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ABSTRACT 

Active control equivalence trials (ACETs), conducted with 
the goal of demonstrating therapeutic equivalence, are of 
growing importance to the pharmaceutical industry, clini-
cal medicine, government, and academia.  In this paper, 
therapeutic equivalence is defined in terms of equivalent 
clinical outcome (e.g., survival) without regard to assess-
ment of bioequivalence.  The likelihood-ratio-based as-
ymptotic fiducial and Bayesian methods for therapeutic 
equivalence assessment (TEA) are developed in the con-
text of survival analysis, using the Weibull distribution.  
The methods are illustrated using leukemia remission data. 

1 INTRODUCTION 

Active control equivalence trials (ACETs) have received 
much attention in the statistical literature. The reader is re-
ferred to Dunnett and Gent (1977), Blackwelder (1982), 
Patel and Gupta (1984), Hauck and Anderson (1986), Mau  
(1988); Makuch, Stephens, and Escobar (1989); Durrieman 
and Simon (1990); Fleming (1990); Dunnett and Gent 
(1996), Ebbutt and Frith (1998), Robins (1998), Weins and 
Iglewicz (2000). Therapeutic equivalence refers to a new 
treatment being as efficacious as a standard treatment. Al-
though the FDA has a very strict definition of therapeutic 
equivalence (FDA, 1979, p. 2937) for regulatory purposes, 
therapeutic equivalence may be considered in a less restric-
tive context emphasizing “equivalent” efficacy in clinical 
outcome and therapeutic benefit to the patients. It is in this 
context, for the purpose of individual clinical decision 
making, that our methodology is most beneficial. 

Some examples of the therapeutic equivalence prob-
lem include “reduction in dose or duration of chemother-
apy, less extensive surgery, or substitution of an invasive 
technique by an external procedure” (Durrieman and 
Simon, 1990, p. 329).  As a particular example, in surgery, 
therapeutic equivalence has been investigated between new 
replacement heart valves versus the standard of practice 
replacement heart valves (personal communication, Naftel, 
1995, for other examples, Makuch and Johnson, 1989, for 
examples in AIDS research, Cooper, 1990). Therapeutic 
equivalence is important because a new treatment that is 
therapeutically equivalent to an existing one can be supe-
rior in other contexts. For instance, the new treatment may 
have fewer side effects or otherwise improve quality of 
life, may be easier to administer or have a preferred dosage 
schedule, or may be less expensive to produce. Also, a ge-
neric drug company may wish to demonstrate therapeutic 
equivalence to the FDA so that the company may introduce 
a competing product. 
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Therapeutic equivalence and bioequivalence are two 
different concepts, despite its controversy. Foremost, the 
endpoints in therapeutic equivalence and bioequivalence 
are very different; the endpoint in the former is some 
measure of clinical outcome, the endpoint in the latter is 
typically related to blood/plasma levels (personal commu-
nication, Makuch, 1995). Also, assessment of therapeutic 
equivalence generally requires conduct of a clinical trial(s), 
whereas bioequivalence is often assessed in a much smaller 
setting, e.g., bioassays. Durrleman and Simon (1990)  
write, “compared to the biological problem of bioavailabil-
ity, the therapeutic equivalence of two treatments is a more 
pragmatic concept. Rather than assessing a theoretical 
equivalence, which makes little sense when the two treat-
ments can be very different “in principio” (e.g., surgery 
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versus lithotripsy), one is interested in therapeutic decision 
making.” Indeed, in the view of the FDA, bioequivalence 
is a prerequisite for therapeutic equivalence, clearly estab-
lishing a difference between the two concepts. 

As a particular example, in the context of breast cancer 
research, in estrogen-receptive women, consider two drugs, 
A and B, each for prevention of spread of the cancer. It is 
hypothesized that spread of the cancer follows from either 
(1) increased peptide growth factor (GF) synthesis and 
subsequent binding of GFs with specific membrane-bound 
receptors which in turn signal the initiation of a sequence 
of intracellular actions resulting in cell division, or (2) 
binding of estrogen to those limited number of cells con-
taining intracellular estrogen receptors; those cells, through 
a sequence of steps, secrete some of the GFs which then 
signal the initiation of (1) in nearby cells which otherwise 
are unresponsive to estrogen. Drug A could be targeted to 
block the binding of the GFs to their membrane receptors 
or to block the post-receptor signal transduction. Drug B 
could be targeted to block the binding of the estrogen to 
its receptor or to block an event in the estrogen post-
receptor signal transduction mechanism. Success with both 
Drug A and Drug B would prevent spread of the cancer; 
therefore the drugs would yield equivalent clinical out-
come. However, the active ingredients in the drugs could 
certainly be different, thereby making assessment of bio-
equivalence not feasible, despite the therapeutic equiva-
lence. Other examples where bioequivalence is not a rele-
vant concern may be found in hypertension research. 

There are a number of classical (non-Bayesian) meth-
ods for TEA. Dunnett and Gent (1977) present a method of 
significance testing to compare two binomial samples with 
data summarized in 2x2 tables. Blackwelder (1982) pre-
sents a method of hypothesis testing with a dichotomous 
outcome variable and sample sizes large enough for use of 
the normal approximation to the binomial. Patel and Gupta 
(1984) present a method of hypothesis testing with a nor-
mally distributed response variable. Hauck and Anderson 
(1986) use a confidence interval approach. Mau (1988) 
presents a method of Cox’s “confidence distributions” us-
ing the normal approximation to the binomial. Fleming 
(1990) presents a method for time to event data, using 
Cox’s proportional hazards regression to estimate the haz-
ard ratio (or relative risk of failure) of the two treatments. 
The method uses confidence intervals for the hazard ratio 
to assess either superiority of one treatment or equivalence 
(for application in “non-inferiority” trials). Dunnett and 
Gent (1996) present a procedure with union-intersection 
and intersection-union hypothesis testing approaches to test 
“simultaneously for a positive difference and for equiva-
lence” (Dunnett and Gent, 1996, p. 1729). 

