MODSIM2023 banner

Author Index

A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

N

  • Nano, C.
    • Identifying groundwater-dependent vegetation in arid zone Australia using imagery time series and singular value decomposition
      Box, P., Brim Box, J., Cobban, D., Lieper, I. and Nano, C.
      https://doi.org/10.36334/modsim.2023.box387
  • Nelson, S.
  • Neupane, R.
    • The influence of different objective functions in GR4J model-on-model performance for streamflow forecasting application
      Nguyen, H., Tuteja, N., Perera, H., Raut, A., Hameed, T., Neupane, R. and Breda, A.
      https://doi.org/10.36334/modsim.2023.nguyen546
  • Newman, J.P.
    • Combining dynamic and conceptual models for managing water quality in reservoirs: Guidance from three case studies
      Newman, J.P., Makarewicz, A., Daly, R., Swaffer, B., van der Linden, L. and Harvy, C.
      https://doi.org/10.36334/modsim.2023.newman645
    • A modelling framework informs how changes in Mount Bold Reservoir's flood attenuation capacity will affect plant biodiversity
      Newman, J.P., Nicol, J., Kennedy, S., Gehrig, S., Noack, C., von Wielligh, E., Harvy, C., Kildea, T. and van der Linden, L.
      https://doi.org/10.36334/modsim.2023.newman620
  • Newnham, G.
    • Can we use state and transition models to add dynamism to fire risk and behaviour models?
      Furlaud, J.M., Szetey, K., Luxton, S., Newnham, G., Williams, K.J., Prober, S. and Richards, A.
      https://doi.org/10.36334/modsim.2023.furlaud
  • Nicholls, J.
  • Nicol, J.
    • A modelling framework informs how changes in Mount Bold Reservoir's flood attenuation capacity will affect plant biodiversity
      Newman, J.P., Nicol, J., Kennedy, S., Gehrig, S., Noack, C., von Wielligh, E., Harvy, C., Kildea, T. and van der Linden, L.
      https://doi.org/10.36334/modsim.2023.newman620
  • Nielsen, R.
    • Cross-scale analysis of social-ecological systems: Policy options appraisal for delivering NetZero and other environmental objectives in Scotland
      Matthews, K.B., Blackstock, K.L., Wardell-Johnson, D.H., Miller, D.G., Tavana, M., Thomson, S., Moxey, A., Nielsen, R., Baggaley, N., Loades, K., Paterson, E., Pakeman, R., Hawes, C., Stockan, J., Stutter, M., Addy, S. and Wilkinson, M.
      https://doi.org/10.36334/modsim.2023.matthews
  • Nilchiani, R.
    • Earth systems to Anthropocene systems: An evolutionary, system-of-systems, convergence paradigm for interdependent societal challenges
      Little, J.C., Kaaronen, R.O., Hukkinen, J.I., Xiao, S., Sharpee, T., Farid, A.M., Nilchiani, R. and Barton, C.M.
      https://doi.org/10.36334/modsim.2023.little
  • Nishant, N.
    • Evaluation of precipitation extremes in ERA5-driven regional climate simulations
      Ji, F., Di Virgilio, G., Nishant, N., Tam, E., Evans, J.P., Kala, J., Andrys, J., Thomas, C. and Riley, M.
      https://doi.org/10.36334/modsim.2023.ji
  • Noack, C.
    • A modelling framework informs how changes in Mount Bold Reservoir's flood attenuation capacity will affect plant biodiversity
      Newman, J.P., Nicol, J., Kennedy, S., Gehrig, S., Noack, C., von Wielligh, E., Harvy, C., Kildea, T. and van der Linden, L.
      https://doi.org/10.36334/modsim.2023.newman620
  • Nolan, M.
    • Reporting on the evaluation of environmental outcomes of delivery of Commonwealth environmental water in the Murray–Darling Basin, Australia
      Cuddy, S.M., Tetreault-Campbell, S., Nolan, M., O'Sullivan, J., Downey, M. and Wignell, E.
      https://doi.org/10.36334/modsim.2023.cuddy688
  • Noorduijn, S.
