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ABSTRACT 

As part of an international project exploring the impact of 
changing agroforestry mosaics on catchment water yield 
and quality in Southeast Asia, a study of the hydrological 
response in the Mae Chaem catchment in Northern Thai-
land is being carried out. The main interest is being able to 
predict the flow under significant changes in land use, as 
well as at ungauged sites. This paper reviews some of the 
data analysis techniques available, and the results of 
applying these to data from gauges in the Mae Chaem 
catchment.   

1 INTRODUCTION 

Loss of forest cover in developing countries is increasing 
the risk of erosion, and subsequent degradation of water 
quality.  Managing catchments to maintain an adequate 
supply of clean water for downstream users is an ongoing 
issue, particularly in catchments where forest cover in 
steep terrain is being converted to agricultural land uses.  
As part of a study of the effect of agroforestry mosaics on 
watershed functions, an investigation of land use impacts 
on hydrologic response is being conducted in Indonesia 
and Thailand.  The adopted approach is to use 
regionalisation of catchment response characteristics such 
as the runoff coefficient and flow duration curve to define 
the response characteristics at ungauged sites, with a view 
of using the derived characteristics for ungauged sites to 
calibrate or at least constrain the parameters of the 
IHACRES rainfall-runoff model (Jakeman et al. 1990, 
Jakeman and Hornberger, 1993).  This paper discusses the 
initial findings based on data analysis techniques for the 
study site in Thailand. 

2 STUDY SITE 

The Mae Chaem catchment is a ~3740km2 catchment (area 
defined by gauge at Ob Luang) in northern Thailand.  The 
elevation within the Mae Chaem catchment ranges from 
250 to 2570 m above sea level.  The subcatchments are 
generally steeply sloping with only limited areas suitable 
for paddy agriculture.  Over a 5 year period from 1985 to 
1990, the forest cover decreased from approximately 3380 
to 2980km2.  The region has a monsoonal climate with 
almost all the annual rainfall occurring during the wet 
season which starts in May and extends into October.  The 
location of the catchment, and the rainfall and streamflow 
gauges (and corresponding catchment areas) are shown in 
Figure 1. 

 

 
Figure 1: Mae Chaem catchment, with rainfall and stream 
gauges used (with corresponding sub-catchments). 
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3 ESTIMATING RAINFALL 

Areal rainfall estimates were obtained using a weighted 
Theissen polygon approach where the rainfall in each 
polygon is varied spatially based on a long-term mean 
rainfall surface.  The rainfall surface was derived using the 
ANUSPLIN software (Hutchinson, 1995) which employs 
thin plate smoothing splines to the recorded annual rainfall 
for each gauge in the region (extending a considerable 
distance outside the catchment to minimise edge effects), 
using the spatial coordinates of the gauges (x, y and z) as 
the independent variables.  The streamflow and areal 
rainfall estimates for gauge P14 are shown in Figure 2. 
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Figure 2:  Observed streamflow and estimated areal rainfall 
for gauge P14. 

4 DATA ANALYSIS 

Four data analysis tools were used to explore the data 
quality and some of the response characteristics: cross 
correlation of streamflow with rainfall; flow and rainfall 
exceedence curves; analysis of the power spectrum of 
rainfall and streamflow; and baseflow filtering. 

4.1 Cross Correlation Analysis 

As with comparing data from different rainfall gauges, a 
simple technique for checking rainfall and streamflow data 
is cross correlation analysis.  The cross correlation of 
rainfall and streamflow shows how flow relates to rainfall.  
Generally, there is a modest peak (~0.4-0.6) in the 
correlation function for a lag either zero, or a small 
positive value, with the width of the peak depending on 
both the width of the rainfall autocorrelation function, and 
the unit hydrograph response curve.  The absence of a clear 
peak in the rainfall-streamflow cross correlation function 
indicates a likely variable timing error in either the rainfall 
or streamflow timeseries (or both). 

With well behaved datasets (long record of evenly 
sampled data values with no missing values), the Fourier 
transform can be used to derive the cross correlation 
function for any 2 timeseries.  Due to the presence of a 
significant number of missing values, an alternative 
method had to be employed.  For each lag value, the set of 
all points with valid data in both datasets was obtained, 

normalised to have a mean of zero and a standard deviation 
of one, and the correlation coefficient determined.  This is 
less computationally efficient than using the Fourier 
transform, but makes the maximum use of the available 
data.  An example of the cross correlation function is 
shown in Figure 3 (gauge 14).  The top panel shows the 
effect of the seasonality of rainfall on the rainfall 
autocorrelation function, and evidence for a 20 day lag in 
the “seasonal” correlation peak, and a 50 day lag in the 
minimum value, demonstrating the buffering effect of the 
baseflow. 
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Figure 3: Cross correlation analysis for gauge 14 (Ob 
Luang).  Top panel shows the seasonal delay in streamflow 
response compared to the rainfall signal (delay in 
correlation function compared with autocorrelation of 
rainfall).  The bottom panel shows the correlation between 
daily rainfall and streamflow, with the peak in streamflow 
delayed by 1 to 2 days.  The baseline curve is the 
correlation function shifted by 365 days (i.e. the correlation 
between this years streamflow and last years rainfall) and 
represents the influence of the seasonal variation in 
rainfall. 

