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Abstract: This paper estimates future reference evapotranspiration at a daily time step using bias-corrected 
regional climate modelling data under high emission scenario (RCP8.5) for Queensland, Australia. We use the 
CCAM (Conformal Cubic Atmospheric Model) at a 10km resolution, driven by 11 CMIP5 global climate 
models, to provide input datasets for evapotranspiration computations. We adopted the Penman–Monteith 
method for reference evapotranspiration for both short crop and tall crop. 

We assessed the impact of three bias correction methods (linear scaling, two versions of quantile mapping, and 
a statistical distribution-based transfer function) on present day mean climatology and climate change signal 
for reference evapotranspiration. Results show that all bias-correction methods are effective in removing the 
systematic model biases for historical simulations. We also compared the station-based interpolation dataset, 
the ERA5-Land reanalysis-based dataset and the best bias-corrected model reference evapotranspiration 
datasets. The results suggest that the three models of evapotranspiration are comparable though there are some 
differences in climatological spatial patterns. For reference evapotranspiration, raw and bias corrected regional 
climate simulations project an annual increase of about 8%-11% on average by the end of this century under 
high emission scenario (RCP8.5) in Queensland. 
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1. INTRODUCTION 

The combined processes of evaporation and transpiration, known as evapotranspiration (ET), play a key role 
in the water cycle. Evapotranspiration is needed to calculate regional water and energy balance and soil water 
status and provides key information for water resource management. The accurate calculation of 
evapotranspiration is crucial in applications such as crop water management, irrigation planning, basin water 
balance, climate characterization and climate change studies (Ghiat et al., 2021). With regards to climate 
change, it is critical to understand how the ET process, a key component of the hydrological cycle, responds 
to variability in climate factors (i.e., temperature and precipitation). 

The rate of evapotranspiration is determined by a complex combination of plant physiology and environmental 
conditions. For example, the degree of stomatal opening in the leaves regulates transpiration and consequently 
affects the evapotranspiration flux. To eliminate the impact of plant specific characteristics on the 
evapotranspiration estimate, reference evapotranspiration (ET0) is typically used. Reference evapotranspiration 
is the evapotranspiration from a crop with specific characteristics and which is not short of water (Allan et al., 
1998). Two kinds of reference evapotranspiration are estimated in this work: a) The evapotranspiration from 
a hypothetical reference crop with an assumed crop height of 0.12 m, a fixed surface resistance of 70 sec/m 
and an albedo of 0.23, closely resembling the evapotranspiration from an extensive surface of green grass of 
uniform height, actively growing, well-watered, and completely shading the ground (Allan et al., 1998). Grass 
is defined as the reference crop and it is assumed to be free of water stress and disease. We term this Food and 
Agriculture Organization of the United Nations (FAO), as it is based on the FAO calculation; b) American 
Society of Civil Engineers (ASCE)’s “tall crop” version of FAO, which assumes the crop height is 0.5m. 

Given the difficulty in measuring evapotranspiration directly, many models have been developed since 1950s 
to estimate reference evapotranspiration with meteorological data (Allan et al., 1998). In general, these models 
can be classified into two types – fully physical based models and empirical/semi-empirical models. Empirical 
models can be further classified into temperature-based, radiation-based, and mass transfer-based models 
according to the climatic factors incorporated. Penman and Penman-Monteith FAO (Allan et al., 1998) models 
are fully physiological based and take the related meteorological factors into consideration. The advantage of 
these two models is that they are able to offer reasonably accurate result against measured ET independent on 
climate conditions. 

We focus on the Penman-Monteith method in this work for estimating reference evapotranspiration (ET0), as 
it is the most widely applied method and recommended as the sole standard method by FAO, with strong 
likelihood of correctly predicting ET0 in a wide range of locations and climates. It requires the least empirical 
parameterization or local calibrations compared with empirical/semi-empirical models, yet it includes the effect 
of most climate variables which affect evapotranspiration (solar radiation, wind, and vapour pressure deficit). 
As a consequence, the FAO method provides values that are consistent with actual crop water use data 
worldwide (Allan et al., 1998). 

Evapotranspiration estimations reply on several types of climate data as input. For historical evaluations, we 
can use either global / regional climate model (GCMs and RCMs) datasets as input or ground-based 
observational data / remote sensing data as input. However, for future projections, GCMs and RCMs are the 
most common approach and have the greatest promise for this type of work into the near future. In this work, 
we first evaluate the performance of global and regional climate models in estimating evapotranspiration 
against those derived from observation based meteorological data or from reanalysis data. Then we will project 
the changes for evapotranspiration under climate change conditions based on regional climate models for 
Queensland, Australia. 

