MODSIM2023 banner

Author Index

A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

A

  • Abdollahian, M.A.
  • Adams, M.P.
    • Unlocking ensemble ecosystem modelling for simulation of high-dimensional networks: From days to minutes
      Vollert, S.A., Drovandi, C. and Adams, M.P.
      https://doi.org/10.36334/modsim.2023.vollert
    • Mathematical modelling demonstrates how students can get stuck in unproductive learning regimes
      Egger, F., Lodge, J.M., Adams, M.P., Birkett, G.R., Monsalve-Bravo, G.M., Howes, T. and O'Brien, K.R.
      https://doi.org/10.36334/modsim.2023.egger512
    • A light-hearted approach to a serious problem: Building “educated trust” in models
      O'Brien, K.R., Adams, M.P., Egger, F., Maxwell, P., Weber, T., Maier, H.R., Vilas, M.P., Shaw, M., Turner, R., Birkett, G.R., Hamilton, D.P., Langsdorf, H. and Baird, M.E.
      https://doi.org/10.36334/modsim.2023.obrien
    • Assimilating modelled dissolved inorganic nitrogen loads to monitored data using component-wise iterative ensemble Kalman inversion
      Bennett, F.R., Botha, I., Adams, M.P. and Drovandi, C.
      https://doi.org/10.36334/modsim.2023.bennett42
    • Planning research and development in poor data and urgent decision-making contexts as an adaptive management problem
      Pascal, L.V., Adams, M.P., Chadès, I. and Helmstedt, K.J.
      https://doi.org/10.36334/modsim.2023.pascal
  • Adarkar, K.
    • Improving access and efficiency in care delivery for patients with spinal cord injury in NSW Australia: A discrete-event dynamic simulation modelling approach
      Assareh, H., Pavlov, V., Adarkar, K., Johnson, J., Fortunato, R., Marial, O. and Middleton, J.
      https://doi.org/10.36334/modsim.2023.assareh
  • Addy, S.
    • Cross-scale analysis of social-ecological systems: Policy options appraisal for delivering NetZero and other environmental objectives in Scotland
      Matthews, K.B., Blackstock, K.L., Wardell-Johnson, D.H., Miller, D.G., Tavana, M., Thomson, S., Moxey, A., Nielsen, R., Baggaley, N., Loades, K., Paterson, E., Pakeman, R., Hawes, C., Stockan, J., Stutter, M., Addy, S. and Wilkinson, M.
      https://doi.org/10.36334/modsim.2023.matthews
  • Ahmad, I.
  • Ahmad, M.D.
    • Pathway to impact: Sustainable Development Investment Portfolio
      Wahid, S., Cuddy, S.M., Ahmad, M.D., Mainuddin, M. and Almeida, A.C.
      https://doi.org/10.36334/modsim.2023.wahid
    • Water allocation planning in the Indus Basin Irrigation System in Pakistan: Using scientific tools to build trust between stakeholders
      Ahmad, M.D., Cuddy, S.M., Podger, G.M., Yu, Y. and Perraud, J.-M.
      https://doi.org/10.36334/modsim.2023.ahmad252
    • High spatiotemporal resolution remotely sensed timeseries actual evapotranspiration estimates for irrigation management in salinity-affected areas of the southern Indus basin
      Ahmad, M.D., Peña-Arancibia, J.L. and Yu, Y.
      https://doi.org/10.36334/modsim.2023.ahmad184
    • Design and implementation of a software tool supporting the Inter-Provincial Water Apportionment Accord in Pakistan
      Perraud, J.-M., Freebairn, A.C., Seaton, S.P., Yu, Y., Podger, G.M., Ahmad, M.D. and Cuddy, S.M.
      https://doi.org/10.36334/modsim.2023.perraud130
  • Ahmed, K.
  • Albornoz, F.
    • A growth feedback model with limiting resources gives rise to behaviours of mutualism, parasitism, and competition between a plant and a mycorrhizal fungus
      Grasso, S.V., Ryan, M.H., Albornoz, F. and Renton, M.
      https://doi.org/10.36334/modsim.2023.grasso
  • Alempijevic, A.
    • CattleAssess3D: 3D camera technology integrated with BeefSpecs drafting tool to assist ‘meeting market specifications’
      McPhee, M.J., Walmsley, B.J., Littler, B., Siddell, J.P., Toohey, E., Oddy, V.H., Falque, R., Virgona, A., Vidal-Calleja, T. and Alempijevic, A.
      https://doi.org/10.36334/modsim.2023.mcphee
  • Alkhairy, I.
