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ABSTRACT 

Most documented Bayesian network (BN) applications 
have been built through knowledge elicitation from domain 
experts (DEs).  The difficulties involved have led to grow-
ing interest in machine learning of BNs from data.  There 
is a further need for combining what can be learned from 
the data with what can be elicited from DEs.  In previous 
work, we proposed a detailed methodology for this combi-
nation, specifically for the parameters of a BN.  In this pa-
per, we illustrate the techniques using a case study of an 
ecological risk assessment problem. 

1 INTRODUCTION 

Bayesian networks (BNs) are graphical models composed 
of both qualitative and quantitative components.  The 
qualitative component is the graphical model, which repre-
sents the causal relationships between key factors and final 
outcomes.  Associated with the structure is a set of condi-
tional probability distributions, which form the quantitative 
component of a BN.  These describe the strength of rela-
tionships between linkages in the model, which can be es-
timated using a combination of sources.   

BNs are increasing being used in ecological applica-
tions as they offer a pragmatic and scientific approach to 
modelling complex ecological systems where high uncer-
tainties (aleatory and epistemic) exist.  Unlike many other 
ecological modelling approaches, BNs can utilise prior 
knowledge and data to model systems. Furthermore, BN 
models are particularly useful for analyzing and communi-
cating causal assumptions not easily expressed using 
mathematical notation, and for analyzing multivariate and 
complex relationships among variables.   

Despite BNs having the ability to combine information 
from multiple sources, many reported BN applications to 
date, including non-ecological applications (see Korb and 
Nicholson (2004) for a recent survey), have been built 
through knowledge elicitation from domain experts (DEs) 

only.  In general, this is both a difficult and time consum-
ing task, with problems involving incomplete knowledge 
of the domain, and common human difficulties in specify-
ing and combining probabilities.  Therefore, recent interest 
has focused not only on combining parameter estimates 
from both DEs and data, but also developing a process 
where the efforts of the DE are focused on the more 
influential or ‘sensitive’ parts of the BN model. 

Thus far, a methodology and associated support tools 
for Knowledge Engineering Bayesian Networks (KEBN) 
are not well developed.  Spiral, prototype-based ap-
proaches to KEBN have been proposed (e.g., Laskey and 
Mahoney (2000); Korb and Nicholson (2004)), based on 
successful software development processes.  However, 
these provide little guidance on integrating the knowledge 
engineering of the qualitative and quantitative components 
or again on how to combine knowledge elicitation from 
DEs and automated knowledge discovery methods.  While 
there have been attempts at the latter, they remain rudimen-
tary (e.g., Onisko et al. (2000); Nicholson et al. (2001)). 

In Woodberry et al. (2004a), we presented a more de-
tailed methodology, based on the spiral prototype model, 
for knowledge engineering the quantitative component of a 
BN.  Our methodology explicitly integrates KE processes 
using both DEs and machine learning, in both the parame-
ter estimation and the evaluation phases. The methodology 
was developed during the knowledge engineering of an 
ecological risk assessment (ERA) application (Section 3). 
This paper illustrates the methodology using this case 
study. 

The focus of the ERA application was the develop-
ment of a decision support tool to aid in fisheries manage-
ment in the Goulburn Catchment, Victoria, Australia.  Af-
ter specification of the BN model structure, only limited 
datasets and knowledge elicitation information from DEs 
was available for model parameterization.  The parameteri-
sation of the ERA application using our spiral knowledge 
engineering methodology (Woodberry et al., 2004a) is de-
scribed in this paper. 
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2 BAYESIAN NETWORKS 

2.1 Background 

A BN is a graphical representation of a joint probability 
distribution over a set of statistical variables. The structure 
is a directed acyclic graph (DAG), which is made up of a 
collection of nodes that represent variables. 

 Associated with variables are ranges of states and a 
conditional probability table (CPT), which describes the 
probability of each value of the child, conditioned on every 
possible combination of values of its parents.  If a variable 
has no parents, it is described by a marginal probability 
distribution. Given both the qualitative and the quantitative 
parts, probabilities of any query variables posterior to any 
evidence can be calculated. 

A prior (unconditional) probability represents the like-
lihood that a variable will be in a particular state and the 
conditional probability calculates the likelihood of the state 
of a variable given the states of input variables. The poste-
rior probability distribution for a variable is calculated 
when given a new set of observations. Thus, BNs exploit 
the distributional simplifications of a network structure by 
calculating how probable events are, and how these prob-
abilities can change given subsequent observations or pre-
dict change given external interventions (Borsuk and 
Reckhow, 2004). 

