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ABSTRACT

It is commonly accepted that some financial data may
exhibit long-range dependence, while certain financial
data exhibit short–range dependence. Both behaviours
may be fitted to a continuous–time fractional stochastic
model. The estimation procedure proposed in this pa-
per is based on a continuous–time version of the Gauss–
Whittle objective function to find the parameter esti-
mates that minimise the discrepancy between the spec-
tral density and the data periodogram. These estimates
are asymptotically consistent. In addition, the finite
sample results support the asymptotic consistency.

KEYWORDS: Continuous–time model, diffusion pro-
cess, long–range dependence.

1 INTRODUCTION

Since the publication of Merton (1969), continuous–
time processes have been closely associated with fi-
nance. Thus, the variation of a security price is roughly
calculated as the sum of its multiple variations dur-
ing the given time period. The main assumption of the
continuous–time theory is that these security price vari-
ations happen over infinitesimal intervals of time. Per-
haps the most popular application of this theory has
been the contribution to option pricing by Black and
Scholes (1973) and Merton (1973), in which the option
price problem is reduced to finding the solution to a
partial differential equation. In general, any contingent
claim that has an unpredictable outcome in the future
can be modelled in continuous–time by a Brownian mo-

tion process. Consider a stochastic differential equation
(SDE) of the form,

dX(t) = µ(X(t))dt + σ(X(t))dB(t), (1)

where µ(X(t)) is the drift function and σ(X(t)) is the
volatility function of the process. Analytical solutions
to these models are not always available. This mo-
tivates the development of numerical and estimation
techniques. For instance, Platen (1999) and Kloeden
and Platen (1999) extend numerical methods used to
find approximations of solutions of ordinary differential
equations to find approximations of solutions of SDEs.
At the same time, there has been an important devel-
opment of estimation techniques for continuous–time
models which can be grouped into: maximum likeli-
hood methods, generalised method of moments, simu-
lated method of moments, efficient method of moments,
nonparametric approaches and methods based on em-
pirical characteristic functions (see Sundaresan 2000).

In recent years, there have been both theoretical
and applied studies for dealing with cases where data
may exhibit long–range dependence (LRD) (see Ding,
Granger and Engle 1993; Robinson 1994, 1999; Baillie
and King 1996; Comte and Renault 1996, 1998; Ding
and Granger 1996; Anh and Heyde 1999; Heyde 1999;
Deo and Hurvich 2001; Gao, et al. 2001; Gao, Anh
and Heyde 2002; Gao 2004; and others). For the case
of continuous–time models, Comte and Renault (1996)
prove that classical SDE models can be extended to em-
brace LRD models. They also show that how this ex-
tension is more suitable in a continuous–time framework
than in a discrete time framework. The main character-
istic of these extended models is the substitution of the
classical Brownian motion by the so–called fractional
Brownian motion of the form Bβ(t) =

∫ t

0
(t−s)β

Γ(1+β)dB(s),
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where B(t) is the standard Brownian motion and Γ(x)
is the usual Γ function. A Hurst index, H, with values
in the interval ( 1

2 , 1) quantifies that the data exhibit
LRD. The parameter β is related to the Hurst index
through the expression H = β + 1

2 (see Beran 1994,
p.52–53), therefore β is defined as the LRD parameter
when 0 < β < 1

2 . For 0 < β < 1
2 (i.e., 1

2 < H < 1) the
process is said to have LRD, for β = 0 (i.e., H = 1

2 )
the observations are uncorrelated, and for − 1

2 < β < 0
(i.e., 0 < H < 1

2 ) the process is said to have short–
range dependence (SRD). In practice, Ding, Granger
and Engle (1993) suggest that financial aggregate data,
such as the absolute return for Standard & Poor 500
Stock Price Index, may display LRD. That is, transfor-
mations of the autocorrelation function for large lags
have non–negligible values.

Throughout this paper, the models used are deter-
mined by the continuous–time fractional stochastic dif-
ferential equation of the form

dX(t) = −αX(t)dt + σdBβ(t), X(0) = 0, (2)

for values of t ∈ (0,∞). The solutions to this diffusion
equation are processes with a spectral density defined
by

φ(ω) = φ(ω, θ) =
σ2

Γ2(1 + β)
1

|ω|2β

1
ω2 + α2

, (3)

where the parameter θ belongs to the set Θ ={
θ = (α, β, σ) : α > 0,− 1

2 < β < 1
2 , σ > 0

}
. In this

equation, α is the drift parameter, σ is the volatility
parameter and Bβ(t) is as defined before. The well–
known short–term interest rate model proposed by Va-
sicek (1977) is a special case of model (2) with β = 0.
The spectral density described in equation (3) corre-
sponds to that of an Ornstein–Ulhenbeck process of
the form (2) driven by fractional Brownian motion with
Hurst index H = β + 1

2 .