 
Gauges P14, P33 and P34 show a strong peak (0.4 to 

0.5)at a one timestep lag, while gauges P35 and P36 show 
only a broad correlation peak (with subsequent reduction in 
peak height to less than 0.3).  Since these gauges have 
relatively small catchment areas, this indicates a potential 
timing error in the data for these catchments.  The timing 
error will result in difficulties in calibrating the rainfall-
runoff model for these catchments (note the poorer fit 
compared to gauges P33 and P34 in the baseflow filtering 
section). 

While use of the Fourier transform requires continuous 
datasets, this restriction can be overcome by using the 
correlation functions.  The Fourier transform of the cross 
correlation of two functions x and y can be written as XY* 
where X and Y are the Fourier transforms of x and y 
respectively, and Y* is the complex conjugate of Y.  Thus, 
if x is given by the convolution of y with z (in this case, the 
unit hydrograph), then the Fourier transform of z can be 
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estimated from the cross correlation of x with y and the 
autocorrelation of y: 

 
( ) ( )** YYXYYXZ ==  (1) 

 
This will only be approximate as the autocorrelation of 

the observed rainfall is used for y rather than the 
autocorrelation of effective rainfall, and the unit 
hydrograph is assumed to be constant in time.  The use of 
rainfall rather than effective rainfall is not likely to be a 
significant influence on the hydrograph peak, as this will 
mainly affect the seasonal pattern (less rainfall becoming 
streamflow at the start of the wet season compared with the 
remainder of the wet season due to the variation in soil 
moisture).  The assumption that the unit hydrograph is 
constant in time is potentially the greatest constraint on the 
information that can be derived from Fourier 
deconvolution, though the noise introduced by such 
variations does not greatly affect the peak of the unit 
hydrograph profile (as seen in Figure 4).  The subsequent 
profile is an estimate of an average UH response curve. 
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Figure 4:  Unit hydrograph for P14 (normalised to have a 
peak of 1) derived using Fourier deconvolution of the auto- 
and cross correlation functions shown in Figure 3. 

 
Using the Fourier deconvolution technique described 

above, the peak of the unit hydrograph for gauge P14 
(Figure 4) has a delay of between 1 and 2 days, and a full 
width at half maximum (FWHM) of a little less than 3 
days.  The values for negative lags (streamflow leading 
rainfall) show the noise level within the deconvolved 
profile as these values should be zero.  Thus the profile 
peak has a signal to noise of approximately 15, with the 
S/N decreasing to 2 at a lag of about 10 days. 

Analysis of the temporal variation in the unit 
hydrograph was unable to identify a significant correlation 
with land use change due to the noise in the rainfall and 
streamflow data.  In particular, relative timing errors 
between rainfall and streamflow, particularly gauges P35 

and P36 (where the delay in the flow peak varied from 
between 0 and 3 days), were the principle source of noise 
in the estimated unit hydrographs.  Given this difficulty, 
there was some evidence for a decline in the width of the 
hydrograph peak for gauge 36 between the late 1980’s and 
mid 1990’s, though this is well within the scatter in the 
annual widths.  For gauge P14 (station with the longest 
record of observed flow, and the gauge with the largest 
catchment area), there is no evidence of a change in width, 
though this does not imply there was no actual variation 
present. 

4.2 Flow and rainfall exceedence curves 

Flow and rainfall exceedence curves (Figure 5) are a useful 
means of representing the probability distributions of flow 
and rainfall (note, flow exceedence curves are sometimes 
called flow duration curves).  When plotted on a log-
normal plot (see Figure 6) the flow exceedence curve 
typically shows a nearly linear relationship, with the 
probability distribution being almost symmetrical about the 
0.5 probability point.  In comparison, the rainfall 
exceedence curve extends to just over 50% (that is, there is 
no rainfall on just under 50% of the days).  The difference 
between the curves for flow and rainfall is due mainly to 
the influence of the smoothing out of the effective rainfall 
by the unit hydrograph response curve.  A secondary factor 
in determining the shape of the flow exceedence curve is 
the redistribution of rainfall into effective rainfall (affected 
by variations in soil moisture). 
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Figure 5:  Rainfall and flow exceedence curves for gauge 
P14 plotted against probability. 