2.2 Quantitative Knowledge Engineering Methodology 

A methodology, presented in Woodberry et al. (2004a), for 
the quantitative knowledge engineering of BNs is outlined 
in Figure 1.  This method illustrates flows (indicated by ar-
rows) through the different KE processes (rectangular 
boxes), which will be executed either by humans (the DE 
and the knowledge engineer, represented by clear boxes) or 
computer programs (shaded boxes).  Major choice points 
are indicated by hexagons. 

The initial stage in the development spiral is Structural 
Development and Evaluation, which on the first iteration 
will produce an unparameterized causal network.   

The next step in Figure 1 is parameter estimation, 
which involves specifying the CPTs for each node. The pa-
rameter estimates can be elicited from DEs, which can also 
include the domain literature as a source of parameter es-
timates. Parameter estimates can also be learned from data 
(path 2) or, as proposed here, generated from a combina-
tion of both sources (an example is shown in path 3).  As 
BN development is an iterative process, in early prototypes 
the parameter estimates need not be exact, and uniform dis-
tributions can be used if neither domain knowledge nor 
data are readily available.   

 

 
Figure 1: Knowledge Engineering Methodology 

 
The second major aspect in the KEBN process is 

quantitative evaluation.  Evaluative feedback can be gener-
ated using either DEs or data or both, as we have done 
here.  When data is available, several measures can be used 
to evaluate BNs, including predictive accuracy, expected 
value computations and information reward.  DE evalua-
tion techniques include elicitation reviews and model 
walkthroughs (see Figure 1).  Another kind of evaluation is 
sensitivity analysis.  

Sensitivity analysis involves analyzing how sensitive 
the network is, thus determining how responsive probabili-
ties of query nodes are to changes in parameters and in-
puts. Measures for these can be computed automatically 
using BN tools (shown as Sensitivity to Parameters and 
Sensitivity to Findings processes, in Figure 1), but these 
need to be evaluated by the DE in conjunction with the KE. 

A more comprehensive description of the KE process 
is provided in (Woodberry et al., 2004a). 

3 CASE STUDY: ERA APPLICATION 

In the ecological risk assessment domain, there is an in-
creasing need for environmental decision support tools that 
are able to model complex ecosystems in an integrated 
framework, acknowledging that uncertainties in input in-
formation and predictive outputs exist.   

Currently, few tools meet these requirements. Those 
that are available are often highly complex, poorly tracta-
ble and not particularly user friendly.  
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The objective of the Goulburn Catchment (Victoria, 
Australia) ecological risk assessment described in this pa-
per was to support future decision-making in the catchment 
by developing a predictive model with the following 
requirements:  
• Quantify linkages between system variables and native 

fish communities in a highly complex system;  
• Incorporate knowledge elicited from DEs;  
• Incorporate existing datasets;   
• Identify key risks to native fish communities; 
• Predict changes to fish communities given system 

changes; 
• Communicate uncertainty in predictions.   

The BN modelling approach was trialed to determine 
if it could meet these requirements.  

3.1 Background: Goulburn Catchment 

The main stem of the Goulburn Catchment, the Goulburn 
River, is the largest tributary of the Murray-Darling Basin 
in the State of Victoria (Australia).  The lowland Goulburn 
River extends from Eildon to its confluence with the 
Murray River at Echuca (Figure 2).  Many rivers and 
creeks enter the 436 km lowland stretch of the Goulburn 
River.  

 

 
 
Figure 2: Location of Goulburn Catchment, showing major 
system changes 

 
The headwaters of the Goulburn River flow into Lake 

Eildon. Water released from Lake Eildon is delivered 218 
km downstream to Goulburn Weir.  From Goulburn Weir, 

outflows are to the lower Goulburn River and three irriga-
tion channels.  

There is evidence that native fish communities in the 
Goulburn Catchment have declined over the past 100 years 
(see Pollino et al. (accepted)).  Four major factors have 
been identified as influencing native fish abundance and 
diversity in the Goulburn River, being water quality, flow 
alterations, in-stream habitat and biological interactions. 
Although the processes and interactions between these fac-
tors and their link to native fish decline are broadly under-
stood, quantitative models to assist in environmental man-
agement do not exist. 