The solutions X(t) of (2) are given by

X(t) =
∫ t

0

A(t− s)dB(s) (4)

with A(x) = σ
Γ(1+β)

(
xβ − α

∫ x

0
e−α(x−u)uβdu

)
. It fol-

lows from equation (4) that X(t) belongs to a family of
non–stationary Gaussian processes. It is known though,
that a stationary version, Y (t), of X(t) can be found as

follows:

Y (t) =
∫ t

−∞
A(t− s)dB(s).

Comte and Renault (1998) were among the first to
study the estimation of the LRD parameter β involved
in model (2). In their study, an approximation to the
solution given by equation (4) is found using a path-
wise fractional integration method. As an application,
they use this method to estimate β as a parameter of a
fractional stochastic volatility (FSV) model of the form

d ln(S(t)) = v(t)dB(t), (5)
d ln(v(t)) = −α ln(v(t))dt + σdBβ(t), (6)

where the parameters and Brownian motion are
defined as above.

As can be seen, models (2) and (6) are also deter-
mined by the drift parameter, α, and the volatility pa-
rameter, σ2. More recently, Gao (2004) proposes an
estimation procedure for the case where θ ∈ Θ1 ={
θ = (α, β, σ) : α > 0, 0 < β < 1

2 , σ > 0
}

for model (2)
and establishes some asymptotic properties for the pro-
posed estimation procedure.

To check whether the estimation procedure proposed
in Gao (2004) remains applicable to some well–known
financial data, such as the S&P 500 Stock Price Index,
we choose several different sections of the data and then
check whether all the chosen sections of the data exhibit
LRD. Our empirical studies show that the estimated
values of β based on some sections of the data appear
to be within the interval of

(
0, 1

2

)
while the resulting

estimated values of β based on other sections of the
data look negative. This motivates the extension of
the proposed estimation procedure to the case where
θ ∈ Θ =

{
θ = (α, β, σ) : α > 0,− 1

2 < β < 1
2 , σ > 0

}
.

The main contribution of the current paper thus in-
cludes that the proposed estimation procedure is ap-
plied to check whether the LRD or SRD property of
two well–known financial data sets: a) the S&P 500
Stock Price Index and b) the Treasury Bill rate. Our
results support those obtained by Ding, Granger and
Engle (1993). This paper finishes with a summary of
the results.
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2 ESTIMATION PROCEDURE

2.1 Continuous–time Estimation

The spectral density function φ(ω, θ) given in equation
(3) is well–defined for all values ω ∈ <. Thus for values
of β ∈ (0, 1

2 ), the spectral density behaves as a usual
LRD spectral density: decreasing to zero as |ω| → ∞
and increasing to ∞ as |ω| → 0. For values of β ∈
(− 1

2 , 0) the spectral density, φ(ω, θ), decreases to zero
as |ω| → ∞ and |ω| → 0 and has the maximum at ω =

α
√
−β
1+β . We say, the latter describes a SRD behaviour.

The autocorrelation and spectral density function for
LRD and SRD processes is illustrated in Figure 1.

Some detailed discussion about spectral analysis in-
volving short–lange dependent stationary time series
can be found in §10 of Brockwell and Davis (1991) and
Priestly (1981). For the LRD case, Gao, Anh and Heyde
(2002) propose a continuous–time periodogram of the
form

IY
N (ω) =

1
2πN

∣∣∣∣∣
∫ N

0

e−iωtY (t)dt

∣∣∣∣∣
2

,

where N > 0 is the upper bound of the interval [0, N ],
on which each Y (t) is observed.

As in Gao (2004), this paper uses an extended
continuous–time version of the discrete Gauss–Whittle
contrast function used by Dahlahaus (1989) of the form

LY
N (θ) =

1
4π

∫ ∞

−∞

{
log(φ(ω, θ)) +

IX
N (ω)

φ(ω, θ)

}
dω

1 + ω2
.

We then define the minimum contrast estimator of θ
as

θ̄N = arg min
θ∈Θ0

LY
N (θ),

where Θ0 is a compact subset of Θ. Similar to Gao
(2004), it can be shown that θ̄N is a consistent estimator
of θ0, the true value of θ.

2.2 Discrete Estimation

In many practical circumstances, observations on Y (t)
are made at discrete intervals of time, even though the
underlying process may be continuous. In addition, it is
computationally easier to find a consistent estimate of

θ based on a sequence of discrete observations on Y (t).
This section considers the following discrete process:

Zt = Y (t), t = 1, 2, . . . , T − 1 and T = [N ].

Such {Zt} is stationary and normally distributed with
E[Zt] = 0 and auto-covariance function obtained as the
inverse Fourier transform of its density function. As
can be seen in equation (2), φ(ω, θ) is symmetric with
respect to ω and therefore the complex terms of the
transformation cancel out. Thus, the auto–covariance
function is calculated as follows:

γ(τ) = 2
∫ ∞

0

φ(ω, θ) cos(ωτ)dω.

