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ABSTRACT

In this paper, we demostrate how to implement the pro-
posed estimation procedure in Casas and Gao (2005) to
examine the compounded return for Standard & Poor
500 Stock Price Index. Our studies show that there is
some kind of weak evidence that certain sections of the
data may exhibit long-range dependence. We also con-
clude that the T-Bill rate should be treated as short–
range dependent time series.

KEYWORDS: Continuous–time model, diffusion pro-
cess, long–range dependence.

1 INTRODUCTION

Consider a stochastic differential equation (SDE) of the
form,

dX(t) = µ(X(t))dt + σ(X(t))dB(t), (1)

where µ(X(t)) is the drift function and σ(X(t)) is the
volatility function of the process.

There is a vast list of references related to develop-
ments on the short–term interest rate as a stochastic
diffusion process. Vacisek (1977) proposes a model of
type (1) with the variance independent of the inter-
est rate. Cox, Ingersoll and Ross (1985) extend this
case to a model where the variance is proportional to
the interest rate. Such a model is termed as the well–
known CIR process. Hull and White (1987) amongst
others, study the logarithm of the stochastic volatility
(SV) as an Ornstein–Uhlenbeck process. Andersen and
Lund (1997) extend the CIR model to associate the spot

interest rate with stochastic volatility process through
estimating the parameters with the efficient method of
moments. Other closely related studies include Aı̈t–
Sahalia (1996, 1999), Arapis and Gao (2004), and Hong
and Li (2004).

This paper considers the estimation of θ using the
estimation procedure in Casas and Gao (2005) for: i)
the compounded return of the S&P 500, ii) the com-
pounded return of the T-Bill rate, and iii) the first dif-
ference of the T-Bill rate. The estimation of β is of
particular interest, as this parameter hints whether the
data exhibits LRD or short–range dependence (SRD).
Thus, for 0 < β < 1

2 the process is said to have LRD,
for β = 0 the observations are uncorrelated, and for
− 1

2 < β < 0 the process is said to have SRD.

2 FINANCIAL DATA

A good estimation procedure must be able to solve
some real data problems if it is to be of any practical
value. To test whether the proposed estimation proce-
dure works adequately for real data, two data sets have
been studied:

i) the daily values of the S&P 500 Stock Price Index
from January 1928 to December 1987 and,

ii) the monthly values of the three–month Treasury
Bill rate from January 1963 to December 1998.

The first step is to prepare the data under study such
that a set of stationary Gaussian data can be obtained.
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In this Section, two transformations to produce station-
ary data are considered:

• The first difference of the original data set is de-
fined as follows

Vt = Zt − Zt−1 for t = 1 . . . T. (2)

• The compounded return of {Zt} is the first differ-
ence of the natural logarithm of the original data
set, given by

Wt = ln
(

Zt

Zt−1

)
for t = 2 . . . T. (3)

In some of the cases studied in this paper, once the
stationarity was assured, the data needed to be slightly
truncated to ensure Gaussianity.

2.1 S&P 500

For the first financial example, a section of the S&P 500
Stock Price Index from January 1928 to December 1987
is considered and four subsets taken: the whole set with
16,128 daily values; a set of 10,000 daily values from the
21st of September 1948; a set of 2,000 daily values from
the 4th of February 1980; and a set of 500 daily values
from the 10th of January 1986. The trajectory of the
S&P 500 Stock Price Index is illustrated in Figure 1.

The initial data set, X(t), is transformed to obtain
a stationary set using equation (3). Afterwards, the
new data set is truncated by the 1% and 99% quantiles
to assure normality. Next, the estimation procedure is
applied to the transformed data set. The estimates of
the parameters involved in the density function (??) of
the S&P 500 Stock Price Index are found. These are
shown in Table 1. The estimate of the spectral density
is shown in Figure 2. The β estimates that correspond
to the two large data sets within the interval (0, 1

2 ) sug-
gest that these sets may display LRD. However, the
β estimates corresponding to the two smaller sections
of the data set are negative therefore, the smaller sets
do not display LRD. For the two larger sections of the
data, moreover, our findings are consistent with those
results obtained by Ding, et al. (1993). They analyse
the autocorrelation function (ACF) of the compounded

Figure 1: A Section of the S&P 500 Index from Jan.
1928 to Dec. 1987.