3.1.1 Graphical Structure 

One version of the BN for this application is shown in Fig-
ure 3.  For the purposes of this paper, variable names in 
Figure 3 have been simplified.   

 

 
 

Figure 3: ERA BN Structure 
 
The structure of the BN is based on a comprehensive 

conceptual model developed by DEs.  This model consists 
of five interacting components - water quality, hydraulic 
habitat, structural habitat, biological potential and species 
diversity.  The model has two query variables: Future 
Abundance and Future Diversity.  

The query variables were also established in collabora-
tion with DEs and are based on a very pragmatic manage-
ment need in the Goulburn Catchment, being to assess 
what conditions are required to establish sustainable native 

Lk. Eildon to Trawool
barrier, temperature change, flow
alterations, changes to habitat, 
non-native fish

Lk. Nagambie/Goulburn Weir
barrier, irrigation run-off, flow
alterations, changes to habitat, 
non-native fish

Murchison to Murray River
irrigation run-off, potential saline 
flows, suspended sediments, flow
alterations, changes to habitat, non-
native fish

Lk. Eildon to Trawool
barrier, temperature change, flow
alterations, changes to habitat, 
non-native fish

Lk. Nagambie/Goulburn Weir
barrier, irrigation run-off, flow
alterations, changes to habitat, 
non-native fish

Murchison to Murray River
irrigation run-off, potential saline 
flows, suspended sediments, flow
alterations, changes to habitat, non-
native fish
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fish communities.  Given that no native fish recruitment 
data was available, the surrogate endpoints used were 
based on what information was available.   

To assess the impacts of human-related activities on 
native fish communities, it was important to begin con-
structing the BN by establishing linkages between proc-
esses and activities of importance.  Clearly, the Goulburn 
Catchment is a highly complex system with multiple fac-
tors interacting and influencing fish communities.  The 
empirical relationships within and between chemical, 
physical and biological system components have not been 
previously characterized.  

A temporal scale of one and five years are considered 
in the model.  The spatial scale considers 23 sites in the 
catchment, which are further aggregated into 6 regions. 

The development of the model structure is not de-
scribed in any more detail in this paper, other than to ac-
knowledge that it was undertaken via an iterative process. 

4 PARAMETER ESTIMATION 

To parameterise the ERA BN, all variables were discre-
tised into sub-ranges. Although discrete variables have a 
finite set of possible states, continuous data can be entered 
into these variables. Where possible, variables were discre-
tised using classifications and thresholds from existing 
management guidelines (e.g. Water Quality targets). 

After discretisation, variables were split into two 
groups: those with data were initially given uniform prob-
ability distributions; the remainder were elicited from DEs 
(including DE literature).  In Figure 3, data input variables 
are indicated by shading, although some sites have data 
missing for particular variables.  Missing data was pre-
dominately due to an absence of monitoring data.  Where 
variables had only limited or no data available, parameters 
were initially elicited from DEs (see Section 4.1).  These 
variables are indicated by lighter shading. 

4.1 Elicitation from Experts 

The DEs who participated in this study included ecology 
experts and natural resource managers. Elicitation was 
conducted in a workshop environment and individually. 

Direct elicitation of DEs employs such questions as 
``What is the probability that variable A takes this state 
given these parent values?''  This can employ the use of use 
frequencies, odds, or qualitative elicitation, using terms 
such as 'high' or 'unlikely', with the mapping to actual 
probabilities calibrated separately.  When eliciting precise 
parameters, it can also be useful to elicit an acceptable 
range for the parameter. Intervals can be used during later 
evaluation to identify parameters needing further attention, 
as we shall see.  

DEs were asked to report their confidence in these es-
timates, which was categorized as either low or high. DEs 

tended to be more confident estimating variables pertaining 
to the physical and chemical relationships in the system 
and less so with the biological relationships.  In this study, 
the elicited confidence applied to the node, i.e., to the 
whole CPT, rather than to individual parameters; although, 
this need not be the case in general. 

4.2 Learning Parameters from Data 

Data is available for all 23 sites in the BN, which were ar-
ranged into a series cases (based on the date of a fish sur-
vey) for data learning.  The number of cases per site ranged 
from between 3 and 272.  In total, there were 949 cases.  
For the purpose of parameter learning each case was 
counted twice to match cases with one- and five-year pro-
jections of future abundance and future diversity.  

