Stream Leaders: Barry Croke and Georgy Sofronov
The Applied and computational mathematics stream focuses on mathematical contributions to modelling and simulation (e.g. based on statistical, stochastic and PDE modelling). This includes development, application and testing of algorithms used in data analysis, model formulation (including component integration), sensitivity analysis and uncertainty quantification. Examples of areas of interest include inverse problems, machine learning, and industrial applications.
Mathur, A., Moka, S. and Botev, Z.
https://doi.org/10.36334/modsim.2023.mathur
Menesch, J., Taimre, T. and Vaisman, R.
https://doi.org/10.36334/modsim.2023.menesch
Moka, S.
https://doi.org/10.36334/modsim.2023.moka
Nasirian, A. and Zhang, L.
https://doi.org/10.36334/modsim.2023.nasirian
Nguyen, D. and Watkins, D.
https://doi.org/10.36334/modsim.2023.nguyen221
Nguyen, T., Moka, S., Mengersen, K. and Liquet, B.
https://doi.org/10.36334/modsim.2023.nguyen242
Salazar, J.Z., Hadka, D., Reed, P.M., Seada, H. and Deb, K.
https://doi.org/10.36334/modsim.2023.salazar
Waring, T.K., Somers, V., McCarthy, M. and Baker, C.M.
https://doi.org/10.36334/modsim.2023.waring
Bhosale, B.
https://doi.org/10.36334/modsim.2023.bhosale
Low-Choy, S., Modecki, K., Vasco, D., Alkhairy, I. and Hallgren, W.
https://doi.org/10.36334/modsim.2023.lowchoy654
Nguyen, C., Tan, C.W., Daly, E. and Pauwels, V.N.M.
https://doi.org/10.36334/modsim.2023.nguyen328
Raveendran, N. and Sofronov, G.
https://doi.org/10.36334/modsim.2023.raveendran
Rodrigo, L.M., Kohn, R., Cripps, S. and Cleary, M.J.
https://doi.org/10.36334/modsim.2023.rodrigo
Ryan, M., Glonek, G., Tuke, J. and Humphries, M.
https://doi.org/10.36334/modsim.2023.ryan
Shen, S. and Sofronov, G.
https://doi.org/10.36334/modsim.2023.shen
Sofronova, K. and Raveendran, N.
https://doi.org/10.36334/modsim.2023.sofronova
Stenborg, T.
https://doi.org/10.36334/modsim.2023.stenborg
Rajamuni, M.M., Lai, J.C.S., Ravi, S., Young, J. and Tian, F.
https://doi.org/10.36334/modsim.2023.rajamuni
Tan, D., Teng, J., Croke, B.F.W. and Iwanaga, T.
https://doi.org/10.36334/modsim.2023.tan203
Turnadge, C., Neupauer, R.M., Batelaan, O., Crosbie, R.S. and Simmons, C.T.
https://doi.org/10.36334/modsim.2023.turnadge
Gaudry, A., Li, R., Mak-Hau, V., Jacobs, M. and Kodithuwakkuge, J.
https://doi.org/10.36334/modsim.2023.gaudry
Lohr, H., King, P., Vargas, A., Chu, C., Roberts, J. and Teixeira, M.
https://doi.org/10.36334/modsim.2023.lohr
Pereira, G.G. and Lahur, P.
https://doi.org/10.36334/modsim.2023.pereira
Sexton, J., Philippa, B., Melville, B., Schepen, A., Attard, S., Davis, M. and Everingham, Y.
https://doi.org/10.36334/modsim.2023.sexton
Tartaglia, E. and Baumgartner, P.
https://doi.org/10.36334/modsim.2023.tartaglia
Stream Leaders: Malcolm McPhee and Val Snow
Biological Systems welcomes submissions from a wide range of modelling styles: mathematical, mechanistic process-based, agent-based, systems dynamics, and/or data science approaches as applied to biological and agricultural systems. Topics can be inclusive of models and simulation: from descriptions, to development, to applications. Examples of areas of interest include: uncertainty and sensitivity analysis; image analysis; machine learning and artificial intelligence; advances in agent-based modelling of wildlife and pests; livestock, rangelands, pasture and cropping systems; drought resilience, terrestrial and aquatic food webs, and value chain modelling.
Baker, C.M., Le, T.P., Waring, T.K. and Robinson, A.P.
https://doi.org/10.36334/modsim.2023.baker
Box, P., Brim Box, J. and Novak, P.
https://doi.org/10.36334/modsim.2023.box390
Grasso, S.V., Ryan, M.H., Albornoz, F. and Renton, M.
https://doi.org/10.36334/modsim.2023.grasso
Le, T.H.L., Welch, M.C., Moss, J., Vo, B. and Kristiansen, P.
https://doi.org/10.36334/modsim.2023.le570
Schaerf, T.M., Zvezdin, A.V., Welch, M.C., Wilson, A. and Ward, A.
https://doi.org/10.36334/modsim.2023.schaerf
Welch, M.C., Schaerf, T.M. and Murphy, A.
https://doi.org/10.36334/modsim.2023.welch466
Welch, M.C., Alzubaidi, S. and Schaerf, T.M.
https://doi.org/10.36334/modsim.2023.welch468
Zvezdin, A.V., Welch, M.C. and Schaerf, T.M.
https://doi.org/10.36334/modsim.2023.zvezdin
Avendano, F., Cichota, R., Horne, D., Singh, R., Palmer, A. and Bloomer, D.
https://doi.org/10.36334/modsim.2023.avendano334
Cichota, R., Khaembah, E.N., Thomas, S., Lilburne, L., Vickers, S., Omondiagbe, P. and Tait, A.
https://doi.org/10.36334/modsim.2023.cichota622
Collins, B., Attard, S., Banhalmi-Zakar, Z. and Everingham, Y.
https://doi.org/10.36334/modsim.2023.collins
Dodd, M.B., Schon, N. and Mackay, A.D.
https://doi.org/10.36334/modsim.2023.dodd
Forrest, S.W., Pagendam, D.E., Hoskins, A.J., Drovandi, C., Perry, J., Vanderduys, E. and Bode, M.
https://doi.org/10.36334/modsim.2023.forrest
Grace, D. and Grace, W.
https://doi.org/10.36334/modsim.2023.grace
He, D., Wang, E. and Verburg, K.
https://doi.org/10.36334/modsim.2023.he
Hu, P., Zheng, B. and Chapman, S.
https://doi.org/10.36334/modsim.2023.hu675
Huth, N.I. and Holzworth, D.P.
https://doi.org/10.36334/modsim.2023.huth
Khaembah, E.N., Thomas, S., Cichota, R., Sharp, J. and Brown, H.
https://doi.org/10.36334/modsim.2023.khaembah
McPhee, M.J., Walmsley, B.J., Littler, B., Siddell, J.P., Toohey, E., Oddy, V.H., Falque, R., Virgona, A., Vidal-Calleja, T. and Alempijevic, A.
https://doi.org/10.36334/modsim.2023.mcphee
Mo, J.
https://doi.org/10.36334/modsim.2023.mo
Palmini, A., Jarynowski, A., Welch, M.C., Belik, V., Sibanda, T. and Ruhnke, I.
https://doi.org/10.36334/modsim.2023.palmini
Richetti, J., Zheng, B., Navarro Garcia, J. and Lawes, R.
https://doi.org/10.36334/modsim.2023.richetti
Thomas, D.T., Chen, C., Ota, N., Mata, G., Murphy, S.R., Giblin, S. and Beale, P.J.
https://doi.org/10.36334/modsim.2023.thomas105
Wang, E., Brown, H., Trevaskis, B., Zheng, B., Rebetzke, G., Zhao, Z.G., Huth, N.I., He, D., Hyles, J., Glover, M., Malone, B. and Macdonald, B.
https://doi.org/10.36334/modsim.2023.wang299
Xing, H., Li, G. and Schwenke, G.D.
https://doi.org/10.36334/modsim.2023.xing579
Zheng, B., Brown, H., Zhao, Z.G., Wang, E., Huth, N.I., Dillon, S., Hyles, J., Rathjen, T., Bloomfield, M., Celestina, C., Hunt, J. and Trevaskis, B.
https://doi.org/10.36334/modsim.2023.zheng289
Birand, A., Gierus, L., Cassey, P., Ross, J.V., Prowse, T.A.A. and Thomas, P.Q.
https://doi.org/10.36334/modsim.2023.birand
Dhakal, S. and Parry, H.
https://doi.org/10.36334/modsim.2023.dhakal
Ghosh, S., Cleary, P.W. and Harrison, S.M.
https://doi.org/10.36334/modsim.2023.ghosh145
Pike, K.N., Golchin, M., Perry, J., Vanderduys, E. and Hoskins, A.J.
https://doi.org/10.36334/modsim.2023.pike
Salinas, H., Veneklaas, E., Poot, P., Trevenen, E. and Renton, M.
https://doi.org/10.36334/modsim.2023.salinas
Cichota, R., Lilburne, L., Tait, A. and Snow, V.
https://doi.org/10.36334/modsim.2023.cichota245
Holzworth, D.P. and Huth, N.I.
https://doi.org/10.36334/modsim.2023.holzworth
Kaye-Blake, W.H. and McDowell, R.W.
https://doi.org/10.36334/modsim.2023.kayeblake
Reid, J.D., Wilson, M. and Kaye-Blake, W.H.
https://doi.org/10.36334/modsim.2023.reid
Tang, F.H.M., Malik, A., Li, M., Lenzen, M. and Maggi, F.
https://doi.org/10.36334/modsim.2023.tang191
Gao, Z., Guo, D., Ryu, D. and Western, A.W.
https://doi.org/10.36334/modsim.2023.gao477
Garima
https://doi.org/10.36334/modsim.2023.garima
Li, S., Wang, B., Li Liu, D., Huete, A. and Yu, Q.
https://doi.org/10.36334/modsim.2023.li657
Powell, A., Kuhnert, P.M., Pagendam, D.E. and Lawes, R.