Projections of ET under future climate scenarios are necessary to assess the possible influence of climate 
change on water resources, agricultural production and hydrological regimes (Wang et al., 2015). A commonly 
used method to evaluate the impact of climate change on ET is to use climate model outputs from different 
emission scenarios as inputs into an ET model (Kirono et al., 2009). This method has been adopted in the 
assessment of climate change influence on evapotranspiration that vary in scale from major river basins to 
medium sized catchment, the national, and global scales (Wang et al., 2015; Kirono & Kent, 2011).  

The outputs of global and regional climate models (GCMs and RCMs) have to be bias-corrected before 
assessing the impact of climate change on evapotranspiration. Several bias correction methods ranging from 
simple linear scaling to sophisticated quantile mapping have been developed (Maraun, 2016; Piani et al., 2010). 
Bias correction is the process of scaling climate model outputs to account for their systematic errors in order 
to improve their fit to observations. Bias correction methods may alter the climate change signal due to 
intensity-dependent biases. For this reason, when evaluating bias correction methods, it is important to evaluate 
the impact on the climate change signal. Most bias correction studies only examine the impact of bias-
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correction on temperature and precipitation variables, however other variables are required in 
evapotranspiration estimations (i.e., radiation, mean sea level pressure, vapour pressure and 2m wind speed). 
In this work we assess the performance of the three bias-correction methods for removing biases in mean 
climate for reference evapotranspiration and then assess the impact of the bias-correction methods on the 
climate change signal. 

2. DATA AND STUDY AREA 

2.1. Study area 

We estimate evapotranspiration and evaluate bias-correction methods over Queensland, Australia. Queensland 
provides a useful study area for estimating evapotranspiration and evaluating bias correction methods due to 
its diverse environment, including equatorial, tropical, sub-tropical, temperate and arid regions, and the 
presence of mountainous and coastal areas. 

2.2. Climate models 

We dynamically downscaled 11 CMIP5 GCMs to a 10km resolution over Queensland using the Conformal 
Cubic Atmospheric Model (CCAM) developed by CSIRO. The dynamical downscaling is described in 
previous work (Trancoso et al., 2020; Chapman et al. 2020; Eccles et al., 2021). We bias corrected daily 
datasets for precipitation, minimum and maximum temperature, mean sea level pressure, radiation, 2m wind 
speed, and vapour pressure, and then used raw and bias-corrected datasets to estimate evapotranspiration and 
examine the impact of bias correction on the climate change signal for RCP8.5 by comparing 2079-2098 to the 
reference period (1986-2005). 

2.3. Observation based datasets 

We used the Australian Climate Project observational dataset (also known as SILO) to correct raw CCAM 
model results. The SILO dataset interpolates Australian Bureau of Meteorology (BoM) weather stations and 
additional observational sources to provide daily gridded surfaces for Australia. The gridded SILO datasets 
cover the period from 1880s to the present, and are updated daily (Jeffrey et al., 2001). Since SILO datasets 
have a 5 km resolution, SILO was regridded to 10 km prior to performing bias correction and 
evapotranspiration computations. We also compare CCAM model results with a high-resolution 
evapotranspiration dataset called “hourly potential evapotranspiration (hPET)” developed recently by Singer 
et al. (2021), which is based upon ERA5-Land reanalysis datasets. 

2.4. Bias correction approaches 

We apply the following three bias correction methods to individual climate model outputs for seven daily 
variables using observational data from the Australian Climate Project (SILO) as the reference dataset. Linear 
scaling (LS) is the simplest method which only used monthly mean to correct model output. Statistical 
distribution-based transfer functions (Dis_T_F) technique is the most sophisticated bias-correction technique, 
which used all the individual quantiles (daily values) to construct the transfer functions (Piani et al., 2010). In 
between these two techniques, there are various parametric and non-parametric quantile matching variations, 
and we used both parametric quantile mapping (QM) and empirical quantile mapping (EQM) to bias correct 
the seven climate variables. For the parametric implementation (QM_Monthly), the cumulative distribution 
functions (CDF) for each month were calculated using daily data for each month, drawn from all years in the 
calibration period. A linear regression is then used to fit the model and observed CDF, which provides the 
parameters. The second quantile matching version is non-parametric, namely, empirical quantile matching 
(EQM) using monthly data (EQM_Monthly). It differs from parametric QM in that, rather than using linear 
regression, it used a minimization scheme to find the unavailable quantile values. 

