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Abstract: With increasing numbers of crowdsourced private automatic weather stations (called TPAWS) 
established to fill the gap of official network and obtain local weather information for various purposes, the 
data quality is a major concern in promoting their usage. For example, farms can use their local weather stations 
to help its management and assessment of extreme weather events (e.g., frosts and heatwaves) and as evidence 
to make insurance claims, but other users such as the Agricultural Finance/insurance industry need to have 
confidence in the reported local observations. Proper quality control and assessment are necessary to reach 
mutual agreement on the TPAWS observations. To derive near real-time assessment (i.e., soon after required 
data become available) for operational system, we propose a simple, scalable and interpretable framework 
based on AI/Stats/ML models.  

The framework constructs separate models for individual data from official sources and then provides the final 
assessment by fusing the individual models. In the proposed framework, five weather variables—rainfall, 
minimum temperature, maximum temperature, wind and relative humidity—were considered. We used various 
official data, such as official weather station observations, numerical weather prediction (NWP) forecasts, 
gridded climate analyses and radar data as reference data to form different statistical tests for different weather 
variables. Individual statistical tests, including domain test, spatio-temporal test, spatial test, NWP test, trend 
test and test for sub-daily data, were developed to evaluate the quality of TPAWS observations from different 
aspects. The final assessment on TPAWS observations with the basic logic is given as below (Figure 1): 

(1) TPAWS observations are firstly checked by a domain test to see whether the value is physically 
meaningful. 

(2) After passing domain tests, five individual tests (including spatial-temporal test, spatial test, NWP test, 
trend test and test for sub-daily data) are carried out parallelly to test the quality of TPAWS observations 
from different aspects.  

(3) Conditions associated with each test will be checked to determine if the test can be used in the final 
assessment. 

(4) The final assessment is derived by fusing the results from the tests that satisfy assumptions and conditions.  

The performance of our proposed framework is evaluated by synthetic data and demonstrated by applying it to 
a real TPAWS network. 

 
Figure 1. A schematic flowchart outlining the framework for assessing the TPAWS observations. The 

framework includes a set of tests to access the quality of TPAWS observations from different perspectives 
and an algorithm to merge the test results from appropriate tests to issue a unified final assessment. 
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1. INTRODUCTION 

Observations are a key to understand our surrounding environment, particularly in the changing climate we are 
facing, in which local observations are necessary to capture small scale variations and rare events. With the 
technical advancement and cost reduction, more and more private bodies, organizations and local governments 
install crowdsourced weather stations (called TPAWS – trusted private automatic weather stations) in their 
premises for different purposes. For example, the Department of Primary Industries and Regional Development 
(DPIRD; see DPIRD, 2022)) of Western Australia has built a network of automatic weather stations throughout 
the state, which provides timely, relevant and local weather data to assist growers and regional communities to 
make more-informed decisions. Goanna Ag (GOANNA Ag, 2022) has created a comprehensive weather 
station and soil moisture probe network to assist its smarter farming business. 

While these TPAWS observations may provide extra information, its quality is a major concern (Bell et al., 
2013). In order to incorporate the TPAWS observations in official policy product, it is necessary to cross check 
the reliability of the reported local observations with observations from reliable sources such as the high-quality 
weather stations from the Australian Bureau of Meteorology (BoM) and the coarser endorsed products (such 
as ACCESS NWP gridded data product (Bureau of Meteorology, 2022a). From now on, the data used as the 
reliable sources are called the official data. The reliability of the reported TPAWS observations can also be 
checked by the consistency of its own observation series over time.  

From the viewpoint of agricultural finance / insurance industry, if they can obtain the confidence and are able 
to assure the quality of the reported local observations, it may allow them to use the observations for its policy 
and product design across these industrial sectors and to deliver more tailored insurance products to these 
sectors (e.g., reduce premiums in some cases, get more farmers onboard as clients, and reduce the 
disagreements on relative claim). For farmers it would enable a better representation of weather events and 
thus set a more appropriate assessment of a claim by the insurer.  