https://doi.org/10.36334/modsim.2023.powell
Ugbaje, S.U., Pagendam, D.E., Karunaratne, S., Bishop, T., Mishra, U., Gautam, S. and Farrell, M.
https://doi.org/10.36334/modsim.2023.ugbaje
Wang, Z.K., Liu, D.L., Wang, B. and Cowie, A.
https://doi.org/10.36334/modsim.2023.wang134
Xiang, K., Wang, B., Liu, D.L., Huete, A. and Yu, Q.
https://doi.org/10.36334/modsim.2023.xiang
Yao, S., Wang, B., Liu, D.L., Jin, X., Xia, H. and Yu, Q.
https://doi.org/10.36334/modsim.2023.yao674
Liedloff, A. and Cook, G.
https://doi.org/10.36334/modsim.2023.liedloff
Liu, Z., Guan, H., Batelaan, O. and Grzegorz, S.
https://doi.org/10.36334/modsim.2023.liu258
Newman, J.P., Nicol, J., Kennedy, S., Gehrig, S., Noack, C., von Wielligh, E., Harvy, C., Kildea, T. and van der Linden, L.
https://doi.org/10.36334/modsim.2023.newman620
Yang, J., Zhang, H., Guo, Y., Donohue, R.J., McVicar, T.R., Ferrier, S., Müller, W., Lü, X., Fang, Y., Wang, X., Reich, P.B., Han, X. and Mokany, K.
https://doi.org/10.36334/modsim.2023.yang582
Stream Leaders: Min Chen and Dan Ames
Methods for sharing data and computational resources, integrating models, and building simulation systems integrating various disciplines in the open web environment are rapidly changing with the continual development of new information and communications technologies (ICT) including cloud computing, edge computing, blockchain computing, high-performance computing and high-speed Internet. This stream encouraged papers that provide further insights in novel, emerging and advanced ICT, other software technologies and computational methods; and that support decision making to solve comprehensive complex issues in the era of ‘big science’.
This stream was supported and co-led by the International Environmental Modelling and Software Society (iEMSs, https://iemss.org/) and The Open Modeling Foundation (https://www.openmodelingfoundation.org/).
de Haan, F.J.
https://doi.org/10.36334/modsim.2023.dehaan
Huston, C.
https://doi.org/10.36334/modsim.2023.huston380
Kandanaarachchi, S. and Smith-Miles, K.
https://doi.org/10.36334/modsim.2023.kandanaarachchi202
Mongin, M., Phillips, L., Frydman, S. and Jones, E.
https://doi.org/10.36334/modsim.2023.mongin
Rahman, A., Pereira, G.G., Kilby, P. and Lahur, P.
https://doi.org/10.36334/modsim.2023.rahman37
Razavi, S.
https://doi.org/10.36334/modsim.2023.razavi
Taghikhah, F.R.
https://doi.org/10.36334/modsim.2023.taghikhah
Vasco, D., Low-Choy, S. and Singh, P.
https://doi.org/10.36334/modsim.2023.vasco
Yeh, W.-C.
https://doi.org/10.36334/modsim.2023.yeh
Abdollahi, A. and Yebra, M.
https://doi.org/10.36334/modsim.2023.abdollahi
Gandomi, M., Khorshidi, M.S., Reza Nikoo, M., Chen, F. and Gandomi, A.H.
https://doi.org/10.36334/modsim.2023.gandomi
Jahanbani, H. and Ahmed, K.
https://doi.org/10.36334/modsim.2023.jahanbani
Kandanaarachchi, S., Kuhnert, P.M., Zammit-Mangion, A. and Wikle, C.K.
https://doi.org/10.36334/modsim.2023.kandanaarachchi175
Khorshidi, M.S., Gandomi, M., Reza Nikoo, M., Yazdani, D., Chen, F. and Gandomi, A.H.
https://doi.org/10.36334/modsim.2023.khorshidi
Kuhnert, P.M., Nelson, S., Lucchesi, L.R., Chin, B., Pagendam, D.E. and Janardhanan, S.
https://doi.org/10.36334/modsim.2023.kuhnert
Nervi, E., Alonso, J., Vervoort, R.W. and Baethgen, W.
https://doi.org/10.36334/modsim.2023.nervi545
Newey, L.J. and Orgill, S.E.
https://doi.org/10.36334/modsim.2023.newey
Petridis, R., Yu, J., Leighton, B. and Cox, S.J.D.
https://doi.org/10.36334/modsim.2023.petridis
Wang, C.-H. and James, M.
https://doi.org/10.36334/modsim.2023.wang281
Branchaud, D., Seo, L., Petheram, C., Fu, Q. and Watson, I.
https://doi.org/10.36334/modsim.2023.branchaud
Engelke, U., Khoo, R. and Kuiper, M.
https://doi.org/10.36334/modsim.2023.engelke
Ghosh, S., Sinnott, M.D., Cleary, P.W., Harrison, S.M. and Stading, M.
https://doi.org/10.36334/modsim.2023.ghosh146
Gilchrist, M.J. and Arnold, A.D.
https://doi.org/10.36334/modsim.2023.gilchrist
Harrison, S.M. and Cohen, R.C.Z.
https://doi.org/10.36334/modsim.2023.harrison
Hetherton, L., Bolger, M., Xie, P., Zhang, Z. and Rucinski, C.
https://doi.org/10.36334/modsim.2023.hetherton
Mukai, N., Yanagisawa, M. and Chang, Y.
https://doi.org/10.36334/modsim.2023.mukai
Oakes, N. and Hetherton, L.
https://doi.org/10.36334/modsim.2023.oakes510
Seo, L., Branchaud, D., Petheram, C. and Watson, I.
https://doi.org/10.36334/modsim.2023.seo610
Urich, C., Cressall, B., Pasanen, J., Obst, O., Javadi, B., Kocyigit, M., Thomson, R., Tovey, A., Owen, C. and Pfautsch, S.
https://doi.org/10.36334/modsim.2023.urich
Hegnauer, M., Maguire, S., Eilander, D. and Boisgontier, H.
https://doi.org/10.36334/modsim.2023.hegnauer
Iwanaga, T., Salazar, J.Z., Fischer, S.M., Jovanović, R., Liu, N., Zhu, Z. and Zhu, L.-J.
https://doi.org/10.36334/modsim.2023.iwanaga485
Xu, K., Chen, M., Yue, S., Wen, Y., Zhang, F., Wang, J. and Lu, G.
https://doi.org/10.36334/modsim.2023.xu225
Yu, J., Baker, P., Cox, S.J.D., Petridis, R., Freebairn, A.C., Mirza, F., Thomas, L., Tickell, S., Lemon, D. and Rezvani, M.
https://doi.org/10.36334/modsim.2023.yu90
Chen, C., van der Sterren, M. and Martin, J.
https://doi.org/10.36334/modsim.2023.chen321
Cummins, S.J., Thomas, D.G., Sellers, E., Fathi Salmi, E. and Cleary, P.W.
https://doi.org/10.36334/modsim.2023.cummins
Herrmann, N. and Erwin, T.
https://doi.org/10.36334/modsim.2023.herrmann
London, A., Tetreault-Campbell, S., Holland, K. and Peeters, L.J.M.
https://doi.org/10.36334/modsim.2023.london
Ma, Z. and Chen, M.
https://doi.org/10.36334/modsim.2023.ma197
Oakes, N.
https://doi.org/10.36334/modsim.2023.oakes127
Thomas, D.G., Cummins, S.J. and Cleary, P.W.
https://doi.org/10.36334/modsim.2023.thomas144
Watkins, D., Bolger, M. and Zhang, Z.
https://doi.org/10.36334/modsim.2023.watkins
Stream Leaders: Chia-Lin Chang, Hamid Yahyaei and Lurion De Mello
The Economics and finance stream welcomed proposals from a wide range of issues pertaining to Innovation and Trade, Risk Management, and impacts of Climate variability/change on financial markets and economies more generally. Examples of topics include any original research and comprehensive review papers at the intersection of economics and finance with commodity markets, international trade, financial risk modelling, and computational finance, and financial markets and climate impact modelling.
Chan, F. and Singh, R.
https://doi.org/10.36334/modsim.2023.chan151
Chan, F., Schulz, R. and Zhang, Z.
https://doi.org/10.36334/modsim.2023.chan39
Chan, F., Mátyás, L. and Reizinger, K.
https://doi.org/10.36334/modsim.2023.chan555
Chan, F., Harris, M., Singh, R. and Yeo, W.
https://doi.org/10.36334/modsim.2023.chan70
Guo, Y., Li, J., Lo, T., Zhu, Z., Lee, G. and Toscas, P.
https://doi.org/10.36334/modsim.2023.guo139
Ho, L.T., Gan, C., Jin, S. and Le, B.
https://doi.org/10.36334/modsim.2023.ho16
Soltyk, S.J., Chan, F., Phatak, A. and Jackson, E.L.
https://doi.org/10.36334/modsim.2023.soltyk
Allen, D.E., Mushunje, L. and Peiris, S.
https://doi.org/10.36334/modsim.2023.allen
Chen, Y. and Chang, C.-L.
https://doi.org/10.36334/modsim.2023.chen174
Chen, N. and Chang, C.-L.
https://doi.org/10.36334/modsim.2023.chen296
Gonzalez, D., Guillaume, J.H.A., Peeters, L.J.M. and Wyrwoll, P.
https://doi.org/10.36334/modsim.2023.gonzalez
Ho, L.T., Gan, C., Yang, W. and Jin, S.
https://doi.org/10.36334/modsim.2023.ho12
Kanagawa, S., Namekawa, M. and Shinkai, K.
https://doi.org/10.36334/modsim.2023.kanagawa
Shanthirathna, N., Gan, C., Vatsa, P. and Ho, L.T.
https://doi.org/10.36334/modsim.2023.shanthirathna
Wang, Y.-A. and Chang, C.-L.
https://doi.org/10.36334/modsim.2023.wang72
Stream Leaders: John Boland and Behzad Rismanchi
Australia is in the midst of an energy transition. The move to Electrify Everything is underway. This revolution requires a myriad of activities in various areas. This stream focuses on multiple ways infrastructure networks, systems and services contribute to urban renewal, regional development, better liveability and enhanced productivity. Smart data analytics, resource assessment and forecasting, digital twins, real-time modelling and complex network optimisation are becoming essential instruments for planning, managing, protecting and upgrading these systems. The stream can include submissions covering forecasting of renewables, energy efficient building design, microgrid design, precinct infrastructure, and related topics.