    • Multiverse experiments for enhancing reproducibility and resilience of statistical modelling via case studies in family wellbeing and biodiversity conservation
      Low-Choy, S., Modecki, K., Vasco, D., Alkhairy, I. and Hallgren, W.
      https://doi.org/10.36334/modsim.2023.lowchoy654
  • Alsterberg, C.
    • Estimation of the water balance and water yield in the Lagan River catchment, Sweden, using the Australian Water Resources Assessment Landscape Model
      Bjerkén, A., Alsterberg, C., Klante, C. and Persson, K.M.
      https://doi.org/10.36334/modsim.2023.bjerken
  • Alzahrani, A.
  • Anderlieste, M.
    • WaterSENSE: Update on implementing water use monitoring and assessment services
      Wonink, S., Jackson, B., Brombacher, J., Vervoort, R.W., Einfalt, T., Anderlieste, M., Chambel Leitão, P. and Noort, M.
      https://doi.org/10.36334/modsim.2023.wonink
  • Andersen, M.S.
  • Andrys, J.
    • Evaluation of precipitation extremes in ERA5-driven regional climate simulations
      Ji, F., Di Virgilio, G., Nishant, N., Tam, E., Evans, J.P., Kala, J., Andrys, J., Thomas, C. and Riley, M.
      https://doi.org/10.36334/modsim.2023.ji
  • Anstee, J.
    • Using in-situ hyperspectral reflectance data for cyanobacterial bloom monitoring and forecasting
      Joehnk, K.D., Biswas, T., Anstee, J., Ford, P., Drayson, N., Kerrisk, G. and Malthus, T.
      https://doi.org/10.36334/modsim.2023.joehnk
  • Arayachookiat, P.
    • Area-business continuity management web application model test plan
      Tang, J., Leelawat, N., Sornklin, B., Chaweewongpaisal, M., Vikraipaisarn, Y., Bhisitcharoentat, Y., Arayachookiat, P., Meechang, K., Kodaka, A., Iwasaki, Y., Inoue, M. and Watanabe, K.
      https://doi.org/10.36334/modsim.2023.tang226
  • Arjomand, E.
    • Assessing the potential impacts of well integrity failure on groundwater resources in Australia
      Doble, R., Mallants, D., Huddlestone-Holmes, C., Peeters, L.J.M., Kear, J., Turnadge, C., Wu, B., Noorduijn, S. and Arjomand, E.
      https://doi.org/10.36334/modsim.2023.doble
  • Assareh, H.
    • Improving access and efficiency in care delivery for patients with spinal cord injury in NSW Australia: A discrete-event dynamic simulation modelling approach
      Assareh, H., Pavlov, V., Adarkar, K., Johnson, J., Fortunato, R., Marial, O. and Middleton, J.
      https://doi.org/10.36334/modsim.2023.assareh
  • Attard, S.
    • i-RAT: An interactive rapid assessment tool to assess economic and environmental impacts of different sugarcane irrigation practices
      Collins, B., Attard, S., Banhalmi-Zakar, Z. and Everingham, Y.
      https://doi.org/10.36334/modsim.2023.collins
    • Development of an online weather and irrigation forecast decision support tool using an action learning process
      Sexton, J., Philippa, B., Melville, B., Schepen, A., Attard, S., Davis, M. and Everingham, Y.
      https://doi.org/10.36334/modsim.2023.sexton
  • Austin, K.
  • Avendano, F.
    • Use of APSIM Next Generation to identify in-field practices to reduce N leaching under intensive vegetable production systems
      Avendano, F., Cichota, R., Horne, D., Singh, R., Palmer, A. and Bloomer, D.
      https://doi.org/10.36334/modsim.2023.avendano334

B

  • Badano, L.
  • Baggaley, N.
    • Cross-scale analysis of social-ecological systems: Policy options appraisal for delivering NetZero and other environmental objectives in Scotland
      Matthews, K.B., Blackstock, K.L., Wardell-Johnson, D.H., Miller, D.G., Tavana, M., Thomson, S., Moxey, A., Nielsen, R., Baggaley, N., Loades, K., Paterson, E., Pakeman, R., Hawes, C., Stockan, J., Stutter, M., Addy, S. and Wilkinson, M.
      https://doi.org/10.36334/modsim.2023.matthews
  • Bahramian, K.