To develop an operational framework for targeting the need from agricultural finance / insurance industry as 
well as farmers, CSIRO Data61 entered into an agreement with BoM, to develop a set of AI/Statistical/Machine 
Learning models, aiming to (a) check whether TPAWS observations have been tampered with or caused by 
equipment failure; and (b) estimate degree of confidence of observations submitted by TPAWS network. The 
weather variables most of interest are rainfall (Rain) and minimum temperature (Tmin), followed by maximum 
temperature (Tmax), wind and relative humidity. We present the framework in this paper along with brief 
descriptions of AI/Stat/ML methods, which are simple, scalable and interpretable in the setting for operational 
purpose but powerful and robust to achieve high level of assessment results. The novelty of this work lies in 
the application space where quality of TPAWS observation is assessed by fusing a set of heterogeneous data 
sources (remotely sensed and ground based) based on a set of complementary AI/Stat/ML methods (spatial, 
temporal, and spatiotemporal). 

The paper is organized as following: the potential data sources used in the paper is given in Section 2, followed 
by the proposed framework in Section 3, and evaluation using synthetic wind gust data and application to 
DPIRD maximum daily temperature data in Section 4. Conclusions and a discussion are given in Section 5. 

2. OFFICIAL DATA 

The following data are used as official data sources in assessing TPAWS observations: 

BoM station observations: which refer to high-quality daily weather observations from BoM networks and 
provide the most accurate weather measurements after appropriate quality control. The BoM networks consist 
of ~700 automatic weather stations cross the Australian continent, generating and handling data automatically. 
The BoM weather observations are available from the BoM Climate Data Online (Bureau of Meteorology, 
2022b). 

ACCESS NWP forecasts: The Australian Community Climate and Earth-System Simulator (ACCESS) 
Numerical Weather Prediction (NWP) (Puri et al., 2013) data are made by operational NWP systems adopted 
by the BoM. Weather forecasts at hourly intervals up to 240 hours are issued by the ACCESS systems four 
times daily (00:00, 06:00, 12:00 and 18:00 UTC) with ~12km resolution. The ACCESS NWP APS2 forecast 
data are available from 07/06/2016 to 25/09/2020 and can be directly downloaded from National 
Computational Infrastructure (NCI) with an OpenDAP server option. 

AGCD data: The Australian Gridded Climate Data (AGCD) is the BoM’s official dataset for climate analyses 
covering the weather variables of rainfall, maximum temperature, minimum temperature and vapour pressure 
at daily and monthly time-scales (Jones et al., 2009). The AGCD of daily weather variables with 5km resolution 
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is available from 1900 onwards. The AGCD can be obtained directly from the BoM Climate Data Online 
(Bureau of Meteorology, 2022b). 

ERA data: ECMWF atmospheric reanalysis (ERA), which is the global climate and weather reanalysis data 
which covers the period from 1979 to present and provides hourly wind gust on a 30km grid (Hersbach et al., 
2020). ERA data is available from the NCI data collection. 

Radar data: Rainfields is the BoM current system for quantitative radar estimation for real-time, spatially and 
temporally continuous rainfall data (Seed et al., 2007). There are a total of 63 rain radars available as of 2022 
in Australia (Bureau of Meteorology, 2022c). Rainfields data are available within a radius up to 256 km from 
a radar and at 1 km resolution with 5-minute updates. Rainfields data can be requested directly from the BoM 
Climate Data Online (Bureau of Meteorology, 2022b). 

Different official data sources are used for different weather variables and different tests (Table 1). 