    • Assessing the potential impacts of well integrity failure on groundwater resources in Australia
      Doble, R., Mallants, D., Huddlestone-Holmes, C., Peeters, L.J.M., Kear, J., Turnadge, C., Wu, B., Noorduijn, S. and Arjomand, E.
      https://doi.org/10.36334/modsim.2023.doble
  • Noort, M.
    • WaterSENSE: Update on implementing water use monitoring and assessment services
      Wonink, S., Jackson, B., Brombacher, J., Vervoort, R.W., Einfalt, T., Anderlieste, M., Chambel Leitão, P. and Noort, M.
      https://doi.org/10.36334/modsim.2023.wonink

O

  • O'Brien, K.R.
    • A light-hearted approach to a serious problem: Building “educated trust” in models
      O'Brien, K.R., Adams, M.P., Egger, F., Maxwell, P., Weber, T., Maier, H.R., Vilas, M.P., Shaw, M., Turner, R., Birkett, G.R., Hamilton, D.P., Langsdorf, H. and Baird, M.E.
      https://doi.org/10.36334/modsim.2023.obrien
    • Flow deficits in northern Australian estuaries: Implications for water extraction
      Egger, F., Burford, M., Weber, T. and O'Brien, K.R.
      https://doi.org/10.36334/modsim.2023.egger513
    • Mathematical modelling demonstrates how students can get stuck in unproductive learning regimes
      Egger, F., Lodge, J.M., Adams, M.P., Birkett, G.R., Monsalve-Bravo, G.M., Howes, T. and O'Brien, K.R.
      https://doi.org/10.36334/modsim.2023.egger512
  • Obst, O.
    • An IoT digital twin to create Sydney’s coolest park
      Urich, C., Cressall, B., Pasanen, J., Obst, O., Javadi, B., Kocyigit, M., Thomson, R., Tovey, A., Owen, C. and Pfautsch, S.
      https://doi.org/10.36334/modsim.2023.urich
  • Oddy, V.H.
    • CattleAssess3D: 3D camera technology integrated with BeefSpecs drafting tool to assist ‘meeting market specifications’
      McPhee, M.J., Walmsley, B.J., Littler, B., Siddell, J.P., Toohey, E., Oddy, V.H., Falque, R., Virgona, A., Vidal-Calleja, T. and Alempijevic, A.
      https://doi.org/10.36334/modsim.2023.mcphee
  • Omondiagbe, P.
  • O'Sullivan, J.
    • Reporting on the evaluation of environmental outcomes of delivery of Commonwealth environmental water in the Murray–Darling Basin, Australia
      Cuddy, S.M., Tetreault-Campbell, S., Nolan, M., O'Sullivan, J., Downey, M. and Wignell, E.
      https://doi.org/10.36334/modsim.2023.cuddy688
  • Ota, N.
    • Modelling the integration of long fallows into cropping systems for adaptation to climate change in the Mediterranean environment of Western Australia
      Chen, C., Ota, N., Wang, B. and Fletcher, A.
      https://doi.org/10.36334/modsim.2023.chen30
    • A method to improve the efficiency of calibrating biophysical models for pastures
      Thomas, D.T., Chen, C., Ota, N., Mata, G., Murphy, S.R., Giblin, S. and Beale, P.J.
      https://doi.org/10.36334/modsim.2023.thomas105
  • Owen, C.
    • An IoT digital twin to create Sydney’s coolest park
      Urich, C., Cressall, B., Pasanen, J., Obst, O., Javadi, B., Kocyigit, M., Thomson, R., Tovey, A., Owen, C. and Pfautsch, S.
      https://doi.org/10.36334/modsim.2023.urich
  • Owens, D.