T α̂ β̂ σ̂

500 1.810 -0.0979 0.0195
2000 2.4566 -0.0444 0.0188
10000 1.8824 0.0053 0.0131
16128 2.4165 0.0120 0.0197

Table 1: Estimation of S&P 500 Stock Index parame-
ters.

return, Wt, |Wt| and W 2
t for a large section of the S&P

500 Stock Price Index, from January 1928 to August
1991. Their analysis is repeated in this paper for dif-
ferent sections of the S&P 500 Stock price Index com-
pounded return. The results are shown in Figures 3 and
4 and Table 3. In these figures, the ACF dies off for the
smaller sets, but it is still important for large lags for
the larger sets.

In summary, our studies show that there is some
weak evidence of LRD for large sections of the S&P
500 Stock Index Price, while small sections of the data
exhibit SRD.
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Figure 2: Estimate of the spectral density function re-
ferring to the truncated compounded return of sections
of the S&P 500 Index: top) (α̂, β̂, σ̂) = (2.4566, -0.0444,
0.0188), bottom) (α̂, β̂, σ̂) = (2.4165, 0.0120, 0.0197).

2.2 T–Bill rate

The three–month T–Bill rate data, shown in Figure 5,
are quarterly observations over the period from January

Figure 3: ACF for Wt, |Wt| and W 2
t of the: top) S&P

500 referring to Jan. 1986 to Dec. 1987, bottom) S&P
500 referring to Feb. 1980 to Dec. 1987.

1963 to December 1998. An initial look at the data
suggests that this set does not exhibit stationarity. This
can be achieved with the appropriate transformation.
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Figure 4: ACF for Wt, |Wt| and W 2
t of the: top) S&P

500 referring to Sep. 1948 to Dec. 1987, bottom) S&P
500 referring to Jan. 1928 to Dec. 1987.

The two transformations described by equations (2) and
(3) were applied to this data. In some cases truncations
were needed to ensure Gaussianity.

Figure 5: Original T-Bill rate.

The parameters α, β and σ are then estimated using
the same estimation procedure as before. The resulting
estimates are shown in Table 2. The density function
estimate is shown in Figure 6. For each of the trans-
formations, the estimate of β is negative and therefore
does not suggest that the data set may display LRD.

Transformation α̂ β̂ σ̂
Vt (trunc. 98%) 0.5322 -0.1440 0.4846
Vt (trunc. 96%) 0.2336 -0.3199 0.3737
Wt 0.7019 -0.0359 0.0774
Wt (trunc. 98%) 0.7091 -0.0342 0.0648

Table 2: Estimation of the T-Bill rate Parameters.

The ACF of Vt and Wt, as well as their absolute
values and the square values of the transformed data are
examined. The functions are displayed in Figure 7 for
the first difference and in Figure 8 for the compounded
return. As can be seen from Table 4, the autocorrelation
values die off for long lags, i.e. the data does not display
LRD as was acknowledged by the results obtained with
the estimation procedure discussed above.
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Figure 6: Estimate of the spectral density function with
(α̂, β̂, σ̂) = (0.5322,−0.1440, 0.4846).