Table 1. The application of official data sources to weather variable and tests 

Official data sources Weather variables Tests 

BoM station observations  Tmax, Tmin, Wind, Humidity  Spatial, Spatial temporal, Trend 

ACCESS NWP forecasts Tmax, Tmin, Wind, Humidity NWP 

AGCD data Tmax, Tmin, Rain, Humidity AGCD 

ERA data Wind ERA 

Radar data Rain Radar 

3. PROPOSED FRAMEWORK 

The proposed framework aims to assess the reliability of individual observations from the TPAWS network by 
providing a degree of confidence that can be used in decision-making. Several issues need to be addressed in 
the operational framework. Firstly, there is currently a manual process in the Bureau’s QC procedure with 
assistance from a series of statistical tests for the data from Bureau’s own weather stations. The high-level 
challenge is to make the processes automatic as required as a framework. Secondly, the BoM’s QC procedure 
is undertaken under the assumption that the data should be accepted if there are no clear reasons to reject the 
observations. However, this assumption is invalid for assessing TPAWS observations. Thirdly, the current 
BoM’s QC procedure reports a “Flag” if an observation is suspected, while the framework for assessing the 
TPAWS observations needs to provide as a confidence level. Finally, there are many manual stations in the 
BoM’s network, which cannot be used in the assessment because the framework needs to deliver assessment 
result in near-real time (e.g., the next day) before the data from manual stations become available, making the 
number of stations used in the assessment smaller (only around 700 stations in total). 

In term of methodological development, this framework is to some extent an attempt to automate the 
assessment procedure but also provide a transparent and scalable verification approaches underpinning the 
procedure. It is important for the framework to be as simple as possible and widely applicable to different 
weather variables as it will need to be operational on the BoM system. Furthermore, the designed framework 
should be flexible to handle different number of official data sources (e.g., including new sources of trusted 
data once they are available and/or excluding existing source of trusted data when they are reported as 
unavailable /missing). Finally, the assessment results should be interpretable in the sense that users can trace 
back where the disagreement is between TPAWS observations and the trusted data sources. To satisfy all these 
requirements, our framework is designed as hierarchical structure through (1) constructing separate models 
against individual official data sources and (2) combining the individual assessment results together to derive 
an overall assessment. To avoid the duplication of information use, the framework will only select the best 
individual model for a particular official data source. Note that the TPAWS observations are subject to errors. 
Robust treatment should be applied in the model calibration. A domain test is always applied to identify obvious 
error in a TPAWS observation before further assessment. Figure 1 presents the framework for assessing 
maximum daily temperature (Tmax) as an example. More details on individual tests and final assessment are 
given below. 

Domain test: before carrying out any further tests, a domain test is performed to check whether the value of a 
TPAWS observation falls within physical limits (Table 2). A domain test can quickly identify obviously 
erroneous observations.  
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Table 2. The physical limits of weather observations used in the domain test for Australia 

Weather variables Lower limits Upper limits 

Tmax  Tmin 60℃ 

Tmin −30℃ (or −40℃ if above 1000m) Min(60℃, Tmax) 

Rain 0 2000 mm/day 

Wind gust 3.6 km/h 540 km/h 

Humidity 0% 100% 

 

Spatial test: A spatial test checks a TPAWS observation against a spatial prediction from nearby BoM 
observations. The spatial prediction is made by linearly combining the correlation of target TPAWS 
observations with nearby BoM station and the linear coefficients are estimated by the least absolute shrinkage 
and selection operator (LASSO (Tibshirani, 1996)) method to facilitate robust parameter estimation. The 
uncertainty of the spatial prediction is quantified based on an error model to characterize the difference between 
observations and the corresponding spatial predictions. For rain and wind gust which are bounded variables, 
the log-sinh transformation (Wang et al., 2012) is applied to both observations and predictions for data 
normalization and variance stabilization. For the other variables, we do not apply any data transformation and 
assume that the error follows a Gaussian distribution in the original space. The spatial test requires at 2 BoM 
stations available within a 200km radium. 

Spatial temporal test: Similar to the spatial test, a spatial-temporal test checks a TPAWS observation against a 
spatial-temporal prediction from current and past observations of nearby BoM stations. The algorithm exploits 
screening processes through statistical techniques, such as Hampel filter, trend analysis, analysis of variance 
(ANOVA), Tukey's Honest Significant Difference (HSD) test and LASSO to identify similarities between 
stations. After identifying the similar stations, we apply three different types of spatial-temporal models (i) 
STAR (spatial-temporal autoregressive) (ii) STAM (spatial-temporal additive model) and (iii) STLM (spatial-
temporal linear model) to get prediction at the TPAWS site (Bakar & Sahu, 2015). Finally, ensemble Bayesian 
model averaging method is used to obtain the weighted spatial-temporal prediction with corresponding 
uncertainty. 