In circumstances where data is of good quality and vo-
luminous for parameter estimation (e.g. data only nodes in 
Figure 3), or where DE estimates are to be supplemented 
with data, 3 automated algorithms are available to do this 
in the Netica BN software (Norsys, 2000).  These include: 
the Lauritzen Spiegelhalter method (LS) (Lauritzen and 
Spiegelhalter, 1990); the expectation maximization (EM) 
algorithm (Dempster et al., 1977); and the gradient descent 
(GD) algorithm (Norsys, 2000).  Missing data is dealt with 
by finding the parameterizations which yield the greatest 
likelihoods given the data available.  

Of the LS, EM and GD automated learning methods 
available, the EM method was selected for the ERA BN, 
since the LS method was not very useful with many parent 
instantiations missing in the data and the GD method was 
susceptible to local maxima.  Automated learning trials 
were then carried out using EM in order to investigate the 
effects of different weightings of expert elicited CPTs.  A 
pre-trial with the LS method was used for comparative 
purposes. 

4.3 Combining DE and Quantitative Estimations 

When combining elicitation and data-based parameteriza-
tions, elicited information is weighted relative to the data 
available.  In Figure 1 this is done in the Assign Expert 
Experience process, where an experience weighting is as-
signed to the expert parameter estimates, based on the con-
fidence in the estimates obtained during expert elicitation.  
These are then treated as equivalent to the size of a hypo-
thetical initial data sample (the equivalent sample size, or 
ESS).  

After incorporating the data in parameter estimation, 
the next step is to compare the new CPT with the original.  
In Figure 1 we consider this to be an automated process, 
Assess Degree of Changes.  Parameters estimated from the 
data that are outside acceptable range of values elicited by 
experts be flagged for attention.  An alternative method for 
comparing the parameterizations is Bhattacharyya distance 
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(Battacharyya, 1943), which measures the distance be-
tween the two probability distributions. This distance is 
computed for each possible combination of parent values; 
higher distances between conditional distributions trigger 
further attention.  The DE must then assess whether these 
flagged parameter refinements obtained after automated 
learning are acceptable (in the Accept Changes decision 
point in Figure 1).  

 
Table 1. Nodes whose CPTs were first expert elicited, with 
the different experience weightings used for trials of the 
EM automated learning method.  

 
 H=10,M=5 

Trial No. 
H=20,M=10 

Trial No. 
Combined 
Trial No. 

Node 1 2 3 1 2 3 4 5 
Water Quality 10 15 18 20 25 25 25 24 
Hydraulic Habi-
tat 

10 15 18 20 25 25 25 24 

Structural Habi-
tat  

10 7 4 20 15 10 1 1 

Biological Po-
tential  

5 2 4 10 5 5 5 5 

Temperature 
Modification 

10 5 1 20 15 10 1 1 

Community 
Change 

5 1 1 10 5 1 1 1 

Floodplain In-
undation  

10 5 1 2- 15 10 1 1 

Potential Re-
cruitment  

5 1 3 10 5 2 3 3 

Connectivity  10 10 10 20 17 14 12 12 
Migratory spp  5 10 15 10 15 15 15 16 
Current Diver-
sity  

5 1 1 10 7 4 1 2 

Future Abun-
dance  

5 2 4 10 7 4 5 6 

Future Diversity  5 5 5 10 5 5 5 5 
Remaining 
Nodes 

0 0 0 0 0 0 0 0 

 
When using the EM method to refine the parameters 

of all nodes in the ERA BN, a series of trials were con-
ducted (see Table 1).  Each trial used a series of experience 
weightings.  Each of these trial EM parameterizations was 
compared, using the Bhattacharya distance, with the LS 
BN, and an assessment was made as to whether the degree 
of change was acceptable. If the change was deemed unac-
ceptably large, the ESS was increased, while if there was 
no or minor changes, the ESS was decreased. This assess-
ment process was iterated, comparing the new EM parame-
terization with the LS parameterization and setting a new 
ESS value, Wi+1, using the Algorithm shown below. 