Equivalently, φ(ω, θ) is the Fourier transform of the
covariance function of the stationary process {Zt} (see
Priestly 1981) given by

φ(ω, θ) =
1
2π

∫ ∞

−∞
γ(τ)e−iτωdω.

It can be seen from Bloomfield (1976, §2.5) that the
corresponding spectral density of {Zt} is defined by

fZ(ω) = f(ω, θ) =
∞∑

k=−∞

φ(ω − 2kπ, θ).

Given T observations Z1, . . . , ZT , we may estimate
the spectral density function fZ(ω, θ0) by

IZ
T (ω) =

1
2πT

∣∣∣∣∣
T∑

t=1

e−iωtZt

∣∣∣∣∣
2

.

As a discrete approximation to LY
N (θ) defined in Sec-

tion , we use a discrete version of the form

WT (θ) =
1

2T

T−1∑
s=1

{
log(f(ωs, θ)) +

IZ
T (ωs)

f(ωs, θ)

}
with ωs = 2πs

T .

Thus, the (discrete) minimum contrast estimator of
θ can be defined by

θ̂T = arg min
θ∈Θ0

W (θ),
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which approximates θ̄N for large enough N , i.e. it can
be shown that

lim
N→∞

P (|θ̂T − θ̄N | ≥ ε) = 0

for any given small ε > 0. Thus, we may approximate
θ̄N by θ̂T in practice.

2.3 Estimation of θ

Samples for different parameters, θ0, and different
lengths, T, were generated. The discrete estimation
procedure explained in Section 2.2 was applied to these
samples to obtain estimators of θ0. The aim was to
show that the estimation procedure was reliable for any
sample path that follows a model of the form (2).

The results in Tables 1 and 2 show the empirical
means, the empirical standard deviations and the em-
pirical mean square errors. When the number of points
generated increases the empirical mean gets closer to
the value of the real parameter and its standard error
reduces. This shows that there is an asymptotic con-
vergence of the estimates to the real parameters. The
estimates obtained with 100 and 1000 simulations do
not differ strongly from each other. This may show that
the method is also robust for small numbers of simula-
tions. The tables show that the parameter β may be
estimated quite accurately. In addition, the simulations
have been carried out for values of β ∈ (− 1

2 , 1
2 ) includ-

ing the case with β = 0. The results confirm that this
procedure can be used to estimate the parameters of
financial data with possible LRD or SRD.

The parameter β is restricted to the interval (− 1
2 , 1

2 ),
whereas α and σ can take any positive value. Large val-
ues of α and σ need larger data sets for some good
estimation. For instance in the simulation for θ =
(1,−0.2, 0.05), there were 15 outliers out of 1000 esti-
mates. This is less than 2% of the number of estimates
but these have a large effect on the empirical mean. As
the size of the data increases, the occurrence of these
outliers decreases.

In summary, the proposed estimation procedure
works well numerically.

3 DISCUSSION

Recently, several methods and models have been pro-
posed to model data with LRD property. This paper
has extended one of the models proposed in Gao (2004)
to accommodate cases where some sections of the data
may exhibit LRD while other sections may not exhibit
LRD. The simulation results corroborate asymptotic
convergence of the estimates.

Acknowledgements. The authors would like to thank
the University of Western Australia and the Australian
Research Council for their financial support.
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a)

b)

Figure 1: a) Spectral density function for LRD and SRD processes, b) Autocorrelation function for LRD and SRD
processes.



Isabel Casas and Jiti Gao 6

T
=

1
5
0

T
=

4
0
0

T
=

1
0
0
0

T
=

2
5
0
0

θ
0

=
(0

.1
,
0
.2

,
0
.0

1
)

E
m

p
ir

ic
a
l
m

e
a
n

E
m

p
ir

ic
a
l
st

d
.d

e
v
.

E
m

p
ir

ic
a
l
M

S
E

α̂
β̂

σ̂

0
.1

5
9
3

0
.1

9
3
8

0
.0

0
7
6

0
.2

5
0
1

0
.1

4
3
4

0
.0

0
3
2

0
.0

6
6
1

0
.0

2
0
6

1
.6

e
-0

5

α̂
β̂

σ̂

0
.1

1
4
5

0
.1

9
5
8

0
.0

0
7
0

0
.0

5
7
4

0
.0

6
0
3

0
.0

0
2
7

0
.0

0
3
5

0
.0

0
3
6

1
.6

e
-0

5

α̂
β̂

σ̂

0
.1

0
4
2

0
.1

9
6
7

0
.0

0
7
1

0
.0

2
9
8

0
.0

4
1
4

0
.0

0
1
5

0
.0

0
0
9

0
.0

0
1
7

1
.1

e
-0

5

α̂
β̂

σ̂

0
.1

0
3
1

0
.1

9
8
6

0
.0

0
7
2

0
.0

1
5
1

0
.0

2
4
4

2
.0

e
-0

4
0
.0

0
0
2

0
.0

0
0
6

7
.9

e
-0

6

θ
0

=
(0

.1
,
−

0
.2

,
0
.0

1
)

E
m

p
ir

ic
a
l
m

e
a
n

E
m

p
ir

ic
a
l
st

d
.d

e
v
.