Trend test: A trend test is designed to check observations against previous day’s observation with consideration 
of the change estimated from nearby BoM stations. The trend test is equivalent to the spatial test applied to the 
change of weather observations in two consecutive days.  

Gridded data test: which compares the difference between TPAWS observations and gridded data (such as 
ACCESS NWP, AGCD, ERA and radar data). Same as the spatial test, the gridded data test uses an error model 
to estimate the uncertainty of grided data as a prediction. 

Subdaily test: which fuses data from a TPAWS observation and a BoM grid data product to make predictions 
over time. This is performed using a Dynamic Linear Model (DLM) (West & Harrison, 2006) together with 
the Kalman Filter. The DLM fuses the TPAWS observation and grid data and models the dynamics of a target 
weather variable (e.g., temperature) over a 24-hour period. The Kalman filter is used to perform inference in 
the DLM model by updating the predictions at each time given the past data. Each prediction in time is in the 
form of a Gaussian distribution with a mean and variance. For example, in the case of Tmax, a recorded daily 
Tmax can be evaluated according to the predicted temperature distribution. If it does not fit the distribution 
well, it will have a low confidence. 

Each individual test provides a probabilistic prediction of the target variable 𝑋𝑋 based on different information. 
In this study, the confidence level (CL) of a measurement 𝑥𝑥 is measured in the framework of hypothesis tests 
by a two-sided p-value based on the 𝑖𝑖-th method 𝐹𝐹𝑖𝑖, denoted by 𝑝𝑝2(𝑥𝑥|𝐹𝐹𝑖𝑖), as follows: 

 𝐶𝐶𝐶𝐶 = 𝑝𝑝2(𝑥𝑥|𝐹𝐹𝑖𝑖) = 1 − 2|𝑝𝑝1(𝑥𝑥|𝐹𝐹𝑖𝑖) − 0.5| (1) 

where 𝑝𝑝1(𝑥𝑥|𝐹𝐹𝑖𝑖) = 𝑃𝑃(𝑋𝑋 ≤ 𝑥𝑥) is the one-sided (left) p-value based on 𝐹𝐹𝑖𝑖. A greater value of CL indicates a more 
reliable measurement. If the measurement is close to the prediction from a test method, CL will be close to 
100%. Conversely, a measurement far from the prediction leads to CL close to 0%.  
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The final assessment on TPAWS observations with the basic logic is outlined in Figure 1 and the steps are 
summarized below: 

(1) TPAWS observations are firstly checked by a domain test to see whether the value is physically 
meaningful. Different thresholds are used for different variables (see Table 2). 

(2) After passing domain tests, five individual tests (including spatial-temporal test, spatial test, NWP test, 
trend test and test for sub-daily data) are carried out parallelly to test the quality of TPAWS observations 
from different aspects. The individual tests are formed differently for different variables. 

(3) Conditions associated with each test will be checked to determine if the test can be used in the final 
assessment. A test will not be performed if the conditions are not satisfied. 

(4) The final assessment is derived by fusing the results from the tests that satisfy assumptions and conditions. 

It should be noted that when both spatial-temporal test and spatial test are applicable, a pre-assessment is used 
to determine which of these two tests will be used in the final assessment. The pre-assessment calculates the 
optimal weights of different tests if either spatial-temporal test or spatial test is used together with other 
applicable tests. The test (e.g., spatial-temporal test or spatial test) with a greater weight will be considered as 
the better test and will be used in the final assessment and the other one will be excluded to avoid the duplication 
of information usage. The final assessment weights the results from different tests and provides an overall 
confidence level for the TPAWS observations. In case that all tests are not applicable, the final assessment will 
not be delivered and a “NA” (Not Applicable) will be provided. As a low confidence in the overall assessment 
is caused by low confidences in one or more tests, a user can trace back which test(s) provide low confidence 
in the case when the overall assessment indicate a lower confidence. 