    • Streamflow regime shifts in a changing climate: A case study from Victoria, Australia
      Bende-Michl, U., Thomas, S., Bahramian, K., Kociuba, G., Sharples, W., Pepler, A. and Tolhurst, G.
      https://doi.org/10.36334/modsim.2023.bende-michl
    • Towards a seamless probabilistic flood inundation modelling capability across the disaster response timeline
      Hou, J., Sharples, W., Bahramian, K., Pickett-Heaps, C.A., Woldemeskel, F., Rüdiger, C. and Carrara, E.
      https://doi.org/10.36334/modsim.2023.hou353
  • Baird, M.E.
    • Simulated deposition of aeolian dust on the Australian continental shelf: Preliminary results
      Margvelashvili, N., Skerratt, J.H., Mongin, M., Baird, M.E. and Wild-Allen, K.
      https://doi.org/10.36334/modsim.2023.margvelashvili
    • Integrating field observations and mapping with model outputs (pesticides) to help identify ecologically vulnerable areas and determine suitable field site locations in the Great Barrier Reef
      Skerratt, J.H., Baird, M.E. and Mongin, M.
      https://doi.org/10.36334/modsim.2023.skerratt
    • Modelling Trichodesmium optics and buoyancy in the Great Barrier Reef using the eReefs models
      Ani, C.J., Baird, M.E. and Robson, B.J.
      https://doi.org/10.36334/modsim.2023.ani317
    • A light-hearted approach to a serious problem: Building “educated trust” in models
      O'Brien, K.R., Adams, M.P., Egger, F., Maxwell, P., Weber, T., Maier, H.R., Vilas, M.P., Shaw, M., Turner, R., Birkett, G.R., Hamilton, D.P., Langsdorf, H. and Baird, M.E.
      https://doi.org/10.36334/modsim.2023.obrien
  • Bakar, S.
    • An operational framework to automatically evaluate the quality of weather observations from third-party stations
      Shao, Q., Li, M., Dabrowski, J.J., Bakar, S., Rahman, A., Powell, A. and Henderson, B.
      https://doi.org/10.36334/modsim.2023.shao114
  • Baker, P.
    • Provena: A provenance system for large distributed modelling and simulation workflows
      Yu, J., Baker, P., Cox, S.J.D., Petridis, R., Freebairn, A.C., Mirza, F., Thomas, L., Tickell, S., Lemon, D. and Rezvani, M.
      https://doi.org/10.36334/modsim.2023.yu90
  • Banhalmi-Zakar, Z.
    • i-RAT: An interactive rapid assessment tool to assess economic and environmental impacts of different sugarcane irrigation practices
      Collins, B., Attard, S., Banhalmi-Zakar, Z. and Everingham, Y.
      https://doi.org/10.36334/modsim.2023.collins
  • Barton, C.M.
    • Earth systems to Anthropocene systems: An evolutionary, system-of-systems, convergence paradigm for interdependent societal challenges
      Little, J.C., Kaaronen, R.O., Hukkinen, J.I., Xiao, S., Sharpee, T., Farid, A.M., Nilchiani, R. and Barton, C.M.
      https://doi.org/10.36334/modsim.2023.little
  • Batelaan, O.
    • A large difference in rain use efficiency among Australian terrestrial ecosystems
      Liu, Z., Guan, H., Batelaan, O. and Grzegorz, S.
      https://doi.org/10.36334/modsim.2023.liu258
    • Using expert participation to evaluate the accuracy and variability of hand-drawn water table mapping
      Marshall, S.K., Batelaan, O. and Peeters, L.J.M.
      https://doi.org/10.36334/modsim.2023.marshall
    • Spatial modelling of understorey evapotranspiration based on the maximum entropy production method
      Liu, W., Guan, H., Bruce, D., Batelaan, O., Keane, R., Keegan-Treloar, R., Gutiérrez-Jurado, K.Y., Thompson, J. and Wang, J.
      https://doi.org/10.36334/modsim.2023.liu287
    • Predicting surface-specific humidity from radiative temperature and ambient weather for evapotranspiration modelling
      Gou, J., Liu, W., Guan, H., Batelaan, O., Bruce, D., Gutierrez, K., Wang, H., Gutierrez, H., Burk, L., Thompson, J. and Woods, J.
      https://doi.org/10.36334/modsim.2023.gou
    • Increasing our understanding of the adjoint state method of model sensitivity calculation
      Turnadge, C., Neupauer, R.M., Batelaan, O., Crosbie, R.S. and Simmons, C.T.
      https://doi.org/10.36334/modsim.2023.turnadge
  • Battaglia, M.