E
m

p
ir

ic
a
l
M

S
E

α̂
β̂

σ̂

0
.1

5
0
9

-0
.1

9
0
2

0
.0

0
7
1

0
.1

3
6
6

0
.1

0
3
3

0
.0

0
1
4

0
.0

2
1
2

0
.0

1
0
8

1
.0

e
-0

5

α̂
β̂

σ̂

0
.1

2
5
5

-0
.1

9
0
3

0
.0

0
7
2

0
.1

1
3
7

0
.0

6
2
4

4
.0

e
-0

4
0
.0

1
3
6

0
.0

0
4
0

8
.0

e
-0

6

α̂
β̂

σ̂

0
.1

0
5
2

-0
.1

9
9
8

0
.0

0
7
1

0
.0

2
5
0

0
.0

2
6
9

2
.0

e
-0

4
0
.0

0
0
6

0
.0

0
0
7

8
.4

e
-0

6

α̂
β̂

σ̂

0
.0

9
9
6

-0
.2

0
5
3

0
.0

0
7
1

0
.0

1
3
3

0
.0

1
6
9

1
.0

e
-0

4
0
.0

0
0
2

0
.0

0
0
3

8
.4

e
-0

6

θ
0

=
(0

.1
,
0
.3

,
1
)

E
m

p
ir

ic
a
l
m

e
a
n

E
m

p
ir

ic
a
l
st

d
.d

e
v
.

E
m

p
ir

ic
a
l
M

S
E

α̂
β̂

σ̂

0
.1

6
8
5

0
.2

7
7
7

0
.8

7
2
3

0
.2

6
3
1

0
.1

7
2
1

0
.2

2
2
4

0
.0

7
3
9

0
.0

3
0
1

0
.0

6
5
8

α̂
β̂

σ̂

0
.1

0
1
7

0
.2

7
2
0

0
.7

6
4
7

0
.0

4
4
0

0
.0

6
7
6

0
.0

6
6
4

0
.0

0
1
9

0
.0

0
5
3

0
.0

5
9
8

α̂
β̂

σ̂

0
.1

0
1
6

0
.2

8
6
2

0
.7

3
1
9

0
.0

2
5
3

0
.0

4
1
5

0
.0

3
7
1

0
.0

0
0
6

0
.0

0
1
9

0
.0

7
3
2

α̂
β̂

σ̂

0
.1

0
1
2

0
.2

9
4
6

0
.7

1
9
1

0
.0

1
6
9

0
.0

2
2
8

0
.0

1
8
2

0
.0

0
0
3

0
.0

0
0
5

0
.0

7
9
2

θ
0

=
(0

.1
,
−

0
.3

,
1
)

E
m

p
ir

ic
a
l
m

e
a
n

E
m

p
ir

ic
a
l
st

d
.d

e
v
.

E
m

p
ir

ic
a
l
M

S
E

α̂
β̂

σ̂

0
.1

8
5
9

-0
.2

8
3
2

0
.7

3
7
7

0
.2

5
3
8

0
.1

2
9
0

0
.0

9
0
7

0
.0

7
1
8

0
.0

1
6
9

0
.0

7
7
0

α̂
β̂

σ̂

0
.1

1
1
8

-0
.3

0
4
5

0
.7

3
0
9

0
.0

5
3
7

0
.0

5
3
6

0
.0

2
7
2

0
.0

0
3
0

0
.0

0
2
9

0
.0

7
3
1

α̂
β̂

σ̂

0
.1

0
5
5

-0
.3

0
7
4

0
.7

2
6
2

0
.0

2
8
2

0
.0

2
7
2

0
.0

1
7
1

0
.0

0
0
8

0
.0

0
0
8

0
.0

7
5
2

α̂
β̂

σ̂

0
.1

0
0
4

-0
.3

1
0
5

0
.7

2
9
2

0
.0

1
7
1

0
.0

1
8
0

0
.0

1
0
4

0
.0

0
0
3

0
.0

0
0
4

0
.0

7
3
4

θ
0

=
(0

.1
,
0
,
0
.4

)

E
m

p
ir

ic
a
l
m

e
a
n

E
m

p
ir

ic
a
l
st

d
.d

e
v
.