Foster, J., Graham, P.W. and Hayward, J.
https://doi.org/10.36334/modsim.2023.foster
Graham, P.W. and Havas, L.
https://doi.org/10.36334/modsim.2023.graham125
Green, D., Foster, J., Havas, L., Graham, P.W., Hayward, J. and Khandoker, T.
https://doi.org/10.36334/modsim.2023.green
Kaczynski, A. and Juniper, J.A.
https://doi.org/10.36334/modsim.2023.kaczynski
Khandoker, T., Juniper, J.A. and Reedman, L.J.
https://doi.org/10.36334/modsim.2023.khandoker
Majhi, R.C., Ranjitkar, P. and Sheng, M.S.
https://doi.org/10.36334/modsim.2023.majhi
Qi, L.
https://doi.org/10.36334/modsim.2023.qi
Ren, Z., Jian, A. and Chen, D.
https://doi.org/10.36334/modsim.2023.ren20
Rojas, A. and de Haan, F.J.
https://doi.org/10.36334/modsim.2023.rojas
Boland, J.
https://doi.org/10.36334/modsim.2023.boland
Isaza, A., Kay, M., Evans, J.P., Prasad, A. and Bremner, S.
https://doi.org/10.36334/modsim.2023.isaza
Long, W. and Aili, A.
https://doi.org/10.36334/modsim.2023.long52
Perraud, J.-M., Bridgart, R., Carney, C. and Ximenes, F.
https://doi.org/10.36334/modsim.2023.perraud379
Poddar, S., Evans, J.P., Kay, M., Prasad, A. and Bremner, S.
https://doi.org/10.36334/modsim.2023.poddar
Thomas, H., Bennett, D., Peeters, L.J.M. and Holland, K.
https://doi.org/10.36334/modsim.2023.thomas391
Huang, J., Wu, W., Wang, Q.J., Maier, H.R. and Hughes, J.D.
https://doi.org/10.36334/modsim.2023.huang
Li, Y. and Lu, Z.
https://doi.org/10.36334/modsim.2023.li561
Yao, J., Wu, W., Simpson, A.R. and Rismanchi, B.
https://doi.org/10.36334/modsim.2023.yao238
Zhang, N.
https://doi.org/10.36334/modsim.2023.zhang251
Zhao, Q., Wu, W., Simpson, A.R. and Willis, A.
https://doi.org/10.36334/modsim.2023.zhao107
Stream Leaders: Stefan Reis and Shawn Laffan
Modelling, simulation and software systems play a pivotal role in our understanding of environmental and ecological systems. Complex interactions and relationships require environmental modelling and software tools to underpin and improve decision making in policy and regulatory contexts. Advances in data science, machine learning and approaches to harness big data are key to tackle vast challenges of environmental degradation and global climate change. We encourage the submission of sessions which focus on the development of generic frameworks and integration of models across issues, scales, disciplines and stakeholders. The stream accommodated sessions spanning a scope from advances in modelling, software and simulation, the development and use of advanced software tools, interdisciplinary and transdisciplinary environmental modelling, the integration of models and software tools across issues, scales, disciplines and stakeholders, to the application of novel data science concepts in decision support.
This stream was supported and co-led by the International Environmental Modelling and Software Society (iEMSs, https://iemss.org/).
Ani, C.J., Cresswell, A., Haller-Bull, V., Gilmour, J. and Robson, B.J.
https://doi.org/10.36334/modsim.2023.ani324
Clemens, R., Schwenke, A., Bayraktarov, E. and Laffan, S.W.
https://doi.org/10.36334/modsim.2023.clemens
Crocker, R., Robson, B.J., Iwanaga, T. and Anthony, K.R.N.
https://doi.org/10.36334/modsim.2023.crocker
Ghodrat, M.
https://doi.org/10.36334/modsim.2023.ghodrat420
Horpiencharoen, W., Marshall, J., Muylaert, R.L., John, R.S. and Hayman, D.T.S.
https://doi.org/10.36334/modsim.2023.horpiencharoen
Podsosonnaya, M., Schreider, M. and Schreider, S.
https://doi.org/10.36334/modsim.2023.podsosonnaya
Roots, K.
https://doi.org/10.36334/modsim.2023.roots
Tan, D., Vieno, M., Nemitz, E., Heal, M. and Reis, S.
https://doi.org/10.36334/modsim.2023.tan177
Erechtchoukova, M.G. and Safwat, N.
https://doi.org/10.36334/modsim.2023.erechtchoukova
Huston, C., Kuhnert, P.M., Bolt, A. and Davis, J.
https://doi.org/10.36334/modsim.2023.huston454
Ofosu, A. and Erechtchoukova, M.G.
https://doi.org/10.36334/modsim.2023.ofosu
Pasut, C., Karunaratne, S., Malone, B., Shepherd, N. and Zwartz, D.
https://doi.org/10.36334/modsim.2023.pasut
Sengupta, A., Stratford, D. and Marvanek, S.
https://doi.org/10.36334/modsim.2023.sengupta
Suleman, M. and Khaiter, P.
https://doi.org/10.36334/modsim.2023.suleman
Sysoeva, P. and Khaiter, P.
https://doi.org/10.36334/modsim.2023.sysoeva
Zou, H., Marshall, L.A. and Sharma, A.
https://doi.org/10.36334/modsim.2023.zou336
Brooks, S., Doody, T.M. and Gao, S.
https://doi.org/10.36334/modsim.2023.brooks
Cuddy, S.M., Tetreault-Campbell, S., Nolan, M., O'Sullivan, J., Downey, M. and Wignell, E.
https://doi.org/10.36334/modsim.2023.cuddy688
Montazeri, M., McCullough, D.P. and Gibbs, M.S.
https://doi.org/10.36334/modsim.2023.montazeri
Perraud, J.-M., Freebairn, A.C., Seaton, S.P., Yu, Y., Podger, G.M., Ahmad, M.D. and Cuddy, S.M.
https://doi.org/10.36334/modsim.2023.perraud130
Brown, K., Jenner, A.L., Araujo, R.P. and Corry, P.
https://doi.org/10.36334/modsim.2023.brown
Crosbie, R.S., Taylor, A.R. and Pritchard, J.L.
https://doi.org/10.36334/modsim.2023.crosbie361
Gibbs, M.S., Hughes, J.D. and Petheram, C.
https://doi.org/10.36334/modsim.2023.gibbs
Higgins, P.A., Palmer, J.G., Andersen, M.S., Turney, C.S.M. and Johnson, F.M.
https://doi.org/10.36334/modsim.2023.higgins276
Hughes, J.D., Yang, A. and Gibbs, M.S.
https://doi.org/10.36334/modsim.2023.hughes
Lawrie, T., Heard, G. and Watmuff, J.
https://doi.org/10.36334/modsim.2023.lawrie
Mendiolar, M., Filar, J.A., O'Neill, M.F., Martin, T., Teixeira, D., Webley, J. and Holden, M.
https://doi.org/10.36334/modsim.2023.mendiolar
Pascal, L.V., Adams, M.P., Chadès, I. and Helmstedt, K.J.
https://doi.org/10.36334/modsim.2023.pascal
Shao, Q., Li, M., Dabrowski, J.J., Bakar, S., Rahman, A., Powell, A. and Henderson, B.
https://doi.org/10.36334/modsim.2023.shao114
Vollert, S.A., Drovandi, C. and Adams, M.P.
https://doi.org/10.36334/modsim.2023.vollert
Wang, J., Khu, S.T. and Mao, Y.N.
https://doi.org/10.36334/modsim.2023.wang45
Stream Leaders: Jason Evans and Christoph Rudiger
This stream was interested in all aspects of global change and natural hazards and their interactions within the earth system. Topical streams may include modelling of natural hazards such as drought, heatwaves, hail, fires, tropical cyclones, earthquakes, and tsunamis. It also covers modelling of global change issues such as climate change, land degradation (including desertification and plant migration), and the relevance for United Nations sustainable development goals. New model developments and modelling of the phenomena, their impacts on human and natural systems, potential techniques for adaptation, and the use of remote sensing data to address these, are all of interest.
Fraehr, N., Wang, Q.J., Wu, W. and Nathan, R.
https://doi.org/10.36334/modsim.2023.fraehr
Karim, F., Armin, M.A., Tychsen-Smith, L., Li, R. and Penton, D.J.
https://doi.org/10.36334/modsim.2023.karim563
Li, R., Tychsen-Smith, L., Karim, F., Penton, D.J. and Armin, M.A.
https://doi.org/10.36334/modsim.2023.li398
Mateo, C.M., Vaze, J., Wang, B., Kim, S.S.H., Marvanek, S., Ticehurst, C., Crosbie, R.S. and Holland, K.
https://doi.org/10.36334/modsim.2023.mateo
Penton, D.J., Teng, J., Ticehurst, C., Marvanek, S., Freebairn, A.C., Vaze, J., Khanam, F. and Sengupta, A.
https://doi.org/10.36334/modsim.2023.penton
Shrestha, D.L., Robertson, D.E., Jin, W. and Ticehurst, C.
https://doi.org/10.36334/modsim.2023.shrestha
Teng, J., Chiew, F.H.S., Yang, A., Zheng, H., Penton, D.J., Ticehurst, C., Marvanek, S., Vaze, J. and Khanam, F.
https://doi.org/10.36334/modsim.2023.teng320
Chen, C., Ota, N., Wang, B. and Fletcher, A.
https://doi.org/10.36334/modsim.2023.chen30
Chen, Y., Feng, M., Wang, Y. and Li, W.
https://doi.org/10.36334/modsim.2023.chen313
Fang, G. and Li, Y.