    • Integrated modelling of forest growth and hydrologic processes for forest management
      Yang, J., White, D., Palma, J.H.N., Meason, D., Balocchi, F., Rajanayaka, C., Dawes, W. and Battaglia, M.
      https://doi.org/10.36334/modsim.2023.yang393
  • Bayer, P.
    • Modelling the impact of climate change on global groundwater temperatures
      Benz, S.A., Irvine, D.J., Rau, G.C., Bayer, P., Menberg, K., Blum, P., Jamieson, R.C., Griebler, C. and Kurylyk, B.L.
      https://doi.org/10.36334/modsim.2023.benz
  • Bayraktarov, E.
  • Beh, E.J.
  • Belik, V.
    • Infectious disease spread in free-range egg-laying hens based on empirical mobility patterns and contact networks
      Palmini, A., Jarynowski, A., Welch, M.C., Belik, V., Sibanda, T. and Ruhnke, I.
      https://doi.org/10.36334/modsim.2023.palmini
  • Bende-Michl, U.
    • Streamflow regime shifts in a changing climate: A case study from Victoria, Australia
      Bende-Michl, U., Thomas, S., Bahramian, K., Kociuba, G., Sharples, W., Pepler, A. and Tolhurst, G.
      https://doi.org/10.36334/modsim.2023.bende-michl
    • What is the flood risk in Australia under future climate?
      Khan, Z., Bende-Michl, U., Srikanthan, S., Vogel, E., Sharples, W., Peter, J., Hope, P., Dowdy, A. and Wilson, L.
      https://doi.org/10.36334/modsim.2023.khan432
    • Contrasting sediment and nutrient export patterns across different hydrological regimes: A case study in the Great Barrier Reef catchments
      Liu, S., Guo, D., Bende-Michl, U., Lintern, A., Waters, D.K. and Wang, Q.
      https://doi.org/10.36334/modsim.2023.liu77
    • Australia’s water quality trends over two decades
      Guo, D., Minaudo, C., Zhang, Q., Dupas, R., Liu, S., Zhang, K., Bende-Michl, U., Duvert, C. and Lintern, A.
      https://doi.org/10.36334/modsim.2023.guo615
    • A guide to future climate projections for water resource management in Western Australia
      Schopf, J., Kitsios, A., McCallum, S., Turner, M., Bende-Michl, U. and Hall, J.
      https://doi.org/10.36334/modsim.2023.schopf
  • Bennett, D.
  • Benz, S.A.
    • Modelling the impact of climate change on global groundwater temperatures
      Benz, S.A., Irvine, D.J., Rau, G.C., Bayer, P., Menberg, K., Blum, P., Jamieson, R.C., Griebler, C. and Kurylyk, B.L.
      https://doi.org/10.36334/modsim.2023.benz
  • Bhisitcharoentat, Y.
    • Area-business continuity management web application model test plan
      Tang, J., Leelawat, N., Sornklin, B., Chaweewongpaisal, M., Vikraipaisarn, Y., Bhisitcharoentat, Y., Arayachookiat, P., Meechang, K., Kodaka, A., Iwasaki, Y., Inoue, M. and Watanabe, K.
      https://doi.org/10.36334/modsim.2023.tang226
    • Effective user interface and user experience design for disaster-related applications: A review
      Bhisitcharoentat, Y., Saengtabtim, K., Leelawat, N. and Tang, J.
      https://doi.org/10.36334/modsim.2023.bhisitcharoentat
  • Birand, A.
    • Modelling eradication potential of a newly developed gene drive strategy in mice using spatially explicit agent-based simulations
      Birand, A., Gierus, L., Cassey, P., Ross, J.V., Prowse, T.A.A. and Thomas, P.Q.
      https://doi.org/10.36334/modsim.2023.birand
  • Birkett, G.R.