 
ALGORITHM: Adjusting ESS  
 
Loop until ESS values converge 
Parameterize network with current ESS values 

 Switch 
  Case changes unrealistic: Wi+1 ← Wi + upLarge (5) 
  Case would allow greater changes : Wi+1 ← Wi+ upSmall (3)  
  Case little OR no change: Wi+1 ← Wi + downLarge (5)  
  Case insignificant change: Wi+1 ← Wi - downSmall (3)  
  Case changes become unrealistic: Wi+1 ← Wi-1 + bounceup (2)  
  Case changes disappear: Wi+1 ← Wi-1 - bouncedown (2)  
  Case final trials, small adjustments needed: Wi+1 ← Wi-1±  tweak (1) 
  Case changes acceptable: Wi ← Wi   
End Loop 

5 QUANTITATIVE EVALUATION 

After parameterization of the BN, the second major aspect 
of quantitative knowledge engineering is evaluation (Fig-
ure 1), which guides further iterations of BN development.   

5.1 Evaluation using Data  

When data is available, it can be used for evaluation.  
Where the data is also being used to learn the structure or 
the CPTs, it is necessary to divide it into training data and 
test data, so that evaluation is not done with the very same 
data used for learning.  The most common method of 
evaluation is to determine the predictive accuracy of the 
BN, which measures the frequency with which the modal 
node state (that with the highest probability) is observed to 
be the actual value. 

In the ERA case study, case data was randomly split 
so that 80% of data were used for training and 20% used 
for testing.  

The error rate of the query nodes, Future Abundance 
and Future Diversity, were only 5.8% and 0%, respec-
tively.  The low error rates reflect the lack of variability 
available in the dataset, and thus the full spectrum of vari-
ability in the network cannot be tested. Therefore, as data 
was limited, automated evaluation was of limited use.  
Other, less formal, data evaluation was conducted and is 
discussed in Woodberry et al. (2004b). 

5.2 Evaluation using DE 

Even when adequate data is available, it is important to in-
volve the DE in evaluation.  If expert elicitation has been 
performed, a structured review of the probability elicitation 
is important. This procedure could involve: comparing 
elicited values with available statistics; comparing values 
across different DEs and seeking explanation for discrep-
ancies; double-checking cases where probabilities are ex-
treme (i.e., at or close to 0 or 1), or where the DEs have in-
dicated a low confidence in the probabilities when 
originally elicited. 

For the ERA BN, the domain expert developer con-
ducted a semi-formal model walkthrough with ecology ex-
perts and natural resource managers, with positive feed-
back.  It is recognized that to strengthen the model more 
case data is needed.  
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5.3 Sensitivity Analysis 

Sensitivity analysis is used to measure how sensitive the 
network is, in terms of changes in updated probabilities of 
some query nodes to changes in parameters and inputs. We 
review two types of sensitivity analysis.  One type, “sensi-
tivity to findings,” looks at how the BN's posterior distribu-
tion changes under different observed conditions. The 
other, “sensitivity to parameters,” looks at how the model's 
distribution changes when particular parameters are al-
tered. Curiously, researchers thus far appear to have em-
ployed one or the other of these methodologies, but not 
both in any one study (e.g., Laskey and Mahoney (2000); 
Rieman et al. (2001); Coupe and Van der Gaag (2002)).  
Both are needed for a careful and thorough investigation of 
the properties of a network. 

In the ERA BN, sensitivity analyses were used to 
identify variables that were highly sensitive to change, so 
as quantification efforts in the proceeding model iterations 
were focused.  Where the accuracy of parameters could not 
be improved, they were investigated to determine if they 
represented knowledge gaps, indicating where further 
monitoring and research efforts are required.  

Variables that were identified as contributing little to 
improving the predictive accuracy of the model were given 
less attention.  

5.3.1 Sensitivity to Findings 

In BNs, the properties of d-separation can be used to de-
termine whether evidence about one variable may influ-
ence belief in a query variable. It is possible to measure 
this influence and rank evidence nodes by how much of an 
effect they have. This information can be used to provide 
guidance for collecting the most informative evidence or as 
a check on whether the model reflects the DE's intuitions. 

