https://doi.org/10.36334/modsim.2023.skerratt
  • Sornklin, B.
    • Area-business continuity management web application model test plan
      Tang, J., Leelawat, N., Sornklin, B., Chaweewongpaisal, M., Vikraipaisarn, Y., Bhisitcharoentat, Y., Arayachookiat, P., Meechang, K., Kodaka, A., Iwasaki, Y., Inoue, M. and Watanabe, K.
      https://doi.org/10.36334/modsim.2023.tang226
  • Srikanthan, S.
  • Stockan, J.
    • Cross-scale analysis of social-ecological systems: Policy options appraisal for delivering NetZero and other environmental objectives in Scotland
      Matthews, K.B., Blackstock, K.L., Wardell-Johnson, D.H., Miller, D.G., Tavana, M., Thomson, S., Moxey, A., Nielsen, R., Baggaley, N., Loades, K., Paterson, E., Pakeman, R., Hawes, C., Stockan, J., Stutter, M., Addy, S. and Wilkinson, M.
      https://doi.org/10.36334/modsim.2023.matthews
  • Stott, R.
    • Net export of E. coli from the Toenepi wetland cannot be explained by growth of naturalized E. coli in the water column
      Muirhead, R.W., Stott, R., Sukias, J.P.S., Devane, M. and Cookson, A.L.
      https://doi.org/10.36334/modsim.2023.muirhead
  • Strahan, K.
    • Modelling self-evacuation archetypes to improve wildfire evacuation traffic simulations: A regional case study
      Singh, D., Bulumulla, C., Strahan, K., Gilbert, J., Gamage, P., Marquez, L. and Lemiale, V.
      https://doi.org/10.36334/modsim.2023.singh54
  • Stutter, M.
    • Cross-scale analysis of social-ecological systems: Policy options appraisal for delivering NetZero and other environmental objectives in Scotland
      Matthews, K.B., Blackstock, K.L., Wardell-Johnson, D.H., Miller, D.G., Tavana, M., Thomson, S., Moxey, A., Nielsen, R., Baggaley, N., Loades, K., Paterson, E., Pakeman, R., Hawes, C., Stockan, J., Stutter, M., Addy, S. and Wilkinson, M.
      https://doi.org/10.36334/modsim.2023.matthews
  • Su, C.-H.
    • Implementation of a gridded river routing scheme for land surface models and evaluation of streamflow simulations across Australia
      Woldemeskel, F., Rüdiger, C., Khan, Z., Yamazaki, D., Zhang, H., Marthews, T., Hou, J., Dharssi, I. and Su, C.-H.
      https://doi.org/10.36334/modsim.2023.woldemeskel
  • Sukias, J.P.S.
    • Net export of E. coli from the Toenepi wetland cannot be explained by growth of naturalized E. coli in the water column
      Muirhead, R.W., Stott, R., Sukias, J.P.S., Devane, M. and Cookson, A.L.
      https://doi.org/10.36334/modsim.2023.muirhead
  • Sunter, P.
    • From surface runoff to streamflow: An application of statistical post-processing for seasonal streamflow forecasting
      Pickett-Heaps, C.A., Sunter, P., Cornish, A., Sharples, W., Pegios, M. and Wilson, C.
      https://doi.org/10.36334/modsim.2023.pickettheaps
  • Suzzi, A.L.
  • Swaffer, B.
    • Combining dynamic and conceptual models for managing water quality in reservoirs: Guidance from three case studies
      Newman, J.P., Makarewicz, A., Daly, R., Swaffer, B., van der Linden, L. and Harvy, C.
      https://doi.org/10.36334/modsim.2023.newman645

T

  • Tague, C.
    • Virtual hydrological laboratories: Developing the next generation of conceptual models to support decision-making under change
      Thyer, M., Gupta, H., Westra, S., McInerney, D., Maier, H.R., Kavetski, D., Jakeman, A.J., Croke, B.F.W., Simmons, C.T., Shanafield, M., Partington, D. and Tague, C.
      https://doi.org/10.36334/modsim.2023.thyer
  • Tam, E.