    • A light-hearted approach to a serious problem: Building “educated trust” in models
      O'Brien, K.R., Adams, M.P., Egger, F., Maxwell, P., Weber, T., Maier, H.R., Vilas, M.P., Shaw, M., Turner, R., Birkett, G.R., Hamilton, D.P., Langsdorf, H. and Baird, M.E.
      https://doi.org/10.36334/modsim.2023.obrien
    • Mathematical modelling demonstrates how students can get stuck in unproductive learning regimes
      Egger, F., Lodge, J.M., Adams, M.P., Birkett, G.R., Monsalve-Bravo, G.M., Howes, T. and O'Brien, K.R.
      https://doi.org/10.36334/modsim.2023.egger512
  • Bishop, T.
    • A framework for the fusion of earth observation and soil data to constrain soil organic carbon model parameters
      Ugbaje, S.U., Pagendam, D.E., Karunaratne, S., Bishop, T., Mishra, U., Gautam, S. and Farrell, M.
      https://doi.org/10.36334/modsim.2023.ugbaje
  • Biswas, T.
    • Using in-situ hyperspectral reflectance data for cyanobacterial bloom monitoring and forecasting
      Joehnk, K.D., Biswas, T., Anstee, J., Ford, P., Drayson, N., Kerrisk, G. and Malthus, T.
      https://doi.org/10.36334/modsim.2023.joehnk
  • Bjerkén, A.
    • Estimation of the water balance and water yield in the Lagan River catchment, Sweden, using the Australian Water Resources Assessment Landscape Model
      Bjerkén, A., Alsterberg, C., Klante, C. and Persson, K.M.
      https://doi.org/10.36334/modsim.2023.bjerken
  • Blackstock, K.L.
    • Cross-scale analysis of social-ecological systems: Policy options appraisal for delivering NetZero and other environmental objectives in Scotland
      Matthews, K.B., Blackstock, K.L., Wardell-Johnson, D.H., Miller, D.G., Tavana, M., Thomson, S., Moxey, A., Nielsen, R., Baggaley, N., Loades, K., Paterson, E., Pakeman, R., Hawes, C., Stockan, J., Stutter, M., Addy, S. and Wilkinson, M.
      https://doi.org/10.36334/modsim.2023.matthews
  • Blondeau-Patissier, D.
    • Application of denoising diffusion models in the augmentation of a regional dataset of inherent optical properties and applications for remote sensing
      Drayson, N., Diakogiannis, F., Cherukuru, N., Blondeau-Patissier, D. and Schroeder, T.
      https://doi.org/10.36334/modsim.2023.drayson
  • Bloomer, D.
    • Use of APSIM Next Generation to identify in-field practices to reduce N leaching under intensive vegetable production systems
      Avendano, F., Cichota, R., Horne, D., Singh, R., Palmer, A. and Bloomer, D.
      https://doi.org/10.36334/modsim.2023.avendano334
  • Bloomfield, M.
    • Prediction of wheat and barley phenology through integration of genomic prediction and a crop growth model
      Zheng, B., Brown, H., Zhao, Z.G., Wang, E., Huth, N.I., Dillon, S., Hyles, J., Rathjen, T., Bloomfield, M., Celestina, C., Hunt, J. and Trevaskis, B.
      https://doi.org/10.36334/modsim.2023.zheng289
  • Blum, P.
    • Modelling the impact of climate change on global groundwater temperatures
      Benz, S.A., Irvine, D.J., Rau, G.C., Bayer, P., Menberg, K., Blum, P., Jamieson, R.C., Griebler, C. and Kurylyk, B.L.
      https://doi.org/10.36334/modsim.2023.benz
  • Blumson, D.
    • Modelling the impacts of non-kinetic factors on combat effectiveness: The role of deception
      Hock, K., Staby, S.-E., Gary, M.S., Kosowski, L., Blumson, D., Cao, H.T., Elsawah, S., Kempt, N. and Richmond, M.K.
      https://doi.org/10.36334/modsim.2023.hock
    • Moving beyond attrition in modelling land combat
      Staby, S.-E., Blumson, D., Cao, T., Elsawah, S., Gary, M.S., Hock, K., Kosowski, L. and Richmond, M.K.
      https://doi.org/10.36334/modsim.2023.staby373
  • Bode, M.
    • Daily rhythmic behaviour of water buffalo and its effect on their spatial distribution
      Forrest, S.W., Pagendam, D.E., Hoskins, A.J., Drovandi, C., Perry, J., Vanderduys, E. and Bode, M.
      https://doi.org/10.36334/modsim.2023.forrest
  • Botha, I.