https://doi.org/10.36334/modsim.2023.fang405
Gao, L., Gao, Y., Chen, Y. and Navarro Garcia, J.
https://doi.org/10.36334/modsim.2023.gao630
Gao, Y., Gao, L., Gonzalez, D., Fu, G., Chen, Y. and Navarro Garcia, J.
https://doi.org/10.36334/modsim.2023.gao634
Li, W., Zhu, C. and Chen, Y.
https://doi.org/10.36334/modsim.2023.li404
Zhu, C., Chen, Y. and Li, Y.
https://doi.org/10.36334/modsim.2023.zhu406
Cunningham, L., Hilton, J. and Rudman, M.
https://doi.org/10.36334/modsim.2023.cunningham
Edalati-nejad, A., Ghodrat, M. and Sharples, J.J.
https://doi.org/10.36334/modsim.2023.edalatinejad
Furlaud, J.M., Szetey, K., Luxton, S., Newnham, G., Williams, K.J., Prober, S. and Richards, A.
https://doi.org/10.36334/modsim.2023.furlaud
Ghodrat, M., Edalati-nejad, A. and Simeoni, A.
https://doi.org/10.36334/modsim.2023.ghodrat136
Ghodrat, M.
https://doi.org/10.36334/modsim.2023.ghodrat425
Hassan, A., Accary, G., Sutherland, D. and Moinuddin, K.
https://doi.org/10.36334/modsim.2023.hassan
Keeble, T.P., Lyell, C.S. and Sheridan, G.
https://doi.org/10.36334/modsim.2023.keeble
Kyng, M., Moinuddin, K. and Hilton, J.
https://doi.org/10.36334/modsim.2023.kyng
McCarthy, N.F., Duff, T., Butler, K. and Deutsch, S.
https://doi.org/10.36334/modsim.2023.mccarthy
Saurav, T.M., Sutherland, D. and Sharples, J.J.
https://doi.org/10.36334/modsim.2023.saurav
Singh, D., Bulumulla, C., Strahan, K., Gilbert, J., Gamage, P., Marquez, L. and Lemiale, V.
https://doi.org/10.36334/modsim.2023.singh54
van Delden, H., Vanhout, R., Jeanneau, A., Maier, H.R. and Zecchin, A.C.
https://doi.org/10.36334/modsim.2023.vandelden678
Wadhwani, R., Sutherland, D., Moinuddin, K. and Huang, X.
https://doi.org/10.36334/modsim.2023.wadhwani
Wilson, C.S., Ma, W., Sharples, J.J. and Evans, J.P.
https://doi.org/10.36334/modsim.2023.wilson
Zhao, L., Yebra, M. and Bryant, C.
https://doi.org/10.36334/modsim.2023.zhao580
Hou, J., Sharples, W., Bahramian, K., Pickett-Heaps, C.A., Woldemeskel, F., Rüdiger, C. and Carrara, E.
https://doi.org/10.36334/modsim.2023.hou353
Lerat, J., Vaze, J., Ticehurst, C., Marvanek, S. and Wang, B.
https://doi.org/10.36334/modsim.2023.lerat
Miotlinski, K., Horwitz, P., Bellhouse, J.A., Blake, D., Silberstein, R., Bath, A., Mitchell, A., Carvalho, A. and Tshering, K.
https://doi.org/10.36334/modsim.2023.miotlinski
van Delden, H., Vanhout, R., Radford, D.A., Riddell, G.A., Koks, E.E., Maier, H.R., Zecchin, A.C., Hitchcock, D., Ward, K. and Dandy, G.C.
https://doi.org/10.36334/modsim.2023.vandelden676
Ji, F., Di Virgilio, G., Nishant, N., Tam, E., Evans, J.P., Kala, J., Andrys, J., Thomas, C. and Riley, M.
https://doi.org/10.36334/modsim.2023.ji
Kumara Pathirana, K.P.S.D, Kulasiri, D. and Samarasinghe, S.
https://doi.org/10.36334/modsim.2023.kumarapathirana
Liu, N.
https://doi.org/10.36334/modsim.2023.liu491
Ma, J.H., Lee, M.S., Song, S.U. and Yoo, C.S.
https://doi.org/10.36334/modsim.2023.ma370
Wang, C.-H.
https://doi.org/10.36334/modsim.2023.wang111
Wu, J., Noy, I., Wu, Y. and Yang, S.
https://doi.org/10.36334/modsim.2023.wu263
Wu, Y., Yang, S., Wu, J. and Hu, F.
https://doi.org/10.36334/modsim.2023.wu286
Zhu, Q., Yang, X. and Du, Z.
https://doi.org/10.36334/modsim.2023.zhu596
Bulovic, N., McIntyre, N., Trancoso, R., Bolz, P. and Shaygan, M.
https://doi.org/10.36334/modsim.2023.bulovic428
Eccles, R.
https://doi.org/10.36334/modsim.2023.eccles
Evans, J.P. and Imran, H.M.
https://doi.org/10.36334/modsim.2023.evans
Tam, E., Di Virgilio, G., Vieira Rocha, C., Choudhury, D., Ji, F., Hannah, N. and Riley, M.
https://doi.org/10.36334/modsim.2023.tam
Teng, J., Bennett, J.C., Charles, S., Chiew, F.H.S., Ji, F., Potter, N., Fu, G. and Thatcher, M.
https://doi.org/10.36334/modsim.2023.teng316
Toombs, N., Chapman, S., Trancoso, R., Zhang, H., Owens, D. and Syktus, J.
https://doi.org/10.36334/modsim.2023.toombs
Wilkinson, S., Manning, C., Dunn, S. and Fowler, H.
https://doi.org/10.36334/modsim.2023.wilkinson
Zhang, H., Chapman, S., Trancoso, R., Toombs, N. and Syktus, J.
https://doi.org/10.36334/modsim.2023.zhang49
Devanand, A., Evans, J.P., Pitman, A.J., Pal, S., Gochis, D. and Sampson, K.
https://doi.org/10.36334/modsim.2023.devanand397
Tian, S., Rüdiger, C., Renzullo, L.J., Dharssi, I., Marchionni, V., Woldemeskel, F., Frost, A. and Carrara, E.
https://doi.org/10.36334/modsim.2023.tian575
Woldemeskel, F., Rüdiger, C., Khan, Z., Yamazaki, D., Zhang, H., Marthews, T., Hou, J., Dharssi, I. and Su, C.-H.
https://doi.org/10.36334/modsim.2023.woldemeskel
Yang, Z., Ryu, D., Lo, M., Narsey, S., Peel, M.C. and McColl, K.
https://doi.org/10.36334/modsim.2023.yang280
Stream Leaders: Louise Freebairn and Irene Hudson
The Australian bushfires and COVID-19 pandemic brought into sharp focus the importance of data analytic and systems science methods to support evidence-based decision and policy making for health. The Health and biosecurity stream focused on latest developments, applications and challenges for epidemiological and biosecurity modelling, data science and machine learning. Health applications include but are not limited to disease surveillance, communicable diseases, chronic diseases, health services and systems, human behaviour and health, climate change and environmental exposures and health risks.
Alzahrani, A., Beh, E.J. and Stojanovski, E.
https://doi.org/10.36334/modsim.2023.alzahrani
Low-Choy, S., McKinley, T.J., Pulscher, L. and Peel, A.
https://doi.org/10.36334/modsim.2023.lowchoy656
Silva, S.S.M., Wabe, N. and Westbrook, J.I.
https://doi.org/10.36334/modsim.2023.silva
Yeo, G.F.A., Hudson, I., Akman, D. and Chan, J.
https://doi.org/10.36334/modsim.2023.yeo34
Assareh, H., Pavlov, V., Adarkar, K., Johnson, J., Fortunato, R., Marial, O. and Middleton, J.
https://doi.org/10.36334/modsim.2023.assareh
Chiu, S., Freebairn, L., Occhipinti, J. and Baur, L.
https://doi.org/10.36334/modsim.2023.chiu524
Hickson, R.I., Rawlinson, A.A., Roberts, M.E. and Faux, N.G.
https://doi.org/10.36334/modsim.2023.hickson
Humphreys, P., Spratt, B., Tariverdi, M., Hamilton, A., Cook, D., Burdett, R., Yarlagadda, P. and Corry, P.
https://doi.org/10.36334/modsim.2023.humphreys
Meler, E., Schull, D., Kelly, S. and Richards, R.
https://doi.org/10.36334/modsim.2023.meler
Powers, J., McGree, J.M., Grieve, D., Aseervatham, R., Ryan, S. and Corry, P.
https://doi.org/10.36334/modsim.2023.powers
Longmuir, D.N.R., Hoskins, A.J. and Hickson, R.I.
https://doi.org/10.36334/modsim.2023.longmuir
Lyu, J. and Kim, H.
https://doi.org/10.36334/modsim.2023.lyu
Maskell, P., Ryan, M., Karawita, A., Hickson, R.I. and Golchin, M.
https://doi.org/10.36334/modsim.2023.maskell
Tran-Duy, A.
https://doi.org/10.36334/modsim.2023.tranduy
Bae, S., Pandya, V., Park, H., Wang, Z., Wang, C., Wang, H., Uhm, M., Huh, W. and Singh, K.P.
https://doi.org/10.36334/modsim.2023.bae
Jeong, H.-J., Won, J.-H. and Shin, S.-H.
https://doi.org/10.36334/modsim.2023.jeong
Kang, M.-G., Won, J.-H., Jang, N.-G. and Kim, M.-J.
https://doi.org/10.36334/modsim.2023.kang447
Kim, M.C., Lee, M.J. and Baek, J.B.
https://doi.org/10.36334/modsim.2023.kim378
Le, T.D., Cook, A., Keyloun, J.W., Ledlow, G., Pusateri, A.E., Uhm, M., Bae, S. and Singh, K.P.
https://doi.org/10.36334/modsim.2023.le254
Lee, M.J., Bae, S. and Baek, J.B.
https://doi.org/10.36334/modsim.2023.lee303
Lee, D.G., Bae, S. and Baek, J.B.
https://doi.org/10.36334/modsim.2023.lee384
Oh, K.-S., Ha, S.Y. and Baek, J.B.
https://doi.org/10.36334/modsim.2023.oh108
Shin, S.-H., Won, J.-H., Kim, G. and Jeong, H.-J.
https://doi.org/10.36334/modsim.2023.shin436
Stream Leaders: Kate O'Brien and Oz Sahin
This stream covers all aspects of the human and cultural dimensions of modelling. This includes modelling socio-ecological systems (human-environment interactions), applications or approaches which bring a social-systems lens to modelling, and the process of modelling and associated challenges and best practice. Suitable content for this stream includes model development, data and knowledge management, pedagogical culture, application, case-studies, theory, practice, challenges, opportunities and insights into integration for modelling socio-ecological systems, and for a life-cycle approach to modelling which incorporates input from decision-makers and diverse knowledge sources from model conceptualisation through to application. Submissions that include Indigenous perspectives on modelling were particularly encouraged.