Sensitivity to findings can be quantified using two 
types of measures, entropy and mutual information.  En-
tropy, H(X), is commonly used to evaluate the uncertainty, 
or randomness, of a probability distribution:  

 

x XH(X) = - P(x) log P(x)  ∉∑                (1) 
 
Measuring the effect of one variable on another is re-

ferred to as the mutual information (MI):  
 

I(X|Y) = H(X) - H(X|Y)                         (2) 
 
We have implemented this type of sensitivity to find-

ings (see Woodberry et al. (2004b)).  Our algorithm com-
putes and displays both the entropy of a specified query 
node and the ranked mutual information values for a speci-
fied set of interest nodes, given a set of evidence for some 
other observed nodes.  The user can subsequently investi-

gate how changes to the evidence will affect the entropy 
and MI measures.  This process allows the DE to identify 
whether a variable is either too sensitive or insensitive to 
other variables in particular contexts, which in turn may 
help identify errors in either the network structure or the 
CPTs. 

5.3.2 Sensitivity to Parameters 

Sensitivity analysis could be performed using an empirical 
approach, by altering each of the parameters of the query 
node and observing the related changes in the posterior 
probabilities of the target node. However, such a straight-
forward analysis can be extremely time consuming, espe-
cially on large networks.  Coupe and Van der Gaag (2002) 
address this difficulty by first identifying a “sensitivity set” 
of variables given some evidence.   

A sensitive set of variables are those that can poten-
tially change. Thus, less effort can be spent on the remain-
ing variables.  The sensitivity set can be found using an 
adapted d-separation algorithm (see Woodberry et al. 
(2004b)).  Coupe and Van der Gaag (2002) also demon-
strated that the posterior probability of a state, given evi-
dence under systematic changes to a parameter value, can 
be given a functional representation, either linear or hyper-
bolic. 

For the ERA BN, we implemented sensitivity to pa-
rameters (see Woodberry et al. (2004b)).  When a particu-
lar evidence instantiation is set, our algorithm (see 
Woodberry et al. (2004b))  identifies the type of sensitivity 
function for the parameters by checking whether the query 
node has any observed descendant nodes. Once the sensi-
tivity function is determined for a parameter, its coeffi-
cients can be computed.  If the plotted sensitivity function 
does not behave as the DE expects (its slope, direction or 
range is unexpected), then this could indicate errors in the 
network structure or CPTs. 

The revised normalized probability distribution of the 
test node is set by first selecting a new value, Pnew for the 
parameter under investigation, Pj.  The remaining parame-
ters, Pi, are normalized to retain relative values by the up-
dating function,  

 
1 ,

1
PnewPi Pi i j

Pj
−

⇐ × ≠
−

                      (3) 

 
before the parameter under study is updated,  
 

Pj Pnew≠                                      (4) 
 
In the ERA BN,  assessments for the network’s condi-

tional probabilities were systematically varying over a 
plausible interval, being 0 to 1 used in this study. The ef-
fects on the behaviour of the system were examined.  
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Results of sensitivity to parameters indicate that the 
network parameters are relatively insensitive to change. 
The most sensitive scenario was identified as: probability 
that future abundance is low given, water quality was low, 
structural habitat was low, biological potential was low, 
and hydraulic habitat was low at Eildon over a one year 
time scale (Figure 4). These environmental conditions rep-
resent the “worst case scenario” for native fish in the 
catchment. 

 

Figure 4: Sensitivity to parameters output showing slope of 
change for high and low future native fish abundances at 
one site.  

5.4 Model predictions 

Fisheries data from each site in the catchment were plotted 
against model predictions (Figure 5). The model predic-
tions are based on existing environmental conditions in the 
Goulburn Catchment.  

Comparisons between data and predictions are only 
relative due to the different scales (probability versus rela-
tive abundances); however, trends between the fisheries 
dataset and the predictive outputs are generally maintained. 
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Figure 5: Relative abundance data (left axis - bars) versus 
BN model predictions (right axis - line) for sites in the 
Goulburn main channel.  

 
Clearly, fish communities in the upper part of the 

catchment (GEi, GA, GY, GT) are under stress. Using the 
results of the sensitivity analyses (not shown), at these four 
sites, water quality (temperature) and changed hydrology 
appear to be the variables primarily influencing native fish 
abundance. At the remaining sites, fish abundance is pri-
marily under the influence of the biological potential (po-
tential recruitment and current abundance), water quality 
(turbidity, dissolved oxygen and pH), and flow. 

6 ACCEPT MODEL PROTOTYPE 

Quantitative evaluation can be used to identify problems 
with the BN structure and parameters.  After the model has 
been evaluated using a particular technique, the KE and 
DE must determine whether the prototype is to be accepted 
for the next stage of development.  This decision is not in-
tended to be the end of the knowledge engineering, or even 
prototyping, process. 