2.5. Evapotranspiration estimates 

We provide the estimates of reference evapotranspiration for both short crop (FAO) and tall crop (ASCE). It 
is documented in Food and Agriculture Organization Paper No. 56 (Allan et al., 1998). The FAO estimate is 
mainly used for irrigation purposes: multiplying the reference value by a crop coefficient will yield an estimate 
of the actual crop evapotranspiration for an extensive irrigated field of the given crop. The Penman-Monteith 
formula is used to estimate FAO and ASCE. The Penman-Monteith method uses two coefficients to incorporate 
the effects of aerodynamic and bulk surface resistance. The FAO and ASCE estimates differ only in the values 
of these two coefficients. 
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Penman-Monteith equation requires input data on maximum and minimum air temperatures, vapour pressure, 
solar radiation and wind speed at 2 m height. We recently constructed a gridded roughness map for Australia 
based on observational station data (Zhang et al., 2022), which are used in this work to convert 10m wind 
speed datasets to 2m. We compare bias corrected ET and climate change signal with raw CCAM results to 
assess the bias correction impacts.  

3. RESULTS 

3.1. Historical mean climatology 

Annual and seasonal ensemble mean biases for evapotranspiration variables (ASCE and FAO) are shown in 
the first, second and third columns in Figure 1. After bias-correction, the model biases are reduced significantly 
for all the variables and seasons. The three bias correction methods based on monthly data (QM_Monthly, LS 
and EQM_Monthly) have larger improvements in DJF (austral summer) than the bias correction methods that 
use all available data (Dis_T_F). However, Dis_T_F is performing better than other three approaches for 
reducing biases in JJA (austral winter). On average, bias correction approaches can reduce annual bias from 
around 5% down to 2-3%, which highlights the usefulness of these approaches.  

 
Figure 1. Annual / seasonal mean percentage bias maps (before and after bias corrections) for 
reference evapotranspiration ET0 (ASCE and FAO) for historical period 1981–2010. Raw and 

bias-corrected CCAM results are shown for ensemble mean of the eleven CMIP5 models.  
Observation-based datasets (SILO) are used to correct CCAM models. 

We also evaluated bias-correction performance using the Kling-Gupta efficiency (KGE) for seasonal mean 
climatology. The KGE combines the three components of Nash-Sutcliffe efficiency, correlation, bias and 
variability, into one metric. The closer to 1.0 the KGE is, the better the bias correction performs. Raw CCAM 
model’s mean KGE scores are relatively low (0.43). After bias corrections, mean KGE score can be improved 
substantially. Overall, Dis_T_F approach has the highest mean KGE score (0.78), followed by EQM_Monthly 
and LS (0.75), and QM_Monthly (0.73) for mean climatology. The mean KGE score is the average over the 
two variables (FAO / ASCE) and the three seasons. 
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3.2. Climate change signal 

In Figure 2, we investigated the impact of the bias correction methods on the climate change signal. All methods 
maintain the direction of change in the climate change signal. For both FAO and ASCE, most models and bias 
correction methods projected an increase of the magnitude for the climate change signal. Seasonally there are 
more increases of the magnitude for the climate change signal in JJA for most models and there are less 
increases of the magnitude for the climate change signal in DJF (several models project even decreases in DJF).  
Annually most models project an increase of the magnitude for the climate change signal. 

Bias correction impacts the magnitude for the climate change signal for reference evapotranspiration (ASCE 
and FAO). Prior to bias correction, the ensemble mean increase for FAO was 11% annually, after bias 
correction, the increase was between 9%–10% annually. For ASCE, prior to bias correction, the ensemble 
mean increase was 11% annually, after bias correction, the increase was between 8%–10% annually. 
Seasonally all the bias correction methods reduce the magnitude of the climate change signal with LS 
preserving the climate change signal (CCS) the best. 

 
Figure 2. Heatmaps for climate change signal (from 1986–2005 to 2079–2098) for reference 

evapotranspiration across annual (ANN), summer (DJF) and winter (JJA) seasons in Queensland.  
Raw and bias-corrected CCAM results were shown in each column and individual models and 

ensemble mean were shown in each row. 