Browne, C. and Nabavi, E.
https://doi.org/10.36334/modsim.2023.browne
Costello, R. and Little, J.C.
https://doi.org/10.36334/modsim.2023.costello
Egger, F., Lodge, J.M., Adams, M.P., Birkett, G.R., Monsalve-Bravo, G.M., Howes, T. and O'Brien, K.R.
https://doi.org/10.36334/modsim.2023.egger512
Maier, H.R.
https://doi.org/10.36334/modsim.2023.maier60
Maier, H.R. and Culley, S.
https://doi.org/10.36334/modsim.2023.maier61
Maier, H.R., Jeanneau, A., Radford, D.A. and He, L.
https://doi.org/10.36334/modsim.2023.maier62
Moallemi, E.A.
https://doi.org/10.36334/modsim.2023.moallemi
Rosello, C., Guillaume, J.H.A., Pollino, C.A. and Jakeman, A.J.
https://doi.org/10.36334/modsim.2023.rosello103
Staby, S.-E. and Rios-Ocampo, J.P.
https://doi.org/10.36334/modsim.2023.staby625
Tian, R., Stojanovski, E. and Miller, D.
https://doi.org/10.36334/modsim.2023.tian126
Holland, K., Peeters, L.J.M. and London, A.
https://doi.org/10.36334/modsim.2023.holland
O'Brien, K.R., Adams, M.P., Egger, F., Maxwell, P., Weber, T., Maier, H.R., Vilas, M.P., Shaw, M., Turner, R., Birkett, G.R., Hamilton, D.P., Langsdorf, H. and Baird, M.E.
https://doi.org/10.36334/modsim.2023.obrien
Remmers, J.O.E. and Melsen, L.A.
https://doi.org/10.36334/modsim.2023.remmers
Rosello, C., Guillaume, J.H.A., Taylor, P., Cuddy, S.M., Pollino, C.A. and Jakeman, A.J.
https://doi.org/10.36334/modsim.2023.rosello628
Ahmad, M.D., Cuddy, S.M., Podger, G.M., Yu, Y. and Perraud, J.-M.
https://doi.org/10.36334/modsim.2023.ahmad252
Almeida, A.C., Foran, T., Penton, D.J., Gnawali, K., Wahid, S. and Cuddy, S.M.
https://doi.org/10.36334/modsim.2023.almeida
Cuddy, S.M., Penton, D.J., Wahid, S. and Koirala, S.
https://doi.org/10.36334/modsim.2023.cuddy687
Mainuddin, M.
https://doi.org/10.36334/modsim.2023.mainuddin
Wahid, S., Cuddy, S.M., Ahmad, M.D., Mainuddin, M. and Almeida, A.C.
https://doi.org/10.36334/modsim.2023.wahid
Avendano, B.
https://doi.org/10.36334/modsim.2023.avendano224
Biswas, P., Akoluk, D., Zatarain Salazar, J., Kwakkel, J.H. and Verbraeck, A.
https://doi.org/10.36334/modsim.2023.biswas
Hamilton, S.H., Jakeman, A.J. and Elsawah, S.
https://doi.org/10.36334/modsim.2023.hamilton593
Hamilton, S.H., Merritt, W.S., Cosijn, M. and Carter, L.
https://doi.org/10.36334/modsim.2023.hamilton648
Marshall, S.K., Batelaan, O. and Peeters, L.J.M.
https://doi.org/10.36334/modsim.2023.marshall
Matthews, K.B., Blackstock, K.L., Wardell-Johnson, D.H., Miller, D.G., Tavana, M., Thomson, S., Moxey, A., Nielsen, R., Baggaley, N., Loades, K., Paterson, E., Pakeman, R., Hawes, C., Stockan, J., Stutter, M., Addy, S. and Wilkinson, M.
https://doi.org/10.36334/modsim.2023.matthews
Onyango, E.
https://doi.org/10.36334/modsim.2023.onyango
Peeters, L.J.M., Holland, K. and London, A.
https://doi.org/10.36334/modsim.2023.peeters
Spillias, S.
https://doi.org/10.36334/modsim.2023.spillias
Szetey, K., Moallemi, E.A. and Bryan, B.A.
https://doi.org/10.36334/modsim.2023.szetey
Iwanaga, T., Crocker, R., Anthony, K.R.N. and Robson, B.J.
https://doi.org/10.36334/modsim.2023.iwanaga490
Leigh, R., Kingsborough, A., Westra, S., Brettig, P. and Helfgott, A.
https://doi.org/10.36334/modsim.2023.leigh
Melton, D.
https://doi.org/10.36334/modsim.2023.melton
Merritt, W.S., Fu, B., Rosello, C., Hamilton, S.H. and Riches, J.
https://doi.org/10.36334/modsim.2023.merritt
Sanches, V.H., Crépin, A.S., Dakos, V., Donges, J.F., Guillaume, J.H.A., Haider, J.L., Iwanaga, T., Kwakkel, J.H., Lade, S.J., Quinlan, A.E., Quiñones, R., Rocha, J.C. and Vivas, J.
https://doi.org/10.36334/modsim.2023.sanches
Stream Leaders: Jai Vaze and Murray Peel
The Water Resources stream focuses on research into hydrological processes and hydrological modelling tools (landscape and river system) that advance our understanding and management of surface water and groundwater at catchment, regional and continental scales over time scales from hours to decades.
Topics of relevance include (but are not limited to):
Ashbolt, S.C. and Kularathna, M.D.U.P.
https://doi.org/10.36334/modsim.2023.ashbolt
Cheng, Q. and Liu, P.
https://doi.org/10.36334/modsim.2023.cheng359
Cook, F.J., Vieritz, A., Weber, T. and Gardner, T.
https://doi.org/10.36334/modsim.2023.cook
Doble, R., Mallants, D., Huddlestone-Holmes, C., Peeters, L.J.M., Kear, J., Turnadge, C., Wu, B., Noorduijn, S. and Arjomand, E.
https://doi.org/10.36334/modsim.2023.doble
Gibbes, B., Botelho, D., Singh, A., Rissik, D. and Hipsey, M.R.
https://doi.org/10.36334/modsim.2023.gibbes
Hou, Q. and Cheng, L.
https://doi.org/10.36334/modsim.2023.hou427
John, A., Nathan, R., Horne, A., Fowler, K.J.A., Stewardson, M., Peel, M.C. and Webb, J.A.
https://doi.org/10.36334/modsim.2023.john
Kim, Y.M., Yoo, C.S. and Yoon, S.S.
https://doi.org/10.36334/modsim.2023.kim371
Lei, X. and Cheng, L.
https://doi.org/10.36334/modsim.2023.lei
Liu, W. and Liu, P.
https://doi.org/10.36334/modsim.2023.liu360
Rannu, R.P., Croke, B.F.W., Merritt, W.S. and Mainuddin, M.
https://doi.org/10.36334/modsim.2023.rannu
Ren, P., Stewardson, M. and Peel, M.C.
https://doi.org/10.36334/modsim.2023.ren355
Ren, P., Stewardson, M., Peel, M.C., Turner, M. and John, A.
https://doi.org/10.36334/modsim.2023.ren357
Song, S.U., Lee, M.S., Ma, J.H. and Yoo, C.S.
https://doi.org/10.36334/modsim.2023.song333
Yang, J., White, D., Palma, J.H.N., Meason, D., Balocchi, F., Rajanayaka, C., Dawes, W. and Battaglia, M.
https://doi.org/10.36334/modsim.2023.yang393
Zou, K., Cheng, L., Zhang, Q., Qin, S., Liu, P. and Wu, M.
https://doi.org/10.36334/modsim.2023.zou453
Ahammed, F.
https://doi.org/10.36334/modsim.2023.ahammed
Bulovic, N., McIntyre, N., Trancoso, R., Bolz, P. and Shaygan, M.
https://doi.org/10.36334/modsim.2023.bulovic618
Janardhanan, S., Pagendam, D.E., MacKinlay, D., Pickett, T. and Kuhnert, P.M.
https://doi.org/10.36334/modsim.2023.janardhanan
Nervi, E., Alonso, J., Vervoort, R.W. and Baethgen, W.
https://doi.org/10.36334/modsim.2023.nervi672
Ng, T.L. and Robertson, D.E.
https://doi.org/10.36334/modsim.2023.ng392
Rajanayaka, C., Sağlam, Y., Yang, J., Kees, L. and De Alwis, D.
https://doi.org/10.36334/modsim.2023.rajanayaka
Savadamuthu, K., McCullough, D.P. and Green, D.
https://doi.org/10.36334/modsim.2023.savadamuthu
Box, P., Brim Box, J., Cobban, D., Lieper, I. and Nano, C.
https://doi.org/10.36334/modsim.2023.box387
Brieva, C., Saco, P.M., Rodríguez, J.F. and Sandi, S.G.
https://doi.org/10.36334/modsim.2023.brieva
Driver, P.D., Dutta, D., Delagarza, D. and Simons, M.
https://doi.org/10.36334/modsim.2023.driver148
Filipović, V., Krevh, V. and Baumgartl, T.
https://doi.org/10.36334/modsim.2023.filipovic
Gao, S., Castellazzi, P., Pritchard, J.L., Stratford, D. and Doody, T.M.