    • A new Python module to convert WRF regional climate projections into CORDEX-compliant datasets
      Tam, E., Di Virgilio, G., Vieira Rocha, C., Choudhury, D., Ji, F., Hannah, N. and Riley, M.
      https://doi.org/10.36334/modsim.2023.tam
    • Evaluation of precipitation extremes in ERA5-driven regional climate simulations
      Ji, F., Di Virgilio, G., Nishant, N., Tam, E., Evans, J.P., Kala, J., Andrys, J., Thomas, C. and Riley, M.
      https://doi.org/10.36334/modsim.2023.ji
  • Tang, F.H.M.
    • Tracing the environmental footprints of pesticide use by linking mechanistic environmental modelling to multi-region input-output analysis
      Tang, F.H.M., Malik, A., Li, M., Lenzen, M. and Maggi, F.
      https://doi.org/10.36334/modsim.2023.tang191
  • Tang, J.
    • Area-business continuity management web application model test plan
      Tang, J., Leelawat, N., Sornklin, B., Chaweewongpaisal, M., Vikraipaisarn, Y., Bhisitcharoentat, Y., Arayachookiat, P., Meechang, K., Kodaka, A., Iwasaki, Y., Inoue, M. and Watanabe, K.
      https://doi.org/10.36334/modsim.2023.tang226
    • Effective user interface and user experience design for disaster-related applications: A review
      Bhisitcharoentat, Y., Saengtabtim, K., Leelawat, N. and Tang, J.
      https://doi.org/10.36334/modsim.2023.bhisitcharoentat
    • A business continuity assessment method using Earth observation data: Verification in industrial zones, Thailand
      Kodaka, A., Leelawat, N., Tang, J. and Kohtake, N.
      https://doi.org/10.36334/modsim.2023.kodaka
  • Tang, Z.X.
    • Impacts of a severe drought on vegetation and hydrological systems in the Yangtze River Basin, China
      Zhang, Y.Q., Tian, J., Zhang, X.Z., Ma, N., Tang, Z.X., Kong, D.D., Cao, Y.J., Shao, X.M., Wei, H.S., Chen, Y.Y., Wang, J., Wang, L.H., Xu, Z.W., Li, C.C., Yang, X.N. and Ren, C.Y.
      https://doi.org/10.36334/modsim.2023.zhang223
    • Simulating hydrological consequences of the 2022 severe drought in the Yangtze River Basin, China
      Tang, Z.X., Zhang, Y.Q. and Kong, D.D.
      https://doi.org/10.36334/modsim.2023.tang484
  • Tavana, M.
    • Cross-scale analysis of social-ecological systems: Policy options appraisal for delivering NetZero and other environmental objectives in Scotland
      Matthews, K.B., Blackstock, K.L., Wardell-Johnson, D.H., Miller, D.G., Tavana, M., Thomson, S., Moxey, A., Nielsen, R., Baggaley, N., Loades, K., Paterson, E., Pakeman, R., Hawes, C., Stockan, J., Stutter, M., Addy, S. and Wilkinson, M.
      https://doi.org/10.36334/modsim.2023.matthews
  • Taylor, N.
    • Strategic assessment of proposed river infrastructure, with Clarence River – Bellingen Pipeline, as an example
      Driver, P.D., Taylor, N., Carey, B., Cu, T.P., Brookes, K. and Harris, D.
      https://doi.org/10.36334/modsim.2023.driver209
    • River system modelling to inform Murrumbidgee and NSW Murray regional water strategies
      Dutta, D., Podger, G.M., Trim, A., Cu, T.P., Loonat, N., Matsinos, A., Taylor, N. and Driver, P.D.
      https://doi.org/10.36334/modsim.2023.dutta
  • Tetreault-Campbell, S.
    • Reporting on the evaluation of environmental outcomes of delivery of Commonwealth environmental water in the Murray–Darling Basin, Australia
      Cuddy, S.M., Tetreault-Campbell, S., Nolan, M., O'Sullivan, J., Downey, M. and Wignell, E.
      https://doi.org/10.36334/modsim.2023.cuddy688
    • Going beyond Word: Convincing scientists to embrace content management systems for writing science content
      London, A., Tetreault-Campbell, S., Holland, K. and Peeters, L.J.M.
      https://doi.org/10.36334/modsim.2023.london
  • Thackway, R.