    • Assimilating modelled dissolved inorganic nitrogen loads to monitored data using component-wise iterative ensemble Kalman inversion
      Bennett, F.R., Botha, I., Adams, M.P. and Drovandi, C.
      https://doi.org/10.36334/modsim.2023.bennett42
  • Breda, A.
    • Assessment of mangroves' resilience to land use and climate change in the Pacific Islands
      Jorquera, E., Quijano Baron, J.P., Breda, A., Sandi, S.G., Verdon-Kidd, D., Saco, P.M. and Rodríguez, J.F.
      https://doi.org/10.36334/modsim.2023.jorquera
    • The influence of different objective functions in GR4J model-on-model performance for streamflow forecasting application
      Nguyen, H., Tuteja, N., Perera, H., Raut, A., Hameed, T., Neupane, R. and Breda, A.
      https://doi.org/10.36334/modsim.2023.nguyen546
    • Ecohydrological interactions in coastal wetlands and their resilience to future sea-level rise
      Saco, P.M., Rodríguez, J.F., Breda, A. and Sandi, S.G.
      https://doi.org/10.36334/modsim.2023.saco
  • Brettig, P.
    • Barossa water security strategy: A demonstration of community leadership, strategic foresight, climate resilience and systems modelling
      Leigh, R., Kingsborough, A., Westra, S., Brettig, P. and Helfgott, A.
      https://doi.org/10.36334/modsim.2023.leigh
  • Brombacher, J.
    • WaterSENSE: Update on implementing water use monitoring and assessment services
      Wonink, S., Jackson, B., Brombacher, J., Vervoort, R.W., Einfalt, T., Anderlieste, M., Chambel Leitão, P. and Noort, M.
      https://doi.org/10.36334/modsim.2023.wonink
  • Brookes, K.
    • Strategic assessment of proposed river infrastructure, with Clarence River – Bellingen Pipeline, as an example
      Driver, P.D., Taylor, N., Carey, B., Cu, T.P., Brookes, K. and Harris, D.
      https://doi.org/10.36334/modsim.2023.driver209
  • Brown, H.
    • Cross-scale modelling of cropping systems: from gene/genome to landscape in era of big data
      Wang, E., Brown, H., Trevaskis, B., Zheng, B., Rebetzke, G., Zhao, Z.G., Huth, N.I., He, D., Hyles, J., Glover, M., Malone, B. and Macdonald, B.
      https://doi.org/10.36334/modsim.2023.wang299
    • Use of SCRUM-APSIM to predict soil water and soil nitrogen dynamics in arable crop rotations
      Khaembah, E.N., Thomas, S., Cichota, R., Sharp, J. and Brown, H.
      https://doi.org/10.36334/modsim.2023.khaembah
    • Prediction of wheat and barley phenology through integration of genomic prediction and a crop growth model
      Zheng, B., Brown, H., Zhao, Z.G., Wang, E., Huth, N.I., Dillon, S., Hyles, J., Rathjen, T., Bloomfield, M., Celestina, C., Hunt, J. and Trevaskis, B.
      https://doi.org/10.36334/modsim.2023.zheng289
  • Bruce, D.
    • Spatial modelling of understorey evapotranspiration based on the maximum entropy production method
      Liu, W., Guan, H., Bruce, D., Batelaan, O., Keane, R., Keegan-Treloar, R., Gutiérrez-Jurado, K.Y., Thompson, J. and Wang, J.
      https://doi.org/10.36334/modsim.2023.liu287
    • Predicting surface-specific humidity from radiative temperature and ambient weather for evapotranspiration modelling
      Gou, J., Liu, W., Guan, H., Batelaan, O., Bruce, D., Gutierrez, K., Wang, H., Gutierrez, H., Burk, L., Thompson, J. and Woods, J.
      https://doi.org/10.36334/modsim.2023.gou
  • Bulumulla, C.
    • Modelling self-evacuation archetypes to improve wildfire evacuation traffic simulations: A regional case study
      Singh, D., Bulumulla, C., Strahan, K., Gilbert, J., Gamage, P., Marquez, L. and Lemiale, V.
      https://doi.org/10.36334/modsim.2023.singh54
  • Burk, L.
    • Predicting surface-specific humidity from radiative temperature and ambient weather for evapotranspiration modelling
      Gou, J., Liu, W., Guan, H., Batelaan, O., Bruce, D., Gutierrez, K., Wang, H., Gutierrez, H., Burk, L., Thompson, J. and Woods, J.
      https://doi.org/10.36334/modsim.2023.gou