If the prototype is not sufficiently validated for proto-
type acceptance, Further evaluation is one option for the 
KE and DE.  It will often be necessary to use multiple 
evaluation techniques to validate the model: for example, 
sensitivity to findings and parameter analyses evaluate dif-
ferent aspects of the model with little overlap, and hence 
don't substitute for each other.  If problems with either the 
structure or the parameters have been identified, it will be 
necessary to re-visit the relevant KE processes, Structural 
Development Evaluation or Parameter Estimation respec-
tively, via the main spiral iteration in Figure 1. 
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7 DISCUSSION 

7.1 Knowledge Engineering 

In this paper we have described the use of a methodology 
for combining expert elicitation and data for parameteri-
sion of BNs, an important research topic that has been 
widely acknowledged in the BN field but little developed.  

In many ecological applications, including our ERA 
case study, information sources can be considered to be 
poorly documented, poorly understood, and generally in-
complete.  Although other causal network structures (e.g. 
Borsuk and Reckhow (2004)) have been developed using 
such information sources, unlike this study, parameter es-
timates for a variable were obtained from only one source 
(i.e. DEs or data). To parameterise the ERA BN model, we 
directed our efforts towards combining multiple informa-
tion sources, each with associated uncertainties, and under-
taking an iterative process to derive acceptable parameter 
estimates.  

Evaluative methods, including sensitivity analyses, 
were used to investigate the uncertainties and inaccuracies 
in model structure, relationships and outputs (Coupe and 
Van der Gaag, 2002). This process enabled a more targeted 
approach in identifying parameters that needed to be accu-
rately quantified. Thus, based on these results, recommen-
dations for targeted monitoring and studies can be made.  

By utilizing a BN knowledge engineering spiral, we 
developed a model prototype that has been accepted for 
use in an ecological risk assessment domain. Future studies 
will investigate further testing and refining this methodol-
ogy in other domains, and to iteratively assess and develop 
the deployed ERA model. 

7.2 ERA Application 

The development of quantitative decision-support systems 
in environmental management are considered to be of high 
priority today. By using predictive models, it is anticipated 
that decisions will be more robust, defensible and tractable. 
However, given that both the understanding of many com-
plex ecological systems is considered to be limited, and the 
existing modelling technologies for describing such sys-
tems are poor, progress has been limited.  

In this study, the BN modelling technology was trialed 
in an effort to model a complex ecological system, the 
Goulburn catchment. As with many catchments, there were 
high uncertainties associated due to the lack of knowledge 
of the relationships between variables and lack of data 
available.  Nonetheless, the ERA BN developed has the 
ability to predict the abundance and diversity of native fish 
communities based on existing and predicted changes to 
environmental conditions. The model has the ability to as-
sist in determining what management options are most fa-

vorable for maintaining and rehabilitating fish communi-
ties at multiple spatial scales.  However, the model requires 
further testing in the field to determine its accuracy pre- 
and post- management interventions or system changes. 

As new information is made available, this can be in-
corporated into the model. Unlike many other modelling 
approaches, BN can continually be developed, adapted and 
refined. This process can be conducted using the parame-
terization and evaluation process described in this paper. 
Consequently, BN models have the potential to become 
both an important and adaptive learning tool, as well as an 
important adaptive resource management tool. 

Further investigations are underway to make the ERA 
BN specific to different types of fish communities and to 
trial it in different catchment areas.  

REFERENCES 

Battacharyya, A., 1943. On a measure of divergence be-
tween two statistical populations defined by their 
probability distributions. Bull. Calcutta Math Soc., 35: 
99-110. 

Borsuk, M.E., Stow, C.A. and Reckhow, K., 2004. A 
Bayesian network of eutrophication models for syn-
thesis, prediction and uncertainty analysis. Ecol. Mod-
elling, 173: 219-239. 

Coupe, V.M.H. and van der Gaag, L.C., 2002. Properties 
of sensitivity analysis of Bayesian belief networks. 
Ann. Math. Art. Intell., 36: 323-356. 

Dempster, A., Laird, N. and Rubin, D., 1977. Maximum 
likelihood from incomplete data via the EM algorithm. 
J. Royal Stat. Soc. B, 39: 1 - 38. 