https://doi.org/10.36334/modsim.2023.gao605
Gou, J., Liu, W., Guan, H., Batelaan, O., Bruce, D., Gutierrez, K., Wang, H., Gutierrez, H., Burk, L., Thompson, J. and Woods, J.
https://doi.org/10.36334/modsim.2023.gou
Jorquera, E., Quijano Baron, J.P., Breda, A., Sandi, S.G., Verdon-Kidd, D., Saco, P.M. and Rodríguez, J.F.
https://doi.org/10.36334/modsim.2023.jorquera
Liu, M., Jakeman, A.J., Lerat, J., Hamilton, S.H., Jin, H., Croke, B.F.W. and Savage, C.
https://doi.org/10.36334/modsim.2023.liu198
Liu, W., Guan, H., Bruce, D., Batelaan, O., Keane, R., Keegan-Treloar, R., Gutiérrez-Jurado, K.Y., Thompson, J. and Wang, J.
https://doi.org/10.36334/modsim.2023.liu287
Merrin, L.
https://doi.org/10.36334/modsim.2023.merrin
Owens, J., Cleverly, J., Hutley, L.B., Frost, A. and Western, A.W.
https://doi.org/10.36334/modsim.2023.owens
Pritchard, J.L. and Bunney, E.
https://doi.org/10.36334/modsim.2023.pritchard
Saco, P.M., Rodríguez, J.F., Breda, A. and Sandi, S.G.
https://doi.org/10.36334/modsim.2023.saco
Sandi, S.G., Rodríguez, J.F., Saco, P.M. and Saintilan, N.
https://doi.org/10.36334/modsim.2023.sandi
Stratford, D., Linke, S., Merrin, L., Lachish, S., Karim, F. and Kim, S.S.H.
https://doi.org/10.36334/modsim.2023.stratford
Weligamage, H.A.C.G., Fowler, K.J.A., Saft, M., Ryu, D., Peterson, T.J. and Peel, M.C.
https://doi.org/10.36334/modsim.2023.weligamage
Burns, G., Fowler, K.J.A. and Horne, A.
https://doi.org/10.36334/modsim.2023.burns
Crosbie, R.S., Wang, B., Kim, S.S.H., Mateo, C.M. and Vaze, J.
https://doi.org/10.36334/modsim.2023.crosbie182
Fowler, K.J.A., Regan-Beasley, D., Nixon, M. and Walker, G.
https://doi.org/10.36334/modsim.2023.fowler632
Goswami, P., Peterson, T.J., Mondal, A. and Rüdiger, C.
https://doi.org/10.36334/modsim.2023.goswami501
Pool, S., Fowler, K.J.A. and Peel, M.C.
https://doi.org/10.36334/modsim.2023.pool
Thyer, M., Gupta, H., Westra, S., McInerney, D., Maier, H.R., Kavetski, D., Jakeman, A.J., Croke, B.F.W., Simmons, C.T., Shanafield, M., Partington, D. and Tague, C.
https://doi.org/10.36334/modsim.2023.thyer
Trotter, L., Saft, M., Peel, M.C. and Fowler, K.J.A.
https://doi.org/10.36334/modsim.2023.trotter
Alonso, J., Badano, L., Vilaseca, F., Nervi, E. and Vervoort, R.W.
https://doi.org/10.36334/modsim.2023.alonso
Athukorala, R., Simmons, J., Cripps, S. and Vervoort, R.W.
https://doi.org/10.36334/modsim.2023.athukorala550
Gupta, M. and Peterson, T.J.
https://doi.org/10.36334/modsim.2023.gupta
Simmons, J., Vervoort, R.W. and Kohn, R.
https://doi.org/10.36334/modsim.2023.simmons455
Simmons, J., Pino, V., Graaf, A. and Vervoort, R.W.
https://doi.org/10.36334/modsim.2023.simmons461
Yoon, H.N., Marshall, L.A. and Sharma, A.
https://doi.org/10.36334/modsim.2023.yoon
Zeinolabedini Rezaabad, M., Marshall, L.A. and Johnson, F.M.
https://doi.org/10.36334/modsim.2023.zeinolabedini
Ahmed, A.A.M., Wang, Q.J., Western, A.W., Graham, T.D.J. and Wu, W.
https://doi.org/10.36334/modsim.2023.ahmed574
Austin, K., Neal, B., Guthrie, E., Scorah, M., Matthews, K. and Jordan, P.
https://doi.org/10.36334/modsim.2023.austin
Beatty, R., Pinto, R. and Holden, R.
https://doi.org/10.36334/modsim.2023.beatty
Bellhouse, J.A., Schopf, J. and Turner, M.
https://doi.org/10.36334/modsim.2023.bellhouse
Bjerkén, A., Alsterberg, C., Klante, C. and Persson, K.M.
https://doi.org/10.36334/modsim.2023.bjerken
Chrystal, C. and Hughes, M.
https://doi.org/10.36334/modsim.2023.chrystal
Denson, E., Godoy, W., Gourley, J., May, D., van Ryn, P. and Yan, W.
https://doi.org/10.36334/modsim.2023.denson
Finger, M., Sims, C. and Thomas, R.
https://doi.org/10.36334/modsim.2023.finger
Holden, R. and Seccull, C.
https://doi.org/10.36334/modsim.2023.holden
Karim, F., Penton, D.J., Aryal, S.K., Chen, Y. and Wahid, S.
https://doi.org/10.36334/modsim.2023.karim636
Kularathna, M.D.U.P., Ashbolt, S.C., Jahanbani, H. and Vu, K.
https://doi.org/10.36334/modsim.2023.kularathna
Loonat, N., Baker, D., Joyner, A. and Couriel, E.
https://doi.org/10.36334/modsim.2023.loonat
Nair, S., Moolman, J., Li, Y. and McCallum, S.
https://doi.org/10.36334/modsim.2023.nair
Penney, D., Savadamuthu, K., Van Der Wielen, M. and Gutiérrez-Jurado, K.Y.
https://doi.org/10.36334/modsim.2023.penney
Quaine, P. and Wilson, K.
https://doi.org/10.36334/modsim.2023.quaine
Raut, A., Nguyen, H. and Tuteja, N.
https://doi.org/10.36334/modsim.2023.raut
van der Linden, L., Kotz, S., Irvine, M. and Greenlee, M.
https://doi.org/10.36334/modsim.2023.vanderlinden
Alam, J., Hardy, M., Korn, A., Podger, G.M. and Dutta, D.
https://doi.org/10.36334/modsim.2023.alam
Beh, E.H.Y.
https://doi.org/10.36334/modsim.2023.beh
Crosbie, R.S., Charles, S., Fu, G., Hodgson, G., Dutta, D. and McCallum, A.
https://doi.org/10.36334/modsim.2023.crosbie259
Cu, T.P., Dutta, D. and Healey, M.
https://doi.org/10.36334/modsim.2023.cu132
Driver, P.D., Taylor, N., Carey, B., Cu, T.P., Brookes, K. and Harris, D.
https://doi.org/10.36334/modsim.2023.driver209
Dutta, D., Podger, G.M., Trim, A., Cu, T.P., Loonat, N., Matsinos, A., Taylor, N. and Driver, P.D.
https://doi.org/10.36334/modsim.2023.dutta
Egger, F., Burford, M., Weber, T. and O'Brien, K.R.
https://doi.org/10.36334/modsim.2023.egger513
Fowler, K.J.A., Horne, A., Haddock, L., Burns, G. and Zhang, Z.
https://doi.org/10.36334/modsim.2023.fowler638
Hou, J., van Dijk, A.I.J.M. and Renzullo, L.J.
https://doi.org/10.36334/modsim.2023.hou96
Kandel, D.D.
https://doi.org/10.36334/modsim.2023.kandel
Kim, S.S.H., Crosbie, R.S., Dawes, W., Vaze, J. and Wang, B.
https://doi.org/10.36334/modsim.2023.kim441
Petheram, C., Hughes, J.D., Read, A. and Stokes, C.
https://doi.org/10.36334/modsim.2023.petheram
Rodríguez, J.F., Saco, P.M., Sandi, S.G., Quijano Baron, J.P., Carlier, R., Kuczera, G. and Wen, L.
https://doi.org/10.36334/modsim.2023.rodriguez
Seo, L., Hughes, J.D. and Petheram, C.
https://doi.org/10.36334/modsim.2023.seo527
Simpson, J., Podger, S., Li, C., Nicholls, J., Kumandur, K., Dunne, P., Beling, E. and Coen, F.
https://doi.org/10.36334/modsim.2023.simpson120
Simpson, J., Han, X., Dutta, D., Purtle, C. and Craig, A.
https://doi.org/10.36334/modsim.2023.simpson518
Tang, Y., Han, X., Cu, T.P. and Dutta, D.
https://doi.org/10.36334/modsim.2023.tang300
Trim, A., Podger, G.M., Dutta, D. and Puertas, J.M.
https://doi.org/10.36334/modsim.2023.trim
Armstrong, M., Beecham, R., Dutta, D. and Higgins, P.A.
https://doi.org/10.36334/modsim.2023.armstrong115
Armstrong, M., Kiem, A.S., Kuczera, G., Vance, T. and Allen, K.
https://doi.org/10.36334/modsim.2023.armstrong537
Beecham, R., Smith, C., Sugiyanto, M., Dutta, D. and Armstrong, M.
https://doi.org/10.36334/modsim.2023.beecham
Devanand, A., Leonard, M., Westra, S. and Nguyen, D.C.H.
https://doi.org/10.36334/modsim.2023.devanand483
MacKinlay, D., Tong, R., Tsuchida, R., Pagendam, D.E., Janardhanan, S. and Kuhnert, P.M.
https://doi.org/10.36334/modsim.2023.mackinlay
Nguyen, D.C.H., Leonard, M., Westra, S. and Dutta, D.
https://doi.org/10.36334/modsim.2023.nguyen478
Nguyen, D.C.H., Leonard, M. and Westra, S.
https://doi.org/10.36334/modsim.2023.nguyen480
Nguyen, T., Bennett, B. and Leonard, M.
https://doi.org/10.36334/modsim.2023.nguyen509
Sharifazari, S., Andersen, M.S., Johnson, F.M., Palmer, J.G. and Turney, C.S.M.
https://doi.org/10.36334/modsim.2023.sharifazari
Stream Leaders: Yongqiang Zhang and Conrad Wasko
This stream focuses on the research fields between climate and hydrology. With continuous climate change in the past several decades and the foreseeable future, our understanding of the hydroclimate continues to evolve, and the complexity in forecasting, predicting, simulating, or attributing change, means many processes, and their interactions, remain not completely understood. However, new data sets, statistical tools, modelling techniques, and advances in computing are all providing us opportunities to improve the understanding of the hydroclimate. Proposals were invited from a wide variety of disciplines that analyse and model all aspects of the hydroclimate, from rainfall, to streamflow, evapotranspiration, groundwater, temperature, and their related hazards. Proposals were encouraged that aimed to improve our process understanding, untangle uncertainties, and attribute changes across all time and spatial scales in the hydroclimate.