    • A snapshot of climate change impacts for Queensland and regions using high-resolution downscaled CMIP6 projections
      Toombs, N., Chapman, S., Trancoso, R., Zhang, H., Owens, D. and Syktus, J.
      https://doi.org/10.36334/modsim.2023.toombs
  • Owens, J.
    • From modelling to measurements: Bridging gaps in modelling with measured vegetation, evapotranspiration and soil moisture data
      Owens, J., Cleverly, J., Hutley, L.B., Frost, A. and Western, A.W.
      https://doi.org/10.36334/modsim.2023.owens

P

  • Pace, M.L.
    • Temporal variability of phytoplankton community structure: An individual-based modelling approach
      Ranjbar, M.H., Hamilton, D.P., Pace, M.L., Etemad-Shahidi, A., Carey, C.C. and Helfer, F.
      https://doi.org/10.36334/modsim.2023.ranjbar
  • Pagendam, D.E.
  • Pakeman, R.
    • Cross-scale analysis of social-ecological systems: Policy options appraisal for delivering NetZero and other environmental objectives in Scotland
      Matthews, K.B., Blackstock, K.L., Wardell-Johnson, D.H., Miller, D.G., Tavana, M., Thomson, S., Moxey, A., Nielsen, R., Baggaley, N., Loades, K., Paterson, E., Pakeman, R., Hawes, C., Stockan, J., Stutter, M., Addy, S. and Wilkinson, M.
      https://doi.org/10.36334/modsim.2023.matthews
  • Palma, J.H.N.
  • Palmer, A.
    • Use of APSIM Next Generation to identify in-field practices to reduce N leaching under intensive vegetable production systems
      Avendano, F., Cichota, R., Horne, D., Singh, R., Palmer, A. and Bloomer, D.
      https://doi.org/10.36334/modsim.2023.avendano334
  • Palmer, J.G.
  • Palmini, A.
    • Infectious disease spread in free-range egg-laying hens based on empirical mobility patterns and contact networks
      Palmini, A., Jarynowski, A., Welch, M.C., Belik, V., Sibanda, T. and Ruhnke, I.
      https://doi.org/10.36334/modsim.2023.palmini
  • Pandya, V.
    • Impact of distance to travel in cervical cancer outcome: National Cancer Database Study
      Bae, S., Pandya, V., Park, H., Wang, Z., Wang, C., Wang, H., Uhm, M., Huh, W. and Singh, K.P.
      https://doi.org/10.36334/modsim.2023.bae
  • Pang, T.R.
    • How much data should be accumulated for reliable water pollution source identification? Critical time profile discovery and monitoring process design
      Yang, R.Y., Jiang, J.P., Pang, T.R., Zheng, Y. and Yang, Z.H.
      https://doi.org/10.36334/modsim.2023.yang409
  • Park, H.
    • Impact of distance to travel in cervical cancer outcome: National Cancer Database Study
      Bae, S., Pandya, V., Park, H., Wang, Z., Wang, C., Wang, H., Uhm, M., Huh, W. and Singh, K.P.
      https://doi.org/10.36334/modsim.2023.bae
  • Partington, D.
    • Virtual hydrological laboratories: Developing the next generation of conceptual models to support decision-making under change
      Thyer, M., Gupta, H., Westra, S., McInerney, D., Maier, H.R., Kavetski, D., Jakeman, A.J., Croke, B.F.W., Simmons, C.T., Shanafield, M., Partington, D. and Tague, C.
      https://doi.org/10.36334/modsim.2023.thyer
  • Pasanen, J.
    • An IoT digital twin to create Sydney’s coolest park
      Urich, C., Cressall, B., Pasanen, J., Obst, O., Javadi, B., Kocyigit, M., Thomson, R., Tovey, A., Owen, C. and Pfautsch, S.
      https://doi.org/10.36334/modsim.2023.urich
  • Pascal, L.V.
