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ABSTRACT

In classical Black-Scholes framework Geometric Brow-
nian motion is used to model the return of assets. In
this model the return distribution should be normal.
However many empirical studies showed that distribu-
tions of assets return have higher peak and longer tail,
and sometimes asymmetry compared with normal dis-
tributions. One of the causes of such phenomena is
jumps in diffusion processes. A typical jump diffusion
process consists of Brownian motion plus compound
Poisson process, which has been applied to financial
date in recent years. Among others we focus on Kou’s
jump diffusion model in this paper and apply it to
Japanese stock market. We examine the performance
of this mode by simulation study as well as by com-
paring option prices derived from Kou’s model and
Black-Scholes model. Reference S.G.Kou. ”A Jump-
Diffusion Models for Option Pricing” Management Sci-
ence, Vol.48, No.8, August 2002.

1 INTRODUCTION

The Black-Scholes(BS) model has been widely and
successfully used to model the return of asset and to
price financial options. Despite of its success the ba-
sic assumptions of this model, that is, Brownian mo-

tion and normal distribution are not always supported
by empirical studies. Those studies showed the two
empirical phenomena: (1) the asymmetric leptokurtic
features, (2) the volatility smile. The first means that
the return distribution is skewed to the left and has a
higher peak and two heavier tails than those of nor-
mal distribution, and the second means that if the BS
model is correct, then the implied volatility should be
flat. But the graph of the observed implied volatil-
ity curve often looks like the smile of the Cheshire
cat. Many models were proposed to explain the two
empirical phenomena. For example popular ones are
normal jump diffusion model(Merton(1976)), stochas-
tic volatility models(Heston(1993)), ARCH-GARCH
models(Duan(1993)), etc. For other papers see ref-
erences in Kou(2002)). Among others we focus on a
double exponential jump diffusion model proposed by
Kou(2002) in this paper. Kou’s model is very simple.
The logarithm of the asset price is assumed to follow
a Brownian motion plus a compound Poisson process
with jump sizes double exponentially distributed. This
model has the following advantages: (1) it can explain
the two empirical phenomena, that is asymmetric lep-
tokurtic feature and the volatility smile, (2) it leads to
analytical solutions to many option-pricing problems.
Despite of these advantages there are not many empir-
ical studies based on this model partly because proba-



Maekawa et al.

bility distribution function derived from this model is
rather complicated and difficult to be estimated. How-
ever we employ this model to analyze Japanese stock
market.

The plan of this paper is as follows. In Section
2 we test the normality assumption of the return dis-
tribution by Lilliefors test and Anderson-Darling test
in the subsection 2.1, and we introduce Lee and Wee
test which is a test to the adequacy of pure jump dif-
fusion model (with no jumps) and we apply Lee and
Wee test to real Japanese stock data in the subsec-
tion 2.3. In Section 3 we introduce Kou’s model and
its theoretical background in the subsection 3.1, and
apply it to Japanese stock data to calculate option-
prices in the subsection 3.2. In Section 4 we compare
pure- and jump-diffusion models by observing volatil-
ity smile and other statistics and conclude this paper.

2 SEARCH FOR STOCK PRICE PROCESS

It has been observed that structural changes often
occur in financial time series data due to the pol-
icy changes and social events (See Lee, Ha, Na
and Na(2003), Lee and Na(2004), Lee, Tokutsu and
Maekawa(2004) )．In particular, if there is such a
structural change, it is well known that a pure dif-
fusion model does not provide a better fit to the
financial data such as stock returns and interest
rates. For this reason, jump diffusion models and
Levy processes have recently applied to financial time
series data. See Barndorff-Nielsen, Mikosch and
Resnick(2001), Kou(2002), Shoutens(2003) and Cont
and Tankov(2004). In this section, using the empiri-
cal process method of Lee and Wee(2004), we conduct
the statistical test for the adequacy of modeling the
empirically observed data by a pure diffusion process.

2.1 Testing For Normality

In this section we test the normality of return distri-
bution by using two tests, that is, Lilliefors test (ab-
breviated L-test hereafter) and Anderson-Darling test
(abbreviated AD test hereafter). The definitions of
these tests are as follows. Let N denote the sample
size then L-test is defined by

L = max{L′, L′′}.