E
m

p
ir

ic
a
l
M

S
E

α̂
β̂

σ̂

0
.1

5
6
4

0
.0

2
4
8

0
.2

9
3
7

0
.1

6
1
5

0
.1

0
7
6

0
.0

3
5
5

0
.0

2
9
3

0
.0

1
2
2

0
.0

1
2
5

α̂
β̂

σ̂

0
.1

1
2
4

0
.0

1
1
0

0
.2

8
4
4

0
.0

3
8
4

0
.0

5
2
2

0
.0

1
1
4

0
.0

0
1
6

0
.0

0
2
8

0
.0

1
3
5

α̂
β̂

σ̂

0
.1

0
2
8

0
.0

0
2
6

0
.2

8
3
3

0
.0

2
5
4

0
.0

3
1
0

0
.0

0
7
1

0
.0

0
0
6

0
.0

0
1
0

0
.0

1
3
7

α̂
β̂

σ̂

0
.1

0
0
7

5
.7

e
-0

7
0
.2

8
3
7

0
.0

1
4
7

0
.0

1
9
0

0
.0

0
4
3

0
.0

0
0
2

0
.0

0
0
4

0
.0

1
3
5

θ
0

=
(1

,
0
.2

,
0
.0

5
)

E
m

p
ir

ic
a
l
m

e
a
n

E
m

p
ir

ic
a
l
st

d
.d

e
v
.

E
m

p
ir

ic
a
l
M

S
E

α̂
β̂

σ̂

1
.2

4
1
5

0
.1

7
6
0

0
.0

3
5
1

1
.0

0
3
3

0
.1

7
3
0

0
.0

2
3
7

1
.0

6
4
9

0
.0

3
0
5

0
.0

0
0
9

α̂
β̂

σ̂

1
.0

4
0
3

0
.1

8
7
2

0
.0

3
4
8

0
.3

9
6
9

0
.1

1
7
1

0
.0

1
2
0

0
.1

5
9
1

0
.0

1
3
9

0
.0

0
0
4

α̂
β̂

σ̂

0
.9

7
0
0

0
.1

8
2
2

0
.0

3
5
0

0
.2

2
7
9

0
.0

7
1
5

0
.0

0
3
1

0
.0

5
2
8

0
.0

0
5
4

0
.0

0
0
2

α̂
β̂

σ̂

1
.0

2
9
9

0
.2

0
3
4

0
.0

3
5
7

0
.1

4
8
5

0
.0

4
3
1

0
.0

0
2
1

0
.0

2
2
9

0
.0

0
1
9

0
.0

0
0
2

θ
0

=
(1

,
−

0
.2

,
0
.0

5
)

E
m

p
ir

ic
a
l
m

e
a
n

E
m

p
ir

ic
a
l
st

d
.d

e
v
.

E
m

p
ir

ic
a
l
M

S
E

α̂
β̂

σ̂

8
.1

0
5
3

-0
.2

0
1
6

0
.0

9
1
1

5
0
.4

3
4
6

0
.1

8
5
8

0
.4

1
0
4

2
5
9
4
.1

3
4

0
.0

3
4
5

0
.1

7
0
1

α̂
β̂

σ̂

1
.0

2
9
2

-0
.2

2
5
3

0
.0

2
9
5

0
.4

7
0
8

0
.1

3
8
8

0
.0

2
1
5

0
.2

2
2
5

0
.0

1
9
9

0
.0

0
0
9

α̂
β̂

σ̂

1
.0

0
4
8

-0
.2

1
1
4

0
.0

3
4
9

0
.3

2
9
3

0
.0

9
7
2

0
.0

0
7
8

0
.1

0
8
5

0
.0

0
9
6

0
.0

0
0
3

α̂
β̂

σ̂

1
.0

3
4
2

-0
.1

9
9
1

0
.0

3
6
1

0
.2

2
8
2

0
.0

6
5
1

0
.0

0
2
7

0
.0

5
3
2

0
.0

0
4
2

0
.0

0
0
2

T
ab

le
1:

E
st

im
at

es
of

θ
=

(α
,β

,σ
)

fo
r

di
ffe

re
nt

si
m

ul
at

io
ns

.
10

0
sa

m
pl

es
ge

ne
ra

te
d.



Isabel Casas and Jiti Gao 7

T
=

1
5
0

T
=

4
0
0

T
=

1
0
0
0

T
=

2
5
0
0

θ
0

=
(0

.1
,
0
.2

,
0
.0

1
)

E
m

p
ir

ic
a
l
m

e
a
n

E
m

p
ir

ic
a
l
st

d
.d

e
v
.