    • Planning research and development in poor data and urgent decision-making contexts as an adaptive management problem
      Pascal, L.V., Adams, M.P., Chadès, I. and Helmstedt, K.J.
      https://doi.org/10.36334/modsim.2023.pascal
  • Paterson, E.
    • Cross-scale analysis of social-ecological systems: Policy options appraisal for delivering NetZero and other environmental objectives in Scotland
      Matthews, K.B., Blackstock, K.L., Wardell-Johnson, D.H., Miller, D.G., Tavana, M., Thomson, S., Moxey, A., Nielsen, R., Baggaley, N., Loades, K., Paterson, E., Pakeman, R., Hawes, C., Stockan, J., Stutter, M., Addy, S. and Wilkinson, M.
      https://doi.org/10.36334/modsim.2023.matthews
  • Pavlov, V.
    • Improving access and efficiency in care delivery for patients with spinal cord injury in NSW Australia: A discrete-event dynamic simulation modelling approach
      Assareh, H., Pavlov, V., Adarkar, K., Johnson, J., Fortunato, R., Marial, O. and Middleton, J.
      https://doi.org/10.36334/modsim.2023.assareh
  • Peel, A.
    • Bayesian decision-theoretic analysis of thresholds in Gompertz-mixture models, for robust detection of corona-like viruses in wildlife
      Low-Choy, S., McKinley, T.J., Pulscher, L. and Peel, A.
      https://doi.org/10.36334/modsim.2023.lowchoy656
  • Pegios, M.
    • From surface runoff to streamflow: An application of statistical post-processing for seasonal streamflow forecasting
      Pickett-Heaps, C.A., Sunter, P., Cornish, A., Sharples, W., Pegios, M. and Wilson, C.
      https://doi.org/10.36334/modsim.2023.pickettheaps
  • Peña-Arancibia, J.L.
    • High spatiotemporal resolution remotely sensed timeseries actual evapotranspiration estimates for irrigation management in salinity-affected areas of the southern Indus basin
      Ahmad, M.D., Peña-Arancibia, J.L. and Yu, Y.
      https://doi.org/10.36334/modsim.2023.ahmad184
  • Pepler, A.
  • Perera, H.
    • The influence of different objective functions in GR4J model-on-model performance for streamflow forecasting application
      Nguyen, H., Tuteja, N., Perera, H., Raut, A., Hameed, T., Neupane, R. and Breda, A.
      https://doi.org/10.36334/modsim.2023.nguyen546
  • Perraud, J.-M.
  • Perry, J.
    • Using spatially explicit models to determine seasonal differences in space use and behaviour of feral buffalo in the Northern Territory
      Pike, K.N., Golchin, M., Perry, J., Vanderduys, E. and Hoskins, A.J.
      https://doi.org/10.36334/modsim.2023.pike
    • Daily rhythmic behaviour of water buffalo and its effect on their spatial distribution
      Forrest, S.W., Pagendam, D.E., Hoskins, A.J., Drovandi, C., Perry, J., Vanderduys, E. and Bode, M.
      https://doi.org/10.36334/modsim.2023.forrest
  • Persson, K.M.
    • Estimation of the water balance and water yield in the Lagan River catchment, Sweden, using the Australian Water Resources Assessment Landscape Model
      Bjerkén, A., Alsterberg, C., Klante, C. and Persson, K.M.
      https://doi.org/10.36334/modsim.2023.bjerken
  • Peter, J.
  • Pfautsch, S.
    • An IoT digital twin to create Sydney’s coolest park
      Urich, C., Cressall, B., Pasanen, J., Obst, O., Javadi, B., Kocyigit, M., Thomson, R., Tovey, A., Owen, C. and Pfautsch, S.
      https://doi.org/10.36334/modsim.2023.urich
  • Philippa, B.
    • Development of an online weather and irrigation forecast decision support tool using an action learning process
      Sexton, J., Philippa, B., Melville, B., Schepen, A., Attard, S., Davis, M. and Everingham, Y.
      https://doi.org/10.36334/modsim.2023.sexton
  • Phillips, L.