3 DISCUSSION

Recently, several methods and models have been pro-
posed to model data with LRD property. This paper
has extended one of the models proposed in Gao (2004)
to accommodate cases where some sections of the data
may exhibit LRD while other sections may not exhibit
LRD. Such an extension has then been applied to ex-
amine both the S&P 500 index and the T-Bill rate. For
the the S&P 500 index, our studies have indicated that
there is some kind of weak evidence of LRD for the data
values recorded before 1950. In addition, our research
provides a kind of answer to the question of whether or
not the T–Bill rate should be treated as long–range de-
pendent time series. We conclude that the T-Bill rate
does not exhibit LRD.
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t of the first differ-
ence of the T-Bill rate: top) truncated by the 1% and
99% quantiles, bottom) truncated by the 2% and 98%
quantiles.
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Figure 8: ACF for Wt, |Wt| and W 2
t of the compounded

return of the T-Bill rate: top) without truncation, bot-
tom) truncated by the 1% and 99% quantiles.
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data lag1 2 5 10 20 40 70 100
T = 500
Wt 0.0734 -0.0458 0.0250 0.0559 -0.0320 -0.0255 0.0047 0.0215
|Wt|1/2 -0.0004 0.1165 0.1307 0.0844 0.0605 -0.0128 0.0430 -0.0052
|Wt| 0.0325 0.1671 0.1575 0.1293 0.092 -0.0141 0.0061 -0.0004
|Wt|2 0.0784 0.2433 0.1699 0.1573 0.1117 -0.0094 -0.0283 0.0225
T = 2000
Wt 0.0494 -0.0057 -0.0090 0.0142 0.0012 -0.0209 0.0263 0.0177
|Wt|1/2 -0.0214 -0.0072 0.0826 0.0222 0.0280 -0.0040 0.0359 0.0001
|Wt| -0.0029 0.0187 0.0997 0.0258 0.0505 0.0036 0.0422 -0.0020
|Wt|2 0.0401 0.0562 0.1153 0.0275 0.0668 0.0018 0.0376 -0.0045
T = 10000
Wt 0.1580 -0.0224 0.0122 0.0125 0.0036 0.0079 0.0028 0.0071
|Wt|1/2 0.1161 0.0813 0.1196 0.0867 0.0789 0.0601 0.0775 0.0550
|Wt| 0.1223 0.0986 0.1326 0.0989 0.0944 0.0702 0.0879 0.0622
|Wt|2 0.1065 0.1044 0.1281 0.0937 0.0988 0.0698 0.0847 0.0559
T = 16127
Wt 0.0971 -0.0362 0.0054 0.0180 0.0036 0.0222 -0.0061 0.0041
|Wt|1/2 0.1783 0.1674 0.1879 0.1581 0.1567 0.1371 0.1252 0.1293
|Wt| 0.2044 0.2012 0.2215 0.1831 0.1835 0.1596 0.1439 0.1464
|Wt|2 0.1864 0.2018 0.2220 0.1684 0.1709 0.1510 0.1303 0.1321

Table 3: Autocorrelation of Wt, |W |d for d = 1/2, 1, 2 for the S&P 500.

data lag1 2 5 10 20 40 70 100
Vt 0.4014 0.1789 0.0285 0.1389 0.1759 0.1377 0.0419 0.0193
|Vt|1/2 0.4244 0.3385 0.3012 0.2279 0.2377 0.2010 0.1882 -0.0626
|Vt| 0.3999 0.3593 0.2698 0.2622 0.2125 0.1696 0.1636 -0.0691
|Vt|2 0.2423 0.2551 0.1626 0.2476 0.1089 0.0890 0.0899 -0.0570
Wt 0.446 0.1961 0.003 0.1212 0.128 0.1306 0.062 -0.0598
|Wt|1/2 0.2893 0.1589 0.1781 0.1028 0.1381 0.1143 0.1174 0.0165
|Wt| 0.2803 0.1654 0.1654 0.1525 0.1306 0.1235 0.1250 0.0278
|Wt|2 0.2108 0.1395 0.1020 0.1861 0.1146 0.1102 0.1314 0.0722

Table 4: Autocorrelation of Vt, |Vt|d, Wt and |Wt|d for d = 1/1, 1, 2 for the T–Bill rate.
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