Ahmad, M.D., Peña-Arancibia, J.L. and Yu, Y.
https://doi.org/10.36334/modsim.2023.ahmad184
Han, C. and Ma, Y.
https://doi.org/10.36334/modsim.2023.han529
Jian, J., Johnson, F.M. and Marshall, L.A.
https://doi.org/10.36334/modsim.2023.jian467
Li, C.C., Zhang, Y.Q., Chiew, F.H.S., Post, D.A., Yu, Q., Tian, J., Ma, N. and Zhang, X.Z.
https://doi.org/10.36334/modsim.2023.li363
Liu, L., Vervoort, R.W., Johnson, F.M. and Marshall, L.A.
https://doi.org/10.36334/modsim.2023.liu311
Liu, Y.
https://doi.org/10.36334/modsim.2023.liu519
Ma, N., Zhang, Y.Q. and Szilagyi, J.
https://doi.org/10.36334/modsim.2023.ma219
Ma, Y.
https://doi.org/10.36334/modsim.2023.ma505
Song, P.
https://doi.org/10.36334/modsim.2023.song680
Xu, Z.W., Zhang, Y.Q. and Ma, N.
https://doi.org/10.36334/modsim.2023.xu342
Zhang, X.Z. and Zhang, Y.Q.
https://doi.org/10.36334/modsim.2023.zhang15
Zhang, H., Chapman, S., Trancoso, R., Toombs, N. and Syktus, J.
https://doi.org/10.36334/modsim.2023.zhang48
Zhang, Y. and Wang, K.
https://doi.org/10.36334/modsim.2023.zhang497
Aryal, S.K., Zheng, H. and Zhang, Y.Q.
https://doi.org/10.36334/modsim.2023.aryal
Cao, Y.J. and Zhang, Y.Q.
https://doi.org/10.36334/modsim.2023.cao
Higgins, P.A., Palmer, J.G., Andersen, M.S., Turney, C.S.M., Johnson, F.M., Allen, K., Verdon-Kidd, D. and Cook, E.R.
https://doi.org/10.36334/modsim.2023.higgins559
Little, J.C., Kaaronen, R.O., Hukkinen, J.I., Xiao, S., Sharpee, T., Farid, A.M., Nilchiani, R. and Barton, C.M.
https://doi.org/10.36334/modsim.2023.little
Mana, S.C., Peterson, T.J., Lade, S.J., Croke, B.F.W. and Iwanaga, T.
https://doi.org/10.36334/modsim.2023.mana
Shao, X.M., Zhang, Y.Q., Tian, J., Ma, N., Zhang, X.Z. and Xu, Z.W.
https://doi.org/10.36334/modsim.2023.shao343
Tang, Z.X., Zhang, Y.Q. and Kong, D.D.
https://doi.org/10.36334/modsim.2023.tang484
Tian, J. and Zhang, Y.Q.
https://doi.org/10.36334/modsim.2023.tian218
Wang, H., Guan, H., Liu, B. and Chen, X.
https://doi.org/10.36334/modsim.2023.wang19
Yang, X.N., Zhang, Y.Q., Tian, J., Zhang, X.Z., Ma, N. and Zhao, Z.G.
https://doi.org/10.36334/modsim.2023.yang410
Zhang, Y.Q., Tian, J., Zhang, X.Z., Ma, N., Tang, Z.X., Kong, D.D., Cao, Y.J., Shao, X.M., Wei, H.S., Chen, Y.Y., Wang, J., Wang, L.H., Xu, Z.W., Li, C.C., Yang, X.N. and Ren, C.Y.
https://doi.org/10.36334/modsim.2023.zhang223
Zhang, F., Wang, L., Shi, X., Zeng, C., Ahmad, I., Wang, G., Thapa, S. and Xu, X.
https://doi.org/10.36334/modsim.2023.zhang394
Bende-Michl, U., Thomas, S., Bahramian, K., Kociuba, G., Sharples, W., Pepler, A. and Tolhurst, G.
https://doi.org/10.36334/modsim.2023.bende-michl
Benz, S.A., Irvine, D.J., Rau, G.C., Bayer, P., Menberg, K., Blum, P., Jamieson, R.C., Griebler, C. and Kurylyk, B.L.
https://doi.org/10.36334/modsim.2023.benz
Dykman, C., Sharma, A., Wasko, C. and Nathan, R.
https://doi.org/10.36334/modsim.2023.dykman
Jordan, P., Pinto, R., Tyson, A. and Fawcett, J.
https://doi.org/10.36334/modsim.2023.jordan
Kermode, S.
https://doi.org/10.36334/modsim.2023.kermode
Schopf, J., Kitsios, A., McCallum, S., Turner, M., Bende-Michl, U. and Hall, J.
https://doi.org/10.36334/modsim.2023.schopf
Scorah, M., Lang, S., Nathan, R. and Cressall, B.
https://doi.org/10.36334/modsim.2023.scorah
Graham, T.D.J., Wang, Q.J., Pickett-Heaps, C.A., Sharples, W., Wu, W. and Western, A.W.
https://doi.org/10.36334/modsim.2023.graham171
Horsley, D., Bennett, J.C., Schepen, A. and Robertson, D.E.
https://doi.org/10.36334/modsim.2023.horsley
Matala, A., Hunter, J., Robinson, K. and Bennett, J.C.
https://doi.org/10.36334/modsim.2023.matala
Nguyen, H., Tuteja, N., Perera, H., Raut, A., Hameed, T., Neupane, R. and Breda, A.
https://doi.org/10.36334/modsim.2023.nguyen546
Pickett-Heaps, C.A., Sunter, P., Cornish, A., Sharples, W., Pegios, M. and Wilson, C.
https://doi.org/10.36334/modsim.2023.pickettheaps
Robertson, D.E., Ng, T.L., Shrestha, D.L. and Bennett, J.C.
https://doi.org/10.36334/modsim.2023.robertson
Schepen, A., Hughes, N., Gaydon, D., Sharman, C., McComb, J., Mitchell, P. and Carter, J.
https://doi.org/10.36334/modsim.2023.schepen
Zhao, P., Wang, Q.J., Wu, W. and Yang, Q.
https://doi.org/10.36334/modsim.2023.zhao576
Jian, J., Ryu, D., Wang, Q.J. and Lee, H.
https://doi.org/10.36334/modsim.2023.jian531
Kim, S., Lee, G. and Sharma, A.
https://doi.org/10.36334/modsim.2023.kim530
Kommula, S.P., Lohani, B., Ryu, D. and Winter, S.
https://doi.org/10.36334/modsim.2023.kommula
Liu, S., McVicar, T.R. and Liu, Y.
https://doi.org/10.36334/modsim.2023.liu522
Wonink, S., Jackson, B., Brombacher, J., Vervoort, R.W., Einfalt, T., Anderlieste, M., Chambel Leitão, P. and Noort, M.
https://doi.org/10.36334/modsim.2023.wonink
Zheng, H., Robertson, D.E. and Chiew, F.H.S.
https://doi.org/10.36334/modsim.2023.zheng658
Goswami, P. and Gallant, A.
https://doi.org/10.36334/modsim.2023.goswami498
Ho, M., Wasko, C., O'Shea, D., Nathan, R., Vogel, E. and Sharma, A.
https://doi.org/10.36334/modsim.2023.ho272
Khan, Z., Bende-Michl, U., Srikanthan, S., Vogel, E., Sharples, W., Peter, J., Hope, P., Dowdy, A. and Wilson, L.
https://doi.org/10.36334/modsim.2023.khan432
Madhushankha, J.M.L., Wasko, C., Nathan, R. and Johnson, F.M.
https://doi.org/10.36334/modsim.2023.madhushankha
O'Shea, D., Nathan, R., Sharma, A. and Wasko, C.
https://doi.org/10.36334/modsim.2023.oshea
Saft, M. and Peel, M.C.
https://doi.org/10.36334/modsim.2023.saft
Shokri, A., Robertson, D.E., Freebairn, A.C. and Potter, N.
https://doi.org/10.36334/modsim.2023.shokri
Wasko, C., Guo, D., Ho, M., Nathan, R. and Vogel, E.
https://doi.org/10.36334/modsim.2023.wasko
Stream Leaders: Andrew Western, Danlu Guo and Anna Lintern
Poor water quality has social, economic and environmental consequences, and maintaining good water quality is key to sustaining human life. While we still need to understand fundamental water quality processes, we increasingly have a need to model new and emerging water treatment systems, emerging chemicals, the impacts of climate change and land and water management on water quality, and interactions between socio-economic systems and water quality. Proposals were invited to focus on monitoring, modelling and analyses of all aspects of water quality across all environments including natural, agricultural, urban, peri-urban catchments, as well as rivers, groundwater, lakes, estuaries and other receiving waters.