Where

L′ = max
i=1,...,n

{i/n − pi},

L′′ = max
i=1,...,n

{pi − (i − 1)/n}.

AD test is define by

A2 = −N − S,

S =
1
N

·
N∑

i=1

(2i − 1) [log Φi + log(1 − ΦN+1−i)] .

Where pi is pi = Φ([xi − x̄]/s) and Φ is the standard
normal distribution function.

By conducting these tests to all of 214 time series
of stock prices the normality assumption of the return
distributions are not accepted by both of the tests. It
is said that the AD-test is more sensitive to the heavy
tail feature than the L-test.

2.2 Test based on the empirical process method

In this section we briefly describe the methodology of
Lee and Wee(2004) statistical test for diffusion pro-
cesses. Let {Xt; t ≥ 0} be a stochastic process. We
consider the following hypothesis test:

H0 : {Xt} follows
dXt = a(Xt; θ)dt + σdWt, t ≥ 0 vs.

H1 : not H0,

(1)

where θ is a p-dimensional unknown parameters, σ is
a constant, a is a real valued function, and {Wt; t ≥ 0}
is a standard Wiener process.
Suppose that {Xt} is actual market data observed at
discrete times ti = ihn, i = 1, 2, · · · , n, where {hn} is
a sequence of positive real numbers such that hn → 0
and nhn → ∞ We can rewrite (1) as

Xti
− Xti−1

= hna(Xti−1 ; θ)

+
∫ ti

ti−1

(
a(Xti ; θ) − a(Xti−1 ; θ)

)
ds +

∫ ti

ti−1

dWt

' hna(Xti−1 ; θ) + σ
√

hnri,

(2)

where ri are iid standard normal r.v.’s.
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Let θ̂n be a consistent estimator of θ such that√
nhn(θ̂n − θ) is asymptotically normal (see Lee and

Wee(2004) for details). Define the residuals

r̂i =
{
Xti − Xti−1 − hna(Xti−1 ; θ̂n)

}2
/
(
σ̂n

√
hn

)
, (3)

where

σ̂n =
1

nhn

n∑

i=1

{
Xti

− Xti−1 − hna(Xti−1 ; θ̂n)
}2

, (4)

which is a constant estimator of σ2.
The residual empirical process is defined by

Yn(x) =
1

√
nh

nh∑

i=1

{
1{ηni≤x} − Φ(x)

}
, x ∈ R, (5)

where nh is the largest integer that does not exceed
nhn.

By putting ηni = (Wti
− Wti−1)/

√
hn, Lee and

Wee(2004) has shown that the following equation can
be obtained

Yn(x) =
1

√
nh

nh∑

i=1

{
1{ηni≤x} − Φ(x) + ξn(x)

}
, x ∈ R,

(6)
where supx

∣∣ξn(x)
∣∣ = oP (1) Hence, using Yn

(
φ−1(u)

)

instead of Yn(x), where 0 ≤ u ≤ 1, the limiting distri-
bution of Yn

(
φ−1(u)

)
converges weakly to a Brownian

bridge W o(u).
Now we can apply the above result to the

Kolmogorov-Smirnov test to perform a goodness of fit
test against diffusion models with jumps.

KSn := sup
0≤u≤1

∣∣Yn

(
φ−1(u)

)∣∣ → sup
0≤u≤1

∣∣W 0(u)
∣∣ (7)

If the test statistics KSn is large, we reject the null
hypothesis H0. We apply Lee and Wee(2004) test to
a geometric Brownian motion in below.

2.3 Empirical Study Using Japanese Stock Data

In this section, we check the validity of a diffusion
process for the Nikkei 225 component stocks. In doing
this, we use the individual stocks with more than 1000
observations in the Nikkei 225 component stocks and
conduct the Lee and Wee(2004) test.