    • Estimating sediment delivery ratios using connectivity index and high-resolution digital elevation model at lower Snowy River area, Australia
      Yang, X., Young, J., Shi, H., Chapman, G., Pulsford, I., Moore, C., Gormley, A. and Thackway, R.
      https://doi.org/10.36334/modsim.2023.yang112
  • Thapa, S.
  • Thatcher, M.
    • Realised added value in rainfall trends and variance from regional climate models
      Teng, J., Bennett, J.C., Charles, S., Chiew, F.H.S., Ji, F., Potter, N., Fu, G. and Thatcher, M.
      https://doi.org/10.36334/modsim.2023.teng316
  • Thomas, C.
    • Evaluation of precipitation extremes in ERA5-driven regional climate simulations
      Ji, F., Di Virgilio, G., Nishant, N., Tam, E., Evans, J.P., Kala, J., Andrys, J., Thomas, C. and Riley, M.
      https://doi.org/10.36334/modsim.2023.ji
  • Thomas, D.G.
    • Building a simulation application for blasting: Case study of software component re-use and customisation in a workflow framework
      Cummins, S.J., Thomas, D.G., Sellers, E., Fathi Salmi, E. and Cleary, P.W.
      https://doi.org/10.36334/modsim.2023.cummins
    • How to create and support families of deliverable software products from a common IP pool with high levels of software reuse in a workflow platform
      Thomas, D.G., Cummins, S.J. and Cleary, P.W.
      https://doi.org/10.36334/modsim.2023.thomas144
  • Thomas, H.
  • Thomas, L.
    • Provena: A provenance system for large distributed modelling and simulation workflows
      Yu, J., Baker, P., Cox, S.J.D., Petridis, R., Freebairn, A.C., Mirza, F., Thomas, L., Tickell, S., Lemon, D. and Rezvani, M.
      https://doi.org/10.36334/modsim.2023.yu90
  • Thomas, P.Q.
    • Modelling eradication potential of a newly developed gene drive strategy in mice using spatially explicit agent-based simulations
      Birand, A., Gierus, L., Cassey, P., Ross, J.V., Prowse, T.A.A. and Thomas, P.Q.
      https://doi.org/10.36334/modsim.2023.birand
  • Thompson, J.
    • Predicting surface-specific humidity from radiative temperature and ambient weather for evapotranspiration modelling
      Gou, J., Liu, W., Guan, H., Batelaan, O., Bruce, D., Gutierrez, K., Wang, H., Gutierrez, H., Burk, L., Thompson, J. and Woods, J.
      https://doi.org/10.36334/modsim.2023.gou
    • Spatial modelling of understorey evapotranspiration based on the maximum entropy production method
      Liu, W., Guan, H., Bruce, D., Batelaan, O., Keane, R., Keegan-Treloar, R., Gutiérrez-Jurado, K.Y., Thompson, J. and Wang, J.
      https://doi.org/10.36334/modsim.2023.liu287
  • Thomson, R.
    • An IoT digital twin to create Sydney’s coolest park
      Urich, C., Cressall, B., Pasanen, J., Obst, O., Javadi, B., Kocyigit, M., Thomson, R., Tovey, A., Owen, C. and Pfautsch, S.
      https://doi.org/10.36334/modsim.2023.urich
  • Thomson, S.
    • Cross-scale analysis of social-ecological systems: Policy options appraisal for delivering NetZero and other environmental objectives in Scotland
      Matthews, K.B., Blackstock, K.L., Wardell-Johnson, D.H., Miller, D.G., Tavana, M., Thomson, S., Moxey, A., Nielsen, R., Baggaley, N., Loades, K., Paterson, E., Pakeman, R., Hawes, C., Stockan, J., Stutter, M., Addy, S. and Wilkinson, M.
      https://doi.org/10.36334/modsim.2023.matthews
  • Thyer, M.