E
m

p
ir

ic
a
l
M

S
E

α̂
β̂

σ̂

0
.1

5
0
3

0
.1

9
5
5

0
.0

0
7
3

0
.1

9
0
7

0
.1

2
3
0

0
.0

0
3
7

0
.0

3
8
9

0
.0

1
5
1

2
.1

e
-0

5

α̂
β̂

σ̂

0
.1

1
2
0

0
.1

9
1
1

0
.0

0
6
9

0
.0

7
6
5

0
.0

6
6
4

0
.0

0
2
9

0
.0

0
6
0

0
.0

0
4
5

1
.8

e
-0

5

α̂
β̂

σ̂

0
.1

0
3
4

0
.1

9
6
6

0
.0

0
7
1

0
.0

2
5
4

0
.0

3
6
0

0
.0

0
1
4

0
.0

0
0
6

0
.0

0
1
3

1
.0

e
-0

5

α̂
β̂

σ̂

0
.1

0
2
8

0
.1

9
9
8

0
.0

0
7
1

0
.0

1
5
4

0
.0

2
1
5

7
.0

e
-0

4
0
.0

0
0
2

0
.0

0
0
5

8
.9

e
-0

6

θ
0

=
(0

.1
,
−

0
.2

,
0
.0

1
)

E
m

p
ir

ic
a
l
m

e
a
n

E
m

p
ir

ic
a
l
st

d
.d

e
v
.

E
m

p
ir

ic
a
l
M

S
E

α̂
β̂

σ̂

0
.1

7
0
2

-0
.1

7
4
5

0
.0

0
7

0
.2

3
2
4

0
.1

2
4
2

0
.0

0
2
3

0
.0

5
8
9

0
.0

1
6
1

1
.4

e
-0

5

α̂
β̂

σ̂

0
.1

1
3
9

-0
.1

9
7
0

0
.0

0
7
1

0
.0

7
9
8

0
.0

5
4
7

0
.0

0
1
0

0
.0

0
6
6

0
.0

0
3
0

9
.4

e
-0

6

α̂
β̂

σ̂

0
.1

0
4
6

-0
.2

0
0
6

0
.0

0
7
1

0
.0

2
6
2

0
.0

2
9
0

2
.0

e
-0

4
0
.0

0
0
7

0
.0

0
0
8

8
.4

e
-0

6

α̂
β̂

σ̂

0
.1

0
2
3

-0
.2

0
1
0

0
.0

0
7
1

0
.0

1
4
4

0
.0

1
7
8

1
.0

e
-0

4
0
.0

0
0
2

0
.0

0
0
3

8
.4

e
-0

6

θ
0

=
(0

.1
,
0
.3

,
1
)

E
m

p
ir

ic
a
l
m

e
a
n

E
m

p
ir

ic
a
l
st

d
.d

e
v
.

E
m

p
ir

ic
a
l
M

S
E

α̂
β̂

σ̂

0
.1

3
3
3

0
.2

5
7
2

0
.8

5
4
0

0
.1

9
6
6

0
.1

3
2
8

0
.1

8
6
2

0
.0

3
9
8

0
.0

1
9
4

0
.0

5
6
0

α̂
β̂

σ̂

0
.1

0
1
4

0
.2

6
7
1

0
.7

7
0
6

0
.0

7
2
8

0
.0

7
2
4

0
.0

9
0
3

0
.0

0
5
3

0
.0

0
6
3

0
.0

6
0
8

α̂
β̂

σ̂

0
.0

9
7
7

0
.2

8
1
1

0
.7

3
3
3

0
.0

2
6
3

0
.0

4
2
5

0
.0

3
7
2

0
.0

0
0
7

0
.0

0
2
2

0
.0

7
2
5

α̂
β̂

σ̂

0
.0

9
9
3

0
.2

9
2
7

0
.7

1
7
8

0
.0

1
6
3

0
.0

2
5
5

0
.0

1
8
7

0
.0

0
0
3

0
.0

0
0
7

0
.0

8
0
0

θ
0

=
(0

.1
,
−

0
.3

,
1
)

E
m

p
ir

ic
a
l
m

e
a
n

E
m

p
ir

ic
a
l
st

d
.d

e
v
.

E
m

p
ir

ic
a
l
M

S
E

α̂
β̂

σ̂

0
.1

6
4
6

-0
.2

8
5
7

0
.7

3
8
1

0
.2

2
2
2

0
.1

1
6
4

0
.0

7
9
6

0
.0

5
3
5

0
.0

1
3
7

0
.0

7
4
9

α̂
β̂

σ̂

0
.1

0
9
5

-0
.3

0
6
7

0
.7

2
8
3

0
.0

6
9
3

0
.0

5
1
2

0
.0

3
3
3

0
.0

0
4
9

0
.0

0
2
7

0
.0

7
4
9

α̂
β̂

σ̂

0
.0

9
9
5

-0
.3

1
2
2

0
.7

2
6
8

0
.0

2
6
6

0
.0

2
9
4

0
.0

1
7
6

0
.0

0
0
8

0
.0

0
1
0

0
.0

7
4
9

α̂
β̂

σ̂

0
.1

0
0
9

-0
.3

0
1
8

0
.7

1
1
0

0
.0

1
5
6

0
.0

1
5
7

0
.0

1
2
1

0
.0

0
0
2

0
.0

0
0
2
3

0
.0

8
3
7

θ
0

=
(0

.1
,
0
,
0
.4

)

E
m

p
ir

ic
a
l
m

e
a
n

E
m

p
ir

ic
a
l
st

d
.d

e
v
.