Let us assume that stock price processes follow the
geometric Brownian motion

dXt

Xt
= µdt + σdWt, t ≥ 0. (8)

Now, using Ito Formula and the notation of eq (2), we
can obtain

log Xt − log Xti−1 '
(
µ − σ2

2
)
hh + σ

√
hnri. (9)

Then the residuals can be computed from

r̂i =
{
log Xti−log Xti−1−

(
µ̂− σ̂2

2
)
hh

}/(
σ̂
√

hn

)
(10)

Performing the following test

H0 : stock returns follow (9) vs.
H1 : not H0,

all the null hypothesis for all of the 214 individual
stocks were rejected. This result implies that stock
price processes do not follow the geometric Brownian
motion. Rather, it is appropriate to consider an alter-
native model for these stock price processes. To look
at the shape of an empirical distribution, we choose a
stock, which is used in Section below, from the Nikkei
225 component stocks and plot the empirical returns
with a normal density in Figure 1. Similarly, Figure
2 shows log returns and log density to take a closer
look at the tail behavior. As can be seen from these
figures, the actual returns show higher peak around
the center compared with the normal density. In gen-
eral, it is known that the distribution of empirical re-
turns has two characteristics; fat tail (or excess kur-
tosis) and asymmetry. In particular, we can mention
the existence of jumps in price processes as one of rea-
sons why fat tail distribution can be observed. As an
alternative model which can capture two such charac-
teristics and provide analytical formulas for prices of
options, we employ a jump diffusion model proposed
by Kou(2002). The model consists of two parts: (1) a
geometric Brownian motion. (2) a compound Poisson
process with jump sizes following a double exponen-
tial distribution. Using the approximate density of
returns given by Kou’s model, we show the goodness
of fit of the density to actual returns along with the
normal density in Figure 3. We can see that the den-
sity given by Kou’s model shows better fit than the
normal around the center and in tails(see Figure 4).
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Figure 1: Empirical and Normal densities for Mit-
subishi Chemical Co.
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Figure 2: Log-densities of Empirical and Normal for
Mitsubishi Chemical Co.
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Figure 3: The densities of Empirical, Kou model and
Normal for Mitsubishi Chemical Co.
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Figure 4: The log-densities of Empirical, Kou model
and Normal for Mitsubishi Chemical Co.
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3 THEORETICAL BACKGROUND

In this section we illustrate theoretical background of
Kou’s jump diffusion model.

3.1 Model Specification

Under probability measure P we assume that under-
lying asset price process S(t) follows

dS(t)
S(t−)

= µdt + σdW (t) + d




N(t)∑

i=1

(Vi − 1)


 , (11)

where W (t) is standard Brownian motion, N(t) is a
Poisson process with intensity λ and {Vi}Y is a i.i.d.
nonnegative stochastic sequence. Again Υ = log(V )
is an asymmetric double exponential distribution with
density

fΥ(y) = p · η1e
−η1y1{y≥0} + q · η2e

η2y1{y<0},

η1 > 1, η2 > 0,

where p, q ≥ 0, p+q = 1 are up-move jump and down-
move jump respectively. Put another way,

log(V ) = Υ
d=

{
ξ+, with probability p

−ξ−, with probability q
(12)

where ξ+ and ξ− is exponential random variable with
mean 1/η1 and 1/η2. Note that d= denotes identically
distributed. In this model we assume that stochas-
tic element N(t), W (t), ΥS are independent. For no-
tational convenience and explicit solution for option
price we assume that drift term µ and diffusion term σ
are constants and restrict ourselves to one dimensional
case. However these assumptions are easily generalized
to more complex case.

Given a solution of SDE(11), then we obtain asset
price dynamics

S(t) = S(0) exp
{(

µ − 1
2
σ2

)
t + σW (t)

} N(t)∏

i=1

Vi,

(13)
where E(Υ ) = p

η1
− q

η2
, Var(Υ ) = pq( 1

η1
+ 1

η2
)2 +( p

η2
1

+

q
η2
2
) and

E(V ) = E(eΥ )

= q
η2

η2 + 1
+ p

η1

η1 − 1
, η1 > 1, η2 > 0.

Again η1 > 1 guarantees E(V ) < ∞ and E(S(t)) <
∞. This means that average rate of up-jump does not
exceed 100%.

Rate of return on ∆t is given by (13) and

∆S(t)
S(t)

=
S(t + ∆t)

S(t)
− 1

= exp
{(

µ − 1
2
σ2

)
∆t

+ σ(W (t + ∆t) − W (t))

+
N(t+∆t)∑

i=N(t)+1

Υi



 − 1.