    • Virtual hydrological laboratories: Developing the next generation of conceptual models to support decision-making under change
      Thyer, M., Gupta, H., Westra, S., McInerney, D., Maier, H.R., Kavetski, D., Jakeman, A.J., Croke, B.F.W., Simmons, C.T., Shanafield, M., Partington, D. and Tague, C.
      https://doi.org/10.36334/modsim.2023.thyer
  • Tian, S.
    • Adapting JULES for improved hydrological predictions in Australia: Challenges, strategies and future plans
      Tian, S., Rüdiger, C., Renzullo, L.J., Dharssi, I., Marchionni, V., Woldemeskel, F., Frost, A. and Carrara, E.
      https://doi.org/10.36334/modsim.2023.tian575
  • Tickell, S.
    • Provena: A provenance system for large distributed modelling and simulation workflows
      Yu, J., Baker, P., Cox, S.J.D., Petridis, R., Freebairn, A.C., Mirza, F., Thomas, L., Tickell, S., Lemon, D. and Rezvani, M.
      https://doi.org/10.36334/modsim.2023.yu90
  • Tolhurst, G.
  • Toohey, E.
    • CattleAssess3D: 3D camera technology integrated with BeefSpecs drafting tool to assist ‘meeting market specifications’
      McPhee, M.J., Walmsley, B.J., Littler, B., Siddell, J.P., Toohey, E., Oddy, V.H., Falque, R., Virgona, A., Vidal-Calleja, T. and Alempijevic, A.
      https://doi.org/10.36334/modsim.2023.mcphee
  • Tovey, A.
    • An IoT digital twin to create Sydney’s coolest park
      Urich, C., Cressall, B., Pasanen, J., Obst, O., Javadi, B., Kocyigit, M., Thomson, R., Tovey, A., Owen, C. and Pfautsch, S.
      https://doi.org/10.36334/modsim.2023.urich
  • Trevaskis, B.
    • Prediction of wheat and barley phenology through integration of genomic prediction and a crop growth model
      Zheng, B., Brown, H., Zhao, Z.G., Wang, E., Huth, N.I., Dillon, S., Hyles, J., Rathjen, T., Bloomfield, M., Celestina, C., Hunt, J. and Trevaskis, B.
      https://doi.org/10.36334/modsim.2023.zheng289
    • Cross-scale modelling of cropping systems: from gene/genome to landscape in era of big data
      Wang, E., Brown, H., Trevaskis, B., Zheng, B., Rebetzke, G., Zhao, Z.G., Huth, N.I., He, D., Hyles, J., Glover, M., Malone, B. and Macdonald, B.
      https://doi.org/10.36334/modsim.2023.wang299
  • Tseng, C.W.
    • Identifying and quantifying key sources of nutrient pollution from irrigated agriculture
      Sargent, R., Henry, R., Wong, W.W., Schang, C., Tseng, C.W., Cook, P., Western, A.W., McCarthy, D. and Lintern, A.
      https://doi.org/10.36334/modsim.2023.sargent
  • Turnadge, C.
    • Assessing the potential impacts of well integrity failure on groundwater resources in Australia
      Doble, R., Mallants, D., Huddlestone-Holmes, C., Peeters, L.J.M., Kear, J., Turnadge, C., Wu, B., Noorduijn, S. and Arjomand, E.
      https://doi.org/10.36334/modsim.2023.doble
    • Increasing our understanding of the adjoint state method of model sensitivity calculation
      Turnadge, C., Neupauer, R.M., Batelaan, O., Crosbie, R.S. and Simmons, C.T.
      https://doi.org/10.36334/modsim.2023.turnadge
  • Turner, R.
    • A light-hearted approach to a serious problem: Building “educated trust” in models
      O'Brien, K.R., Adams, M.P., Egger, F., Maxwell, P., Weber, T., Maier, H.R., Vilas, M.P., Shaw, M., Turner, R., Birkett, G.R., Hamilton, D.P., Langsdorf, H. and Baird, M.E.
      https://doi.org/10.36334/modsim.2023.obrien
  • Turney, C.S.M.