E
m

p
ir

ic
a
l
M

S
E

α̂
β̂

σ̂

0
.1

6
9
0

0
.0

2
8
6

0
.3

0
1
2

0
.2

0
3
7

0
.1

2
3
8

0
.0

4
0
9

0
.0

4
6
2

0
.0

1
6
1

0
.0

1
1
4

α̂
β̂

σ̂

0
.1

1
5
6

0
.0

0
4
5

0
.2

8
7
8

0
.0

6
6
6

0
.0

5
8
4

0
.0

1
4
6

0
.0

0
4
7

0
.0

0
3
4

0
.0

1
2
8

α̂
β̂

σ̂

0
.1

0
4
7

-2
.0

e
-0

4
0
.2

8
4
8

0
.0

2
5
6

0
.0

3
3
4

0
.0

0
7
2

0
.0

0
0
7

0
.0

0
1
1

0
.0

1
3
3

α̂
β̂

σ̂

0
.1

0
2
1

1
.0

e
-0

4
0
.2

8
3
4

0
.0

1
5
5

0
.0

2
0
1

0
.0

0
4
4

0
.0

0
0
2

0
.0

0
0
4

0
.0

1
3
6

θ
0

=
(1

,
0
.2

,
0
.0

5
)

E
m

p
ir

ic
a
l
m

e
a
n

E
m

p
ir

ic
a
l
st

d
.d

e
v
.

E
m

p
ir

ic
a
l
M

S
E

α̂
β̂

σ̂

1
.2

9
8
0

0
.1

7
4
4

0
.0

3
7
5

2
.1

3
8
5

0
.1

7
3
9

0
.0

3
5
4

4
.6

6
2
0

0
.0

3
0
9

0
.0

0
1
4

α̂
β̂

σ̂

1
.0

0
5
3

0
.1

7
3
7

0
.0

3
3
9

0
.4

2
5
0

0
.1

2
4
1

0
.0

1
2
8

0
.1

8
0
6

0
.0

1
6
1

0
.0

0
0
4

α̂
β̂

σ̂

1
.0

1
5
2

0
.1

9
3
2

0
.0

3
5
5

0
.2

4
9
7

0
.0

7
2
3

0
.0

0
5
1

0
.0

6
2
6

0
.0

0
5
3

0
.0

0
0
2

α̂
β̂

σ̂

1
.0

1
2
6

0
.1

9
9
9

0
.0

3
5
6

0
.1

4
1
2

0
.0

4
0
5

0
.0

0
2

0
.0

2
0
1

0
.0

0
1
6

0
.0

0
0
2

θ
0

=
(1

,
−

0
.2

,
0
.0

5
)

E
m

p
ir

ic
a
l
m

e
a
n

E
m

p
ir

ic
a
l
st

d
.d

e
v
.

E
m

p
ir

ic
a
l
M

S
E

α̂
β̂

σ̂

1
.4

6
8
7

-0
.2

0
4
2

0
.0

3
2
3

3
.5

7
0
3

0
.1

7
1
4

0
.0

4
1
9

1
2
.9

6
6
7

0
.0

2
9
4

0
.0

0
2
1

α̂
β̂

σ̂

1
.1

3
0
4

-0
.2

0
0
2

0
.0

3
1
1

0
.7

4
6
9

0
.1

2
5
8

0
.0

2
0
9

0
.5

7
4
9

0
.0

1
5
8

0
.0

0
0
8

α̂
β̂

σ̂

1
.0

3
8
9

-0
.2

0
0
9

0
.0

3
3
9

0
.3

1
2
3

0
.0

8
0
3

0
.0

1
1
8

0
.0

9
9
0

0
.0

0
6
4

0
.0

0
0
4

α̂
β̂

σ̂

1
.0

3
2
7

-0
.1

9
4
2

0
.0

3
5
6

0
.1

9
7
3

0
.0

5
6
6

0
.0

0
4
3

0
.0

4
0
0

0
.0

0
3
2

0
.0

0
0
2

T
ab

le
2:

E
st

im
at

es
of

θ
=

(α
,β

,σ
)

fo
r

di
ffe

re
nt

si
m

ul
at

io
ns

.
10

00
sa

m
pl

es
ge

ne
ra

te
d.