4. PERFORMANCE EVALUATION AND EXAMPLES OF APPLICATION TO DPIRD DATA 

To evaluate the performance of our proposed framework, synthetic data set was generated at selected 100 BoM 
stations in 2016-2019 by the BoM technical team working on the project. We only use wind gust as an example 
here. In a nutshell, small random but positive errors in a range from 5m/s to 14.6m/s were added to ~10% actual 
wind gust observations. Model evaluation is based on the data in 2018-2019 and model training is based on the 
data in 2016-2017. Table 3 presents the summary statistics for the spatial, ERA, NWP tests and the merged 
test by combining these three tests. As expected, the merged test performs slightly worse for extremely calm 
wind and extremely strong wind than medium wind. Furthermore, our test tends to be less skillful at stations 
either at a remote place, on the costal line or at high altitude. 

Table 3. Summary statistics for the spatial, ERA and NWP tests and the merged test by combining these 
three tests 

  Test methods 

  Spatial ERA NWP Merged 

Hit rate (%) All 92.8 82.8 82.0 95.3 

 <25km/h 99.2 92.6 94.3 98.5 

 25-60 km/h 92.9 83.0 81.5 95.4 

 >60 km/h 93.9 68.9 75.1 89.9 

False alarm rate (%) All 5.0 4.3 4.2 4.5 

 <25km/h 7.6 4.2 3.9 6.6 

 25-60 km/h 4.5 3.7 3.6 3.8 

 >60 km/h 7.3 9.4 9.4 10.2 

 

We also applied the framework to evaluate DPIRD daily Tmax data. Figure 2 presents the cumulative 
distribution of the proportion of suspect observations at each DPIRD station. We can see that only few suspect 
observations have been identified by the framework at most stations. Figure 2 also shows an example of suspect 
DPIRD observations. This example is taken from a DPIRD station (DU002) located at Dumbleyung. The Tmax 
measurement on 03/Oct/2019 is 45.8 ℃ and looks much larger than the measurements from adjacent days. The 
confidence level of this observation is 0%, confirming a highly suspect measurement. 
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Figure 2. The cumulative distribution of the proportion of suspect Tmax observations at each 
DPIRD station (left) and an example of suspect DPIRD observations (right) 

5. CONCLUSIONS AND A DISCUSSION 

Aiming for simplicity, scalability and interpretability in an operational system to assess observations from 
rapidly growing TPAWS networks, we developed a framework based on a set of AI/Stat/ML methods, to 
produce overall level of confidence by fusing a set of fast and robust assessment models for individual official 
data sources. The framework is flexible enough to handle any possible individual models through intermediate 
selection for the models using the same official data sources. Individual models are developed for all the 
variables of interest including the maximum and minimum daily temperatures, daily total rainfall, daily wind 
gusts and humidity at 9:00 am and 3:00pm. The performance of our designed framework is tested by using 
synthetic data based on randomly selected data from the Bureau’s official weather stations and demonstrated 
by applying the framework to DPIRD’s AWS. The framework has been implemented in BoM operational 
system as a potential product which is being tested on a number of crowdsourced TPAWS networks. 

The underlying assumption in this framework is that the TPAWS observations are partially trusted in the sense 
that their observations are overall reliable (otherwise, all the designed models would be questionable) so that 
the models can be calibrated. Therefore, a quality assurance procedure should be taken before conducting the 
assessment. The framework is not applicable to the case all observations used for model calibration are 
manipulated (e.g., deliberately by malicious parties). 

Furthermore, the length of observations from each TPAWS site should be enough to calibrate the models. 
Throughout our tests, we found that there should be at least 2 years of daily observations for the calibration. 
We also considered the use of satellite data but the results showed that they did not contribute to any value to 
the final assessment. Our framework is flexible to include more official data easily once they are available. 
The framework can be potentially applied to automate BoM QC procedure and is applicable to other countries 
where different official data sources are used. To the best of our knowledge, our framework is the first attempt 
to automatically assess unofficial crowdsource data by using official data sources. 
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