It is important to note that each of these methods per-
tains to either normally distributed means or binomially 
distributed proportions, with the exception of Fleming’s 
(1990) method. Recall that his method is based on Cox re-

gression, and therefore it is semiparametric. Our method-
ology (as well as the Bayesian methods addressed immedi-
ately below) employs parametric modeling in a 
progressively censored survival analysis setting.  Alterna-
tively, some Bayesian methods are available for TEA. Bar-
tolucci and Singh (1993) and Singh (1996) present a 
method that is similar to the confidence interval approach 
above, instead using a Bayesian posterior credibility inter-
val for the ratio of functions of parameters of survival dis-
tributions. Their method is developed using the translated 
exponential in the role of the survival distribution, along 
with inverted gamma and vague priors.  

There are also numerous (1) classical and (2) Bayesian 
approaches to bioequivalence assessment. (1) classical: 
Westlake (1972, 1974, 1976, 1979, 1981), Metzler (1974), 
Kirkwood (1981), Hauck and Anderson (1984), Rocke, 
(1984), Schuirmann (1987), Chow and Shao (1990), Liu 
and Chow (1993), (2) Bayesian: Rodda and Davis (1980), 
Mandallaz and Mau (1981), Selwyn, Dempster, and Hall    
(1981), Flühier, Grieve, Mandallaz, Mau, and Moser 
(1983), Selwyn and Hall (1984), Selwyn, Hall, and Demp-
ster (1985), Racine-Poon, Grieve, Flühier, and Smith 
(1987), Liu and Chow (1997), some of which are precur-
sors of some of the above-mentioned methods for thera-
peutic equivalence.  

Indeed, some of Westlake’s discussions infer thera-
peutic equivalence from bioequivalence, and such infer-
ences have been questioned and debated (Kirkwood, 1981; 
Westlake, 1981). Recall also that therapeutic equivalence 
can also be considered in a context emphasizing “equiva-
lent” efficacy in clinical outcome and therapeutic benefit to 
the subjects, where bioequivalence is not a relevant con-
cern. We wish to emphasize a focus on clinical outcome, 
survival patterns in particular, therefore we consider TEA 
based on clinical outcome to be independent of (or, in ad-
dition to) any assessments of bioequivalence. Additionally, 
all of the above-mentioned methods for bioequivalence as-
sessment are based on either means of a normal distribu-
tion (the data are usually log transformed first -- usually 
base 10, sometimes base e) or on binomial proportions; 
i.e., none of the methods make use of survival distribu-
tions.  

2 METHODOLOGY 

We present a likelihood ratio based asymptotic fiducial 
method for therapeutic equivalence assessment (TEA) for 
progressively censored survival data. In this paper, we de-
velop the method for the Weibull distributed data. Our 
method requires an elicitation from a clinical expert to es-
tablish the maximum clinically insignificant difference be-
tween two treatments. Unlike some other methods, the 
method does not require a priori specification of the stan-
dard and experimental treatments. Our method provides a 
considerable amount of information for individual clinical 
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decision making, as opposed to merely a hypothesis testing 
of “reject” or “do not reject” type, or a p-value. The nu-
merical value of our method is interpretable for individual 
clinical decision making. Also, for the Weibull distributed 
data, the method is easily implemented in SAS. 

The method requires data structure of an ordered pair 
for each of two treatment groups, (xiA, ciA) for i = 1 to nA 
and (xiB, ciB) for i = 1 to nB; note that nA need not equal nB. 
Each xi is either a time of death (ti ; survival time; uncen-
sored observation) or a time of loss-to-follow-up (tI

+
  ; a 

progressively censored observation). Each ci is either a 0 if 
the observation is uncensored or a 1 if the observation is 
censored. Therefore, the number of deaths for either treat-
ment group, rk, is given by 

                         (1)               ∑
=

−=
kn

i
ikkk cnr

1
, BAk ,=                                            

(Kendall and Stuart, 1973). Therefore, although f(D| 
∆) is not easily obtained, f(D|λ) is easily obtained, as f(χ

The two survival distributions are considered (clini-
cally) equivalent if the distance between them is less than 
some clinically pre-specified value (note that this discus-
sion is actually relevant for practical consideration). A 
question then arises: what is a suitable measure of the dis-
tance? In the setting of likelihood ratio test of 

 
        H0: f (t; ψ1) =   f (t; ψ2) versus               

        Ha: f (t; ψ1) ≠  f (t; ψ2),      (2)   

where ψ, ψ1 and ψ2  are parameter vectors, the 
likelihood ratio may be transformed into a measure of the 
distance 

                        D = 2[L(ψ1,ψ2) - L(ψ)]             (3)           
      

 
 

Although D is an unknown with respect to the sample 
space, it is a random variable in parameter space. We now 
apply the fiducial arguments: F1(∆|D) = F(D|∆) (Fisher, 
1973; Quenouille, 1958).  ∆ represents a  distance measure 
between two distributions.  F1(∆|D) is the cumulative fi-
ducial probability function