    • Using deep learning methods to create translators between biogeochemical models, improving regional ocean model global integration
      Mongin, M., Phillips, L., Frydman, S. and Jones, E.
      https://doi.org/10.36334/modsim.2023.mongin
  • Pickett-Heaps, C.A.
    • Improving seasonal streamflow calibration through consideration of raw ensemble spread
      Graham, T.D.J., Wang, Q.J., Pickett-Heaps, C.A., Sharples, W., Wu, W. and Western, A.W.
      https://doi.org/10.36334/modsim.2023.graham171
    • From surface runoff to streamflow: An application of statistical post-processing for seasonal streamflow forecasting
      Pickett-Heaps, C.A., Sunter, P., Cornish, A., Sharples, W., Pegios, M. and Wilson, C.
      https://doi.org/10.36334/modsim.2023.pickettheaps
    • Towards a seamless probabilistic flood inundation modelling capability across the disaster response timeline
      Hou, J., Sharples, W., Bahramian, K., Pickett-Heaps, C.A., Woldemeskel, F., Rüdiger, C. and Carrara, E.
      https://doi.org/10.36334/modsim.2023.hou353
  • Pike, K.N.
    • Using spatially explicit models to determine seasonal differences in space use and behaviour of feral buffalo in the Northern Territory
      Pike, K.N., Golchin, M., Perry, J., Vanderduys, E. and Hoskins, A.J.
      https://doi.org/10.36334/modsim.2023.pike
  • Plum, C.
    • Hydroclimatic drivers of stream water quality over 27 years: The role of streamflow, temperature and seasonality
      Lintern, A., Sargent, R., Hagan, J., Wilson, P., Western, A.W., Plum, C. and Guo, D.
      https://doi.org/10.36334/modsim.2023.lintern
  • Poddar, S.
    • Estimation of long-term solar power fluctuations across Australia using high-resolution regional climate projections
      Poddar, S., Evans, J.P., Kay, M., Prasad, A. and Bremner, S.
      https://doi.org/10.36334/modsim.2023.poddar
  • Post, D.A.
  • Powell, A.
    • An operational framework to automatically evaluate the quality of weather observations from third-party stations
      Shao, Q., Li, M., Dabrowski, J.J., Bakar, S., Rahman, A., Powell, A. and Henderson, B.
      https://doi.org/10.36334/modsim.2023.shao114
    • Towards an AI agronomist: Developing fast and efficient methods for predicting crop growth using machine learning
      Powell, A., Kuhnert, P.M., Pagendam, D.E. and Lawes, R.
      https://doi.org/10.36334/modsim.2023.powell
  • Prober, S.
    • Can we use state and transition models to add dynamism to fire risk and behaviour models?
      Furlaud, J.M., Szetey, K., Luxton, S., Newnham, G., Williams, K.J., Prober, S. and Richards, A.
      https://doi.org/10.36334/modsim.2023.furlaud
  • Prowse, T.A.A.
    • Modelling eradication potential of a newly developed gene drive strategy in mice using spatially explicit agent-based simulations
      Birand, A., Gierus, L., Cassey, P., Ross, J.V., Prowse, T.A.A. and Thomas, P.Q.
      https://doi.org/10.36334/modsim.2023.birand
  • Pulscher, L.
    • Bayesian decision-theoretic analysis of thresholds in Gompertz-mixture models, for robust detection of corona-like viruses in wildlife
      Low-Choy, S., McKinley, T.J., Pulscher, L. and Peel, A.
      https://doi.org/10.36334/modsim.2023.lowchoy656
  • Pulsford, I.
    • Estimating sediment delivery ratios using connectivity index and high-resolution digital elevation model at lower Snowy River area, Australia
      Yang, X., Young, J., Shi, H., Chapman, G., Pulsford, I., Moore, C., Gormley, A. and Thackway, R.
      https://doi.org/10.36334/modsim.2023.yang112
  • Pusateri, A.E.