If ∆t is sufficiently small, by omitting higher order
term than ∆t and using expansion ex ≈ 1 + x + x2/2,
one can approximate rate of return to the distribution

∆S(t)
S(t)

≈ µ∆t + σZ
√

∆t + B · Υ

where Z and B are random variable of standard nor-
mal and binomial respectively, and P(B = 1) = λ∆t,
P(B = 0) = 1 − λ∆t and Υ is given by (12). The
density function is

g(x) =
1 − λ∆t

σ
√

∆t
φ

(
x − µ∆t

σ
√

∆t

)

+ λ∆t
{

pη1e
(σ2η2

1∆t)/2e−(x−µ∆t)η1

× Φ
(

x − µ∆t − σ2η1∆t

σ
√

∆t

)

+ qη2e
(σ2η2

2∆t)/2e−(x−µ∆t)η2

× Φ
(
−x − µ∆t + σ2η2∆t

σ
√

∆t

)}
(14)

where φ(·) is density function of standard normal and
Φ(·) is its distribution function.

3.2 Option Pricing
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In this subsection we demonstrate Kou’s formula of
option pricing for European call. For obtaining op-
tion price we need to consider the sum of normal and
double exponential distributions. Fortunately we can
compute explicitly the distribution by using Hh func-
tion. Hh function is a special function of mathematical
physics, for more detail see Abramowitz and Stegun
(1972, p. 691).

For a probability P we define

Υ(µ, σ, λ, p, η1, η2; a, T ) := P{Z(T ) ≥ a},

where Z(t) = µt + σW (t) +
∑N(t)

i=1 Υi , Υ follows
double exponential distribution with density fΥ (y) ∼
p ·η1e

−η1y1{y≥0} + q ·η2e
yη21{y<0} and N(t) is a Pois-

son process with intensity λ. This Υ is the formula for
European call option, which given by the sum of Hh
function. As for the explicit form of Υ, see Theorem
B.1 in Kou (2002) Appendix B.

Theorem 1 The European call price is given
by

ψc(0) =S(0)Υ(r +
1
2
σ2 − λζ,

σ, λ̃, p̃, η̃1, η̃2; log(K/S(0)), T )

− Ke−rT Υ(r − 1
2
σ2 − λζ,

σ, λ, p, η1, η2; log(K/S(0)), T ), (15)

where

p̃ =
p

1 + ζ
· η1

η1 − 1
, η̃1 = η1 − 1,

η̃2 = η2 + 1, λ̃ = λ(ζ + 1),

ζ =
pη1

η1 − 1
+

qη2

η2 + 1
− 1.

Note that when substituting Φ for Υ the equa-
tion (15) seems like Black-Scholes formula for Euro-
pean call. For the proof of Theorem 1, see Theorem 3
in Kou and Wang (2004).

4 COMPARISON OF OPTION PRICE

In this section we compare option prices derived from
BS formula and Kou’s formula (15) as well as implied
volatility derived from BS model and Kou’s model by
using 214 series with more than 1000 observations out

of Nikkei 225 from 1 June 1992 to 31 December 2002.

4.1 Option Pricing: Kou v.s. BS

We estimated parameters of Kou’s density function
(14) by MLE and substituted the estimators to (15)
to obtain the European call option prices for each
stock. We also calculated the option price for each
stock by BS formula and computed the differences be-
tween these two prices in terms of mean root differ-
ences defined by

Dp =

√√√√ 1
N

N∑

i=1

(BSi − KOUi)2 (16)

where N denote the sample size, and BS and KOU are
respectively denote the option price obtained by BS
formula and Kou’s formula.The distance measured by
Dp in (16) showed that BS model and Kou’s model are
not uniformly closed and we can not see which model
is better performed. To see this we substituted the
option price calculated by Kou’s formula into the BS
formula

H(t, St) = StΦ[d1(t, St)]

− e−r(T−t)KΦN [d2(t, St)].

Where Φ denotes the distribution function of the stan-
dard normal distribution and d1, d2 are defined by

d1(t, St) =
1

σ
√

T − t

×
{

ln
(

St

K

)
+

(
r +

1
2
σ

)
(T − t)

}
,

d2(t, St) = d1(t, s) − σ
√

T − t.