Bennett, F.R., Botha, I., Adams, M.P. and Drovandi, C.
https://doi.org/10.36334/modsim.2023.bennett42
Elliott, S., Hoang, L., Dang, T.D., Pletzer, A. and Scott, C.
https://doi.org/10.36334/modsim.2023.elliott
Guo, D., Minaudo, C., Zhang, Q., Dupas, R., Liu, S., Zhang, K., Bende-Michl, U., Duvert, C. and Lintern, A.
https://doi.org/10.36334/modsim.2023.guo615
Lintern, A., Sargent, R., Hagan, J., Wilson, P., Western, A.W., Plum, C. and Guo, D.
https://doi.org/10.36334/modsim.2023.lintern
Liu, S., Guo, D., Bende-Michl, U., Lintern, A., Waters, D.K. and Wang, Q.
https://doi.org/10.36334/modsim.2023.liu77
Pollett, A. and McCloskey, G.L.
https://doi.org/10.36334/modsim.2023.pollett
Riazi, Z. and Western, A.W.
https://doi.org/10.36334/modsim.2023.riazi
Sargent, R., Henry, R., Wong, W.W., Schang, C., Tseng, C.W., Cook, P., Western, A.W., McCarthy, D. and Lintern, A.
https://doi.org/10.36334/modsim.2023.sargent
Singh, A. and Hipsey, M.R.
https://doi.org/10.36334/modsim.2023.singh141
Yang, X., Young, J., Shi, H., Chapman, G., Pulsford, I., Moore, C., Gormley, A. and Thackway, R.
https://doi.org/10.36334/modsim.2023.yang112
Yang, R.Y., Jiang, J.P., Pang, T.R., Zheng, Y. and Yang, Z.H.
https://doi.org/10.36334/modsim.2023.yang409
Zhang, Y. and Shao, Q.
https://doi.org/10.36334/modsim.2023.zhang180
Zhu, M., Jiang, J.P., Tang, S. and Sivakumar, B.
https://doi.org/10.36334/modsim.2023.zhu640
Athukorala, R., Lynch, S.K., Johnson, C., Suzzi, A.L., Rao, S. and Foulsham, E.L.
https://doi.org/10.36334/modsim.2023.athukorala548
Bennett, F.R., Singh, A. and Roberts, M.E.
https://doi.org/10.36334/modsim.2023.bennett128
Muirhead, R.W., Stott, R., Sukias, J.P.S., Devane, M. and Cookson, A.L.
https://doi.org/10.36334/modsim.2023.muirhead
Rahman, A., Arnold, S. and Emerenciano, M.
https://doi.org/10.36334/modsim.2023.rahman28
Randall, L.J. and Roberts, M.E.
https://doi.org/10.36334/modsim.2023.randall
Roberts, M.E. and Roots, K.
https://doi.org/10.36334/modsim.2023.roberts
Rumman, R., Martin, J., van der Sterren, M., Chen, C., Abdollahian, M.A. and Hughes, D.
https://doi.org/10.36334/modsim.2023.rumman
Shi, H., Shui, J. and Yang, X.
https://doi.org/10.36334/modsim.2023.shi506
Watt, S., Nelson, M., Hai, F. and Sidhu, H.
https://doi.org/10.36334/modsim.2023.watt
Ani, C.J., Baird, M.E. and Robson, B.J.
https://doi.org/10.36334/modsim.2023.ani317
Drayson, N., Diakogiannis, F., Cherukuru, N., Blondeau-Patissier, D. and Schroeder, T.
https://doi.org/10.36334/modsim.2023.drayson
Joehnk, K.D., Biswas, T., Anstee, J., Ford, P., Drayson, N., Kerrisk, G. and Malthus, T.
https://doi.org/10.36334/modsim.2023.joehnk
Liu, S., Glamore, W., Liu, Y. and Johnson, F.M.
https://doi.org/10.36334/modsim.2023.liu327
Margvelashvili, N., Skerratt, J.H., Mongin, M., Baird, M.E. and Wild-Allen, K.
https://doi.org/10.36334/modsim.2023.margvelashvili
Newman, J.P., Makarewicz, A., Daly, R., Swaffer, B., van der Linden, L. and Harvy, C.
https://doi.org/10.36334/modsim.2023.newman645
Ranjbar, M.H., Hamilton, D.P., Pace, M.L., Etemad-Shahidi, A., Carey, C.C. and Helfer, F.
https://doi.org/10.36334/modsim.2023.ranjbar
Robson, B.J., Crosswell, J. and Kroon, F.J.
https://doi.org/10.36334/modsim.2023.robson
Sims, C., Hipsey, M.R., Huang, P., Paraska, D. and Zhai, S.
https://doi.org/10.36334/modsim.2023.sims
Skerratt, J.H., Baird, M.E. and Mongin, M.
https://doi.org/10.36334/modsim.2023.skerratt
Unnithan, S.L.K., Cherukuru, N., Drayson, N. and Ingleton, T.
https://doi.org/10.36334/modsim.2023.unnithan
Waters, D.K. and Silburn, D.M.
https://doi.org/10.36334/modsim.2023.waters
Yu, S., Hamilton, D.P., Okely, P., Smolders, K. and Burford, M.
https://doi.org/10.36334/modsim.2023.yu532
Stream Leaders: Melanie Ayre and Simon Dunstall
The Operations Research (OR) stream covered high-quality contributions from across the broad spectrum of OR methods, techniques and applications in academia, defence and industry. Techniques may include (but are not limited to) mixed integer-linear programming, constraint programming, metaheuristics, and modelling and simulation through to more recent approaches in matheuristics, artificial intelligence (AI), machine learning (ML) and data sciences (DS). Applications areas may include (but are not limited to) emergency management and natural hazards, defence, transport, logistics, mining, agriculture and healthcare. Collaboration was encouraged between academia and industry in both session proposals and paper submissions.
Bhisitcharoentat, Y., Saengtabtim, K., Leelawat, N. and Tang, J.
https://doi.org/10.36334/modsim.2023.bhisitcharoentat
Kodaka, A., Leelawat, N., Tang, J. and Kohtake, N.
https://doi.org/10.36334/modsim.2023.kodaka
Tang, J., Leelawat, N., Sornklin, B., Chaweewongpaisal, M., Vikraipaisarn, Y., Bhisitcharoentat, Y., Arayachookiat, P., Meechang, K., Kodaka, A., Iwasaki, Y., Inoue, M. and Watanabe, K.
https://doi.org/10.36334/modsim.2023.tang226
Watanabe, K.
https://doi.org/10.36334/modsim.2023.watanabe
Gu, X., Cook, N.J., Metcalfe, A.V. and Aldrich, C.
https://doi.org/10.36334/modsim.2023.gu67
Gu, X., Cook, N.J., Metcalfe, A.V. and Aldrich, C.
https://doi.org/10.36334/modsim.2023.gu69
HosseiniFard, Z., Khatami, M., Abbasi, B. and Houtum, G.
https://doi.org/10.36334/modsim.2023.hosseinifard
Sadegh Zadeh, H., Anjomshoa, H., Zhang, L. and Fackrell, M.
https://doi.org/10.36334/modsim.2023.sadeghzadeh
Sahin, O., Elsawah, S., Salim, H., Prior, D.D., Turan, H.H. and Hussain, O.K.
https://doi.org/10.36334/modsim.2023.sahin
Wang, G., Costa, A., Karunarathne, W., Roughan, M., Miller, S.M. and Pitchford, W.
https://doi.org/10.36334/modsim.2023.wang57
Andersen, T., Sankupellay, M., Belward, S., Myers, T. and Chen, C.
https://doi.org/10.36334/modsim.2023.andersen
Corry, P.
https://doi.org/10.36334/modsim.2023.corry
Davis, K., Le Bodic, P., Ernst, A.T., Kapoor, R. and Garcia-Flores, R.
https://doi.org/10.36334/modsim.2023.davis
Dunstall, S., Gunasegaram, D., Jiang, C. and Wang, H.
https://doi.org/10.36334/modsim.2023.dunstall
Murray, H.S.
https://doi.org/10.36334/modsim.2023.murray
Rana, M., Smith, D.V., Rahman, A. and Baumgartner, P.
https://doi.org/10.36334/modsim.2023.rana
Shinkai, K., Kanagawa, S. and Namekawa, M.
https://doi.org/10.36334/modsim.2023.shinkai
Borazjani, S., Kennedy, J., Barca, J.C. and Crase, S.
https://doi.org/10.36334/modsim.2023.borazjani
Comino, E., Ogilvie, J., King, M., Lourey, H. and Wharington, J.
https://doi.org/10.36334/modsim.2023.comino
Hock, K., Staby, S.-E., Gary, M.S., Kosowski, L., Blumson, D., Cao, H.T., Elsawah, S., Kempt, N. and Richmond, M.K.
https://doi.org/10.36334/modsim.2023.hock
Howard, D., Kilby, P., Lahur, P. and Pereira, G.G.
https://doi.org/10.36334/modsim.2023.howard
Kapsis, M., Pudney, P., Miller, W. and Freebairn, G.
https://doi.org/10.36334/modsim.2023.kapsis100
Kapsis, M., Pudney, P., Miller, W. and Freebairn, G.
https://doi.org/10.36334/modsim.2023.kapsis84
Larkin, T., Whitehouse, S., Mashford, B. and Yeung, T.
https://doi.org/10.36334/modsim.2023.larkin
Rollan, T.A., Marquez, L. and Chua, C.
https://doi.org/10.36334/modsim.2023.rollan
San José, R. and Perez-Camanyo, J.L.
https://doi.org/10.36334/modsim.2023.sanjose
Schutt, A., Smith, D.V. and Kapoor, R.
https://doi.org/10.36334/modsim.2023.schutt
Staby, S.-E., Blumson, D., Cao, T., Elsawah, S., Gary, M.S., Hock, K., Kosowski, L. and Richmond, M.K.
https://doi.org/10.36334/modsim.2023.staby373
Tiong, J.K.R., Bogomolov, T. and Chiera, B.A.
https://doi.org/10.36334/modsim.2023.tiong
Modelling to support planning for resilience in a changing world
Copyright © 2022 Modelling and Simulation Society of Australia and New Zealand Inc. All rights reserved. Banner image credit: Tourism NT/Daniel Tran