    • Trends in brain injury among United States female students linked to consumer products
      Le, T.D., Cook, A., Keyloun, J.W., Ledlow, G., Pusateri, A.E., Uhm, M., Bae, S. and Singh, K.P.
      https://doi.org/10.36334/modsim.2023.le254

Q

  • Qi, L.
  • Qin, S.
    • Detecting multidecadal variation of short-term drought risk by combining frequency analysis and Fourier transformation methods: A case study in the Yangtze River Basin
      Zou, K., Cheng, L., Zhang, Q., Qin, S., Liu, P. and Wu, M.
      https://doi.org/10.36334/modsim.2023.zou453
  • Quijano Baron, J.P.
    • An ecohydrological approach for modelling and optimisation of vegetation health in dryland wetlands
      Rodríguez, J.F., Saco, P.M., Sandi, S.G., Quijano Baron, J.P., Carlier, R., Kuczera, G. and Wen, L.
      https://doi.org/10.36334/modsim.2023.rodriguez
    • Assessment of mangroves' resilience to land use and climate change in the Pacific Islands
      Jorquera, E., Quijano Baron, J.P., Breda, A., Sandi, S.G., Verdon-Kidd, D., Saco, P.M. and Rodríguez, J.F.
      https://doi.org/10.36334/modsim.2023.jorquera
  • Quinlan, A.E.
    • A review of quantitative resilience measurements: Gaps in the operationalisation of agency and diversity in resilience metrics
      Sanches, V.H., Crépin, A.S., Dakos, V., Donges, J.F., Guillaume, J.H.A., Haider, J.L., Iwanaga, T., Kwakkel, J.H., Lade, S.J., Quinlan, A.E., Quiñones, R., Rocha, J.C. and Vivas, J.
      https://doi.org/10.36334/modsim.2023.sanches
  • Quiñones, R.
    • A review of quantitative resilience measurements: Gaps in the operationalisation of agency and diversity in resilience metrics
      Sanches, V.H., Crépin, A.S., Dakos, V., Donges, J.F., Guillaume, J.H.A., Haider, J.L., Iwanaga, T., Kwakkel, J.H., Lade, S.J., Quinlan, A.E., Quiñones, R., Rocha, J.C. and Vivas, J.
      https://doi.org/10.36334/modsim.2023.sanches

R

  • Ranjbar, M.H.
    • Temporal variability of phytoplankton community structure: An individual-based modelling approach
      Ranjbar, M.H., Hamilton, D.P., Pace, M.L., Etemad-Shahidi, A., Carey, C.C. and Helfer, F.
      https://doi.org/10.36334/modsim.2023.ranjbar
  • Rao, S.
  • Rathjen, T.
    • Prediction of wheat and barley phenology through integration of genomic prediction and a crop growth model
      Zheng, B., Brown, H., Zhao, Z.G., Wang, E., Huth, N.I., Dillon, S., Hyles, J., Rathjen, T., Bloomfield, M., Celestina, C., Hunt, J. and Trevaskis, B.
      https://doi.org/10.36334/modsim.2023.zheng289
  • Rau, G.C.
    • Modelling the impact of climate change on global groundwater temperatures
      Benz, S.A., Irvine, D.J., Rau, G.C., Bayer, P., Menberg, K., Blum, P., Jamieson, R.C., Griebler, C. and Kurylyk, B.L.
      https://doi.org/10.36334/modsim.2023.benz
  • Rebetzke, G.
    • Cross-scale modelling of cropping systems: from gene/genome to landscape in era of big data
      Wang, E., Brown, H., Trevaskis, B., Zheng, B., Rebetzke, G., Zhao, Z.G., Huth, N.I., He, D., Hyles, J., Glover, M., Malone, B. and Macdonald, B.
      https://doi.org/10.36334/modsim.2023.wang299
  • Reedman, L.J.
  • Regan-Beasley, D.
  • Reich, P.B.
    • Developing satellite-derived nitrogen stable isotope ratio grids to globally monitor terrestrial plant nitrogen availability for 1984–2022
      Yang, J., Zhang, H., Guo, Y., Donohue, R.J., McVicar, T.R., Ferrier, S., Müller, W., Lü, X., Fang, Y., Wang, X., Reich, P.B., Han, X. and Mokany, K.
      https://doi.org/10.36334/modsim.2023.yang582
  • Ren, C.Y.
    • Impacts of a severe drought on vegetation and hydrological systems in the Yangtze River Basin, China
      Zhang, Y.Q., Tian, J., Zhang, X.Z., Ma, N., Tang, Z.X., Kong, D.D., Cao, Y.J., Shao, X.M., Wei, H.S., Chen, Y.Y., Wang, J., Wang, L.H., Xu, Z.W., Li, C.C., Yang, X.N. and Ren, C.Y.
      https://doi.org/10.36334/modsim.2023.zhang223
  • Renton, M.
    • Plant root architecture: A trade-off between tolerance to competitors and potential growth
      Salinas, H., Veneklaas, E., Poot, P., Trevenen, E. and Renton, M.
      https://doi.org/10.36334/modsim.2023.salinas
    • A growth feedback model with limiting resources gives rise to behaviours of mutualism, parasitism, and competition between a plant and a mycorrhizal fungus
      Grasso, S.V., Ryan, M.H., Albornoz, F. and Renton, M.
      https://doi.org/10.36334/modsim.2023.grasso
  • Renzullo, L.J.
    • Improving river flood modelling using high-resolution satellite and airborne observations: A case study in the Lower Barwon-Darling River
      Hou, J., van Dijk, A.I.J.M. and Renzullo, L.J.
      https://doi.org/10.36334/modsim.2023.hou96
    • Adapting JULES for improved hydrological predictions in Australia: Challenges, strategies and future plans
      Tian, S., Rüdiger, C., Renzullo, L.J., Dharssi, I., Marchionni, V., Woldemeskel, F., Frost, A. and Carrara, E.
      https://doi.org/10.36334/modsim.2023.tian575
  • Reza Nikoo, M.
    • Enhancing empirical modelling in environmental science with knowledge discovery and genetic programming
      Khorshidi, M.S., Gandomi, M., Reza Nikoo, M., Yazdani, D., Chen, F. and Gandomi, A.H.
      https://doi.org/10.36334/modsim.2023.khorshidi
    • Improving the performance of vertical slotted breakwater and modeling its hydrodynamic behavior by genetic programming
      Gandomi, M., Khorshidi, M.S., Reza Nikoo, M., Chen, F. and Gandomi, A.H.
      https://doi.org/10.36334/modsim.2023.gandomi
  • Rezvani, M.
    • Provena: A provenance system for large distributed modelling and simulation workflows
      Yu, J., Baker, P., Cox, S.J.D., Petridis, R., Freebairn, A.C., Mirza, F., Thomas, L., Tickell, S., Lemon, D. and Rezvani, M.
      https://doi.org/10.36334/modsim.2023.yu90
  • Richards, A.
    • Can we use state and transition models to add dynamism to fire risk and behaviour models?
      Furlaud, J.M., Szetey, K., Luxton, S., Newnham, G., Williams, K.J., Prober, S. and Richards, A.
      https://doi.org/10.36334/modsim.2023.furlaud
  • Richards, R.
  • Richmond, M.K.
    • Modelling the impacts of non-kinetic factors on combat effectiveness: The role of deception
      Hock, K., Staby, S.-E., Gary, M.S., Kosowski, L., Blumson, D., Cao, H.T., Elsawah, S., Kempt, N. and Richmond, M.K.
      https://doi.org/10.36334/modsim.2023.hock
    • Moving beyond attrition in modelling land combat
      Staby, S.-E., Blumson, D., Cao, T., Elsawah, S., Gary, M.S., Hock, K., Kosowski, L. and Richmond, M.K.
      https://doi.org/10.36334/modsim.2023.staby373
  • Riddell, G.A.