Isabel Casas and Jiti Gao 8

Anh, V. and Heyde, C. (ed.) 1999. Special
issue on long-range dependence.Journal of
Statistical Planning & Inference 80, 1.

Baillie, R. and King, M. (ed.) 1996. Special
issue of Journal of Econometrics, Annals of
Econometrics 73, 1.

Beran, J. 1994. Statistics for Long–Memory
Processes. Chapman and Hall, New York.

Black, F. and Scholes, M. 1973. The pricing of
options and corporate liabilities. Journal
of Political Economy 3, 637–654.

Bloomfield, P. 1976. Fourier Analysis of Time
Series: An Introduction. John Wiley, New
York.

Brockwell, P. and Davis, R. 1991. Time Series
Theory and Methods. Springer, New York.

Comte, F. and Renault, E. 1996. Long mem-
ory continuous–time models. Journal of
Econometrics 73, 101–149.

Comte, F. and Renault, E. 1998. Long mem-
ory in continuous–time stochastic volatility
models. Mathematical Finance 8, 291–323.

Dahlhaus, R. (1989). Efficient parameter es-
timation for self–similar processes. Annals
of Statistics 17, 1749–1766.

Deo, R. and Hurvich, C. M. 2001. On the
log periodogram regression estimator of
the memory parameter in long memory
stochastic volatility models. Econometric
Theory 17,686–710.

Ding, Z. and Granger, C. W. J. 1996. Mod-
elling volatility persistence of speculative
returns: a new approach. Journal of
Econometrics 73, 185–215.

Ding, Z., Granger, C. W. J. and Engle, R. F.
1993. A long memory property of stock
market returns and a new model. Journal
of Empirical Finance 1, 83–105.

Gao, J. 2004. Modelling long–range depen-
dent Gaussian processes with application
in continuous–time financial models. Jour-
nal of Applied Probability 41, 467–482.

Gao, J., Anh, V., Heyde, C. and Tieng, Q.
2001. Parameter estimation of stochas-
tic processes with long-range dependence
and intermittency. Journal of Time Series
Analysis 22, 517–535.

Gao, J., Anh, V. and Heyde, C. 2002. Sta-
tistical estimation of nonstationary Gaus-
sian processes with long–range dependence

and intermittency. Stochastic Processes &
Their Applications 99, 295–321.

Heyde, C. 1999. A risky asset model with
strong dependence through fractal activity
time. Journal of Applied Probability 36,
1234–1239.

Kloeden, P. and Platen, E. 1999. Numerical
Solution of Stochastic Differential Equa-
tions.V23. Springer, New York.

Merton, R. C. 1969. Lifetime portfolio se-
lection under uncertainty: the continu-
ous time case. Review of Economics and
Statistics 51, 247–257.

Merton, R. C. 1973. The theory of rational
option pricing. Bell Journal of Economics
4, 141–183.

Merton, R. C. 1990. Continuous–Time Fi-
nance. Blackwell, Oxford.

Priestly, M.B. 1981. Spectral Analysis and
Time Series. Academic Press.

Platen, E. 1999. An introduction to numerical
methods for stochastic differential equa-
tions. Acta Numerica 8, 197–246.

Robinson, P. 1994. Time series with strong de-
pendence. Advances In Econometrics. Six
World Congress (C. A. Sims, ed.) 1, 47–
96. Cambridge University Press.

Robinson, P. 1999. The memory of stochastic
volatility models. Journal of Econometrics
101, 195–218.

Sundaresan, S. 2000. Continuous–time meth-
ods in finance: a review and an assessment.
Journal of Finance 55, 1569–1622.

Vasicek, O. 1977. An equilibrium character-
ization of the term structure. Journal of
Financial Economics 5, 177–188.

AUTHOR BIOGRAPHIES

ISABEL CASAS is a PhD. student in Financial
Statistics at the University of Western Australia. She
obtained her Bachelor in Mathematics Science from the
Universidad Autonoma de Madrid in 1997. She received
a Higher Diploma in Computational Methods and Nu-
merical Software from the University College Dublin in
1998. She has extensive experience working for the pri-
vate sector as a Software Engineer. In particular, imple-
menting numerical methods and simulation techniques



Isabel Casas and Jiti Gao 9

to financial and data mining problems. Her research
interests include stochastic financial mathematics, com-
putational methods and high performance computing.

JITI GAO is Senior Lecturer at The University of
Western Australia. He received his Doctoral Degree
of Science from The University of Science and Technol-
ogy of China in July 1993. Theoretical and applied re-
search in nonparametric and semiparametric economet-
rics, finance and statistics has been a primary interest
of him over the last ten years, as is evidenced by his
publications in the area. He has achieved international
recognition for his work on semiparametric statistics,
stochastic processes, nonlinear time series econometrics
and financial econometrics.