Korb, K.B. and Nicholson, A.E., 2004. Bayesian Artificial 
Intelligence. Chapman and Hall / CRC Press, London, 
364 pp. 

Laskey, K.B. and Mahoney, S.M., 2000. Network Engi-
neering for agile belief network models. IEEE Trans. 
Know. Data Eng., 12: 487-498. 

Lauritzen, S.L. and Spiegelhalter, D.J., 1990. Local com-
putations with probabilities on graphical structures and 
their application to expert systems. In: G. Shafer and J. 
Pearl (Editors), Readings in Uncertain Reasoning. 
Morgan Kaufmann, pp. 415-458. 

Nicholson, A.E., Boneh, T., Wilkin, T., Stacey, K., Sonen-
berg, L. and Steinle, 2001. A case study in knowledge 
discovery and elicitation in an intelligent tutoring ap-
plication. In: Breese and Koller (Editors), UAI01, Se-
attle, pp. 386-394. 

Norsys, 2000. Netica. www.norsys.com. 
Onisko, A., Druzdel, M.J. and Wasyluk, H., 2000. Learn-

ing {B}ayesian network parameters from small data 
sets., Workshop on Bayesian and Causal networks, 
ECAI-2000. 

Pollino, C.A., Feehan, P., Grace, M. and Hart, B., ac-
cepted. Fish communities and habitat changes in the 



Pollino, Woodberry, Nicholson, Korb 
 

highly modified Goulburn Catchment, Victoria, Aus-
tralia. Marine and Freshwater Research. 

Rieman, B.E., Peterson, J.T., Clayton, J., Howell, P., 
Thurow, R., Thompson, W. and Lee, D.C., 2001. 
Evaluation of potential effects of federal land man-
agement alternatives on trends of salmonids and their 
habitats in the interior Columbia River basin. Forest 
Ecology and Management., 153: 43-62. 

Woodberry, O., Nicholson, A.E., Korb, K.B. and Pollino, 
C.A., 2004a. Parameterising Bayesian Networks, To 
appear in Proceedings of the 17th Australian Joint 
Conference on Artificial Intelligence, December 2004, 
Cairns. 

Woodberry, O., Nicholson, A.E., Korb, K.B. and Pollino, 
C.A., 2004b. A methodology for parameterising 
Bayesian networks, Technical Report, School of 
Computer Science and Software Engineering, Monash 
University. 

BIOGRAPHIES 

CARMEL POLLINO Ph.D. earned her doctorate in 
ecotoxicology at RMIT University (2000). After working 
on conducting laboratory investigations in ecological risk 
assessment at the City University of Hong Kong, Carmel 
joined the Water Studies Centre at Monash University as a 
Research Fellow. Her research focus is on the use of 
Bayesian networks for risk assessments and the wider 
adoption of risk assessment into environmental manage-
ment. 

OWEN WOODBERRY received his Bachelor of Com-
puter Science with Honours at Monash University in 2003.  
He has also worked as a Research Assistant with the Water 
Studies Center continuing the work of his Honours project. 
He is currently undertaking his PhD in Evolutionary Ethics 
with the Computer Science Department also at Monash 
University.  His research interests include Bayesian Net-
works, Ecology, Ethics, Morality, Sociobiology, ALife and 
Artificial Intelligence. 

ANN NICHOLSON D.Phil., did her undergraduate com-
puter science studies at the University of Melbourne and 
her doctorate in the robotics research group at Oxford Uni-
versity (1992), as a Rhodes Scholar, working on dynamic 
Bayesian networks for discrete monitoring. She then spent 
two years at Brown University as a post-doctoral research 
fellow before taking up a lecturing position at Monash 
University in Computer Science. Her general research fo-
cus is AI methods for reasoning under uncertainty, while 
her current research includes knowledge engineering with 
Bayesian networks, applications of Bayesian networks and 
user modeling. 

KEVIN KORB Ph.D., earned his doctorate in the phi-
losophy of science at Indiana University (1992) working 
on the philosophical foundations for the automation of 
Bayesian reasoning.  Since then he has lectured at Monash 
University in Computer Science, combining his interests in 
philosophy of science and artificial intelligence in work on 
understanding and automating inductive inference, the use 
of MML in learning causal theories, artificial evolution of 
cognitive and social behavior and modeling Bayesian and 
human reasoning in the automation of argumentation. 


	Back to Table of Content