    • Supporting flood risk management by combining integrated modelling and participation
      van Delden, H., Vanhout, R., Radford, D.A., Riddell, G.A., Koks, E.E., Maier, H.R., Zecchin, A.C., Hitchcock, D., Ward, K. and Dandy, G.C.
      https://doi.org/10.36334/modsim.2023.vandelden676
  • Riley, M.
    • A new Python module to convert WRF regional climate projections into CORDEX-compliant datasets
      Tam, E., Di Virgilio, G., Vieira Rocha, C., Choudhury, D., Ji, F., Hannah, N. and Riley, M.
      https://doi.org/10.36334/modsim.2023.tam
    • Evaluation of precipitation extremes in ERA5-driven regional climate simulations
      Ji, F., Di Virgilio, G., Nishant, N., Tam, E., Evans, J.P., Kala, J., Andrys, J., Thomas, C. and Riley, M.
      https://doi.org/10.36334/modsim.2023.ji
  • Rocha, J.C.
    • A review of quantitative resilience measurements: Gaps in the operationalisation of agency and diversity in resilience metrics
      Sanches, V.H., Crépin, A.S., Dakos, V., Donges, J.F., Guillaume, J.H.A., Haider, J.L., Iwanaga, T., Kwakkel, J.H., Lade, S.J., Quinlan, A.E., Quiñones, R., Rocha, J.C. and Vivas, J.
      https://doi.org/10.36334/modsim.2023.sanches
  • Ross, J.V.
    • Modelling eradication potential of a newly developed gene drive strategy in mice using spatially explicit agent-based simulations
      Birand, A., Gierus, L., Cassey, P., Ross, J.V., Prowse, T.A.A. and Thomas, P.Q.
      https://doi.org/10.36334/modsim.2023.birand
  • Rüdiger, C.
    • Implementation of a gridded river routing scheme for land surface models and evaluation of streamflow simulations across Australia
      Woldemeskel, F., Rüdiger, C., Khan, Z., Yamazaki, D., Zhang, H., Marthews, T., Hou, J., Dharssi, I. and Su, C.-H.
      https://doi.org/10.36334/modsim.2023.woldemeskel
    • Adapting JULES for improved hydrological predictions in Australia: Challenges, strategies and future plans
      Tian, S., Rüdiger, C., Renzullo, L.J., Dharssi, I., Marchionni, V., Woldemeskel, F., Frost, A. and Carrara, E.
      https://doi.org/10.36334/modsim.2023.tian575
    • Can drought regimes undergo shifts?
      Goswami, P., Peterson, T.J., Mondal, A. and Rüdiger, C.
      https://doi.org/10.36334/modsim.2023.goswami501
    • Towards a seamless probabilistic flood inundation modelling capability across the disaster response timeline
      Hou, J., Sharples, W., Bahramian, K., Pickett-Heaps, C.A., Woldemeskel, F., Rüdiger, C. and Carrara, E.
      https://doi.org/10.36334/modsim.2023.hou353
  • Ruhnke, I.
    • Infectious disease spread in free-range egg-laying hens based on empirical mobility patterns and contact networks
      Palmini, A., Jarynowski, A., Welch, M.C., Belik, V., Sibanda, T. and Ruhnke, I.
      https://doi.org/10.36334/modsim.2023.palmini
  • Rumman, R.
  • Ryan, M.H.
    • A growth feedback model with limiting resources gives rise to behaviours of mutualism, parasitism, and competition between a plant and a mycorrhizal fungus
      Grasso, S.V., Ryan, M.H., Albornoz, F. and Renton, M.
      https://doi.org/10.36334/modsim.2023.grasso