Figure 5 shows the implied volatility surface with three
components: the implied volatility, time to the matu-
rity, and the strike price. As an example we present
the figure of the implied volatility surface of Mitsubishi
Chemical Co. (Code: 4010). As is seen the volatility
smile is symmetric in both side of the “at the money”
point. In other stock data similar volatility smile were
observed. This observational results implied that the
real Nikkei data do not satisfied the normality assump-
tion premised in BS model. Furthermore we compared
the following two kind of volatilities:
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(a) Implied volatility derived from BS formula based
on real stock data,

(b) Implied volatility derived from BS formula based
on calculated option price by Kou’s formula.

Figure 5: Implied Volatility Surface (Mitsubishi
Chemical Co.)

If the difference between the return distribution
and the normality become larger, Dp and/or Dv would
also become larger. Therefore the difference measured
by AD and/or L and Dp and/or Dv may have positive
correlation (or at least non-zero correlation). To see
this we calculated the three kind coefficient of cor-
relation (Peason, Spearman, Kendall) between AD-
test, L-test, Dp, and Dv, where Dp denotes the differ-
ences between option prices from BS and Kou’s formu-
lae, and Dv denotes the differences between volatilities
from BS model and Kou’s model measured by

Dv =

√√√√ 1
N

N∑

i=1

(V ol(BS)i − V ol(KOU)i)2,

where V ol(BS) and V ol(KOU) respectively denotes
the implied volatility defined by (a) and (b) above.
These results are shown in Table 2-4. All of the three
coefficient of correlation showed that the null of no cor-
relation was rejected. These tables showed that the
correlation between Dp and Dv have slightly higher
correlation to AD-test compared with L-test. This

might reflect that L-test is more sensitive to heavy
tail properties than AD-test.

Finally we compared the three prices: the market
price (MP), theoretical prices derived by BS and Kou’s
models. We used the market prices of European call
option for Nikkei 225 from September 10, 1999 to De-
cember 12, 2002 with various strike prices and times
to maturity. The relative differences of theoretical and
market prices divided by market prices are shown in
the figures 6-8. In each figure the vertical axis denotes
the difference between the two prices and horizontal
axes denote strike price and time to maturity. Fig-
ures 6 and 7 show the differences between the mar-
ket price and theoretical price by Kou’s mode and the
differences between the market price and theoretical
price by BS model. Figure 8 shows the differences be-
tween two theoretical prices by BS and Kou’s model.
These figures show that the calculated prices by Kou’s
model are much closer to the real data than calculated
prices by BS model. To see this we calculated two mea-
sures of distance, i.e., average relative percentage er-
ror(ARPE) and weighted average relative percentage
error(WARPE) defined by

ARPE =
1
M

M∑

i=1

∣∣∣∣∣
Ĉi − Ci

Ci

∣∣∣∣∣ ,

WARPE =
M∑

i=1

∣∣∣∣∣
Ĉi − Ci

Ci

∣∣∣∣∣ wi, wi =
Vi

M∑
i=1

Vi

,

where M is the number of options, and Ci, Ĉi and Vi

denote market price, model price, and the volume on
the ith option trade, respectively. Table 1 shows the
results: From our data analysis it seems that Kou’s

Table 1: Distances from the market price

BS model Kou’s model sample size

ARPE 0.3646 0.2895 50955

WARPE 0.5001 0.5041 50955

model is fitted well to Japanese stock data than Black-
Scholes model.
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Figure 6: Relative Difference between MP and BS Price

Figure 7: Relative Difference between MP and Kou Price

Table 2: Peason

AD L Dp Dv

AD 1 0.86781 0.28675 0.28440

L 0.86781 1 0.25351 0.25138

Dp 0.28675 0.25351 1 0.99528

Dv 0.28440 0.25138 0.99528 1

Table 3: Spearman

AD L Dp Dv

AD 1 0.76253 0.20767 0.21198

L 0.76253 1 0.06511 0.07600

Dp 0.20767 0.06511 1 0.99366

Dv 0.21198 0.07600 0.99366 1

Table 4: Kendall

AD L Dp Dv

AD 1 0.58928 0.13773 0.14002

L 0.58928 1 0.04300 0.04985

Dp 0.13773 0.04300 1 0.93624

Dv 0.14002 0.04985 0.93624 1
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