 
Comparing a time series of the ratio of the rainfall and 

streamflow exceedence curves gives an indication of the 
variation of the influence of the unit hydrograph coupled 
with the conversion of rainfall to effective rainfall.  While 
variation was detected, no correlation with the change in 
forest cover post 1985 was detectable.  This suggests that 
the variation is either climate driven, or due to errors in the 
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data.  Rainfall and flow exceedence curves yield little 
information from a data analysis viewpoint, but can be 
very useful in calibration and testing of rainfall-runoff 
models. 
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Figure 6:  Rainfall and flow exceedence curves for gauge 
P14 plotted against the normal variate. 

4.3 Power Spectrum Analysis 

Another use of the Fourier transform in investigating the 
properties of a timeseries is the estimation of the power 
spectrum or power spectral density (PSD).  There are 
techniques for calculating the PSD for data with variable 
sampling rate (e.g. Lomb, 1976; Scargle, 1982), though 
these have not been used here.  Rather, a subset of data that 
does not have gaps has been used for each catchment.  The 
power spectrum for areal rainfall and streamflow for gauge 
P14 are shown in Figure 7.  A least squares linear 
regression gives slopes in log-log plots of –0.74 and –1.01 
for the rainfall and streamflow power spectra, respectively.  
However, weighted regressions should be used to reduce 
the weight given to high frequency components due to the 
distribution of data values.  This would result in a slightly 
lower slope for the streamflow power spectrum.  The 
difference in the slopes in the rainfall and streamflow 
power spectra is due primarily to the influence of the unit 
hydrograph, particularly the baseflow component, though 
the redistribution of rainfall into effective rainfall can also 
contribute.  The influence of the unit hydrograph on the 
power spectrum will be strongest at high frequencies (of 
the order of 1 day-1) and minimal at low frequencies (of the 
order of 1 year –1). 

The power spectrum of a function x (normalised by the 
mean square amplitude) can be derived from its Fourier 
transform X: 
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where the frequency fk is given by: 

N
kff Nk 22=  (3) 

To reduce the noise in each frequency bin, the data was 
divided into 11 equal segments (with 50% overlap) of 2048 
timesteps, and the resulting power spectrum averaged.  To 
minimise leakage between frequencies (signal from one 
frequency bin appearing in a nearby frequency bin due to 
aliasing of the signal) a Bartlett window function was used 
(triangular window function that drops to zero at the ends 
of each segment). 
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Figure 7:  This plot shows the power spectra for rainfall 
and streamflow, along with the fitted power law in each 
case. 

 
A common use of power spectrum analysis is 

investigating the multifractal nature of a time series (e.g. 
Pandey et al. (1998), particularly from the viewpoint of 
scaling, with a scaling field having a power-law 
dependency between the power spectrum and the 
frequency.  While the power spectra found here do show a 
power law behaviour, the multifractal analysis has not been 
performed. 

4.4 Baseflow Filtering 

Estimation of the baseflow component of observed 
streamflow is instrumental in determining the influence of 
water use on the environment.  There are several methods 
for estimating the baseflow component.  The simplest are 
mathematical filters that do not attempt to represent the 
processes taking place.  These include the Lyne-Hollick 
filter (Lyne and Hollick, 1979), and the Baseflow Index 
(BFI – Gustard et al. 1992).  The lack of physical basis for 
the Lyne-Hollick filter requires the user to determine when 
the derived baseflow looks “right” and does not inform the 
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user, but confirms his/her preconceived notion regarding 
the form of the baseflow.  The BFI approach simply 
attempts to give a lower envelope for the observed flow, 
which can then be assumed to correspond to the baseflow.  
An alternative to the BFI is the running minimum filter 
(Croke et al. 2001) which uses a running minimum filter of 
variable width (typically 5 days is used) followed by a 
running average filter with the same width. 

A more sophisticated approach uses an assumed 
functional form for the baseflow recession – typically an 
exponential decay.  Examples of such forms can be found 
in Chapman (1999).  The simplest form is the filter 
proposed by Chapman and Maxwell (1996) which has one 
parameter.  The other filters discussed by Chapman (1999) 
were the two-parameter Boughton filter (derived from the 
AWBM model of Boughton (1993)) and the three-
parameter IHACRES filter (derived from the IHACRES 
model of Jakeman et al. 1990 and Jakeman and 
Hornberger, 1993).  Recently, Furey and Gupta (2001) 
proposed a new filter based on their groundwater discharge 
model (Furey and Gupta, 2000).  
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Figure 8: Estimated baseflow for gauge P14 

 
Table 1: Baseflow filter parameters for all gauges, with 
effective rainfall constrained to be less than the observed 
rainfall. 

gauge R2 Bias X1 U1 ARPE Vs Tq Ts 

P14 0.67 6.7 0.16 -0.13 0.22 0.82 2.3 43 

P33 0.90 1.4 0.10 -0.08 0.03 0.666 1.24 65 

P34 0.96 0.5 0.08 -0.07 0.01 0.730 1.55 63.4 

P35 0.78 -1.3 0.02 -0.07 0.11 0.909 1.9 92 

P36 0.74 0.5 0.03 -0.02 0.11 0.825 1.13 95 

 
In this study, the IHACRES filter (Chapman, 1999) 

was used, with the effective rainfall constrained to being 

less than the areal rainfall estimate for that day (Croke et 
al, 2002).  In this filter, the values for three parameters 
need to be determined.  Since the effective rainfall is 
generated by the filter, after an initial guess at the quick 
flow and slow flow recession rates, the values for these 
parameters were refined using the simple refined 
instrumental variable (SRIV) technique (Jakeman and 
Hornberger, 1993) used in the IHACRES rainfall runoff 
model.  The filter was then run using the refined values, 
and the procedure iterated until the combined change in the 
quick and slow flow decay rates was less than 0.001.  The 
remaining parameter (the slow flow volume) was adjusted 
in each pass through the baseflow filter to set the fraction 
of timesteps for which the baseflow flow filter exceeded 
the observed flow at a nominated value (typically 1% is 
used). 

 
Table 2: Baseflow filter parameters for all gauges, with 
effective rainfall set to zero if there has been no increase in 
the observed daily mean flow. 

gauge R2 Bias X1 U1 ARPE Vs Tq Ts 

P14 0.93 2.7 0.14 -0.10 0.01 0.733 2.48 53 

P33 0.90 1.4 0.10 -0.08 0.03 0.666 1.24 65 

P34 0.89 2.4 0.15 -0.11 0.03 0.783 2.28 57 

P35 0.78 -2.1 -0.01 -0.07 0.08 0.903 2.2 105 

P36 0.70 3.4 0.16 -0.09 0.06 0.831 2.1 101 

 
The R2 value is the model efficiency defined by Nash 

and Sutcliffe (1970).  The X1 and U1 indicators are the one 
timestep lag correlation coefficients between model error 
and modelled streamflow (X1) and modelled effective 
rainfall (U1) and indicate potential errors in the model 
structure if the absolute values are significantly larger than 
0 (a value of 0.2 would indicate a significant correlation 
between the model estimates and the model errors).  The 
ARPE (Arithmetic Relative Parameter Error, Jakeman et 
al. 1990) is an indicator of the relative error in the 
parameters of the linear module, and should typically be 
significantly less than 0.1.  These indicators show that 
there is a significant error when rainfall is used to constrain 
the effective rainfall for gauges P14, P35 and P36.  The 
indicators generally improve for these gauges when 
streamflow is used to constrain the effective rainfall, 
though this is most noticeable for gauge P14. 

This approach was also applied to 4 year periods from 
1/1/1966 to 31/12/1998.  While the estimates for the values 
of the vs parameter showed evidence for an increase in 
baseflow component since 1966, this is correlated with a 
decrease in the values of the τs parameter, and may be due 
to the influence of correlation between the parameters 
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rather than an actual variation in the baseflow component.  
There was little variation found post 1985. 

5 CONCLUSIONS 

Climate variability and the uncertainties in the data and the 
derived quantities make it difficult to identify effects of 
land use change on the hydrologic response of the Mae 
Chaem catchment.  Additionally, the effect of water 
extractions through the catchment will mask any natural 
signal that may be present. 

The cross correlation analysis has shown there are 
considerable timing errors within the available data, 
particularly for gauges P35 and P36.  This limits the 
information that can be extracted from any analysis tool 
(including rainfall-runoff models) unless a technique to 
remove the timing error can be developed.  Given this 
difficulty, there is some evidence for a decline in the width 
of the hydrograph peak for gauge P36 between the late 
1980’s and the mid 1990’s.  However, the change in width 
is this well within the scatter in the annual widths.  At 
gauge P14, there is no evidence of a change in the width, 
though this does not imply there was no variation. 

Baseflow filtering can avoid the timing error issue, 
and can thus potentially yield information on the dynamics 
of the catchment response.  Using daily data, no 
information is available on the quick flow time constant 
except for large catchments where the time constant is 
considerably greater than a day.  However, the slow flow 
volume and time constant can be estimated.  For the 
gauged sites in the Mae Chaem catchment,  the smaller 
gauges sites (P35 and P36) tend to have higher baseflow 
volumes, and longer time constants that the gauges on the 
Mae Chaem River (P14, P33 and P34).  Assuming this 
difference is not driven by the influence of extractions, this 
may indicate an influence from natural drivers (e.g. 
vegetation, soils, geology). 
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