4. DISCUSSION 

The FAO Penman–Monteith method is widely used and accepted as one of the most representative ET 
estimations, because it works with accurate lysimeter observations. From our analysis of mean climatology, 
we found that CCAM models perform generally well for reference evapotranspiration (FAO) after bias 
correction. We also compared our FAO reference evapotranspiration results with another high-resolution re-
analysis evapotranspiration called “hourly potential evapotranspiration (hPET)” developed recently (Singer et 
al., 2021). hPET is based on the output from recently developed ERA5-Land reanalysis dataset (1981 to 
present) and corresponds to our estimation of reference evapotranspiration (FAO) with some variations for 
albedo. Figure 3 shows the station-based interpolation dataset (SILO), the reanalysis-based dataset (hPET) and 
one of the bias corrected CCAM model results (EQM_Monthly) for reference evapotranspiration (FAO). The 
three kinds of datasets have similar patterns though there are some differences in finer structures as they used 
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different methods to derive the FAO datasets. Through comparisons we can see that the DJF spatial patterns 
for FAO agree well among the three products. In JJA, there are some differences in northwest parts of the 
studied area. Annually the broad patterns are similar, but the fine structures in the inland areas are different. 

In terms of climate change signal, we found that the projected changes in reference evapotranspiration (FAO / 
ASCE) are consistent among most CCAM climate models. The annual average increases at the end of this 
century are roughly 11% annually for raw CCAM models. Bias corrections won’t change the direction of such 
increases instead they only change the magnitude for such increases.  

In Australia, Kirono et al. (2009) analyzed the temporal evolution of pan-evaporation and point potential 
evaporation from 1970 to 2004, claiming that both pan evaporation and point potential evaporation showed a 
general increasing trend. Similarly, CSIRO and BOM (2015) in Australia also demonstrated that Morton’s 
potential evaporations has increased in the last hundred years and will keep increasing in the future based on 
the output from global climate models (GCMs). A related study by Kirono and Kent (2011) reported that most 
regions in Australia are going to experience increasing evapotranspiration. In addition to increasing trend in 
evaporation, negative trend (or no trend) has also been found across Australia since 1970 (Jovanovic et al., 
2007). The unexpected decreasing evapotranspiration with increasing temperature has been known as 
evaporation paradox (Brutsaert & Parlange, 1998; Roderick & Farquhar, 2002). The discrepancy highlights the 
importance to do further research on evapotranspiration to reconcile the differences between estimations from 
models and / or instrumental records. 

 

Figure 3. Seasonal 
climatology of reference 
evapotranspiration (FAO) 
for three comparative 
datasets (1981 to 2010). The 
observation-based datasets 
(SILO) and reanalysis-based 
datasets (hPET) were shown 
in the first and second row. 
Both were derived via the 
Penman–Monteith (PM) 
equation. One of the bias 
corrected CCAM model 
results (EQM_Monthly) 
were shown in the last row.  

 

In the study by CSIRO and BOM in Australia (2015), the authors pointed out that there is high confidence in 
increasing potential evapotranspiration closely related to local warming, although there is only medium 
confidence in the magnitude of change. Generally, it is expected that potential evapotranspiration will increase 
with increasing temperatures and an intensifying hydrologic cycle (Huntington, 2006). Our study confirms an 
increasing annual evapotranspiration under RCP8.5 for both raw and bias corrected regional climate 
simulations (2079–2098 relative to reference period 1986–2005) in Queensland. The climate change signal is 
generally consistent for reference evapotranspiration for most CCAM runs. Our projections of change for 
reference evapotranspiration are also in general agreement with previous research using Random Forest-based 
models and empirical models (Shi et al., 2020), though they used only eight stations located in south-eastern 
Australia.  
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6. CONCLUSION 

In this work we carried out reference evapotranspiration computations using raw and bias corrected regional 
climate simulations. We found all bias-correction methods improved results when compared to raw CCAM. 
Most bias correction methods will impact the climate change signal with linear scaling preserving the climate 
change signal better than other methods. The bias corrected CCAM model results are in general agreements 
with the station-based interpolation dataset and the ERA5-Land based reanalysis dataset for reference 
evapotranspiration. The results indicate that the three types of evapotranspiration are comparable despite some 
differences in spatial patterns. 

Climate modelling is the primary way to estimate future changes in evapotranspiration. The projected changes 
in reference evapotranspiration (FAO / ASCE) are generally consistent across CCAM ensemble runs. The 
annual average increases at the end of this century are roughly 8%-11% annually in Queensland considering 
both raw and bias corrected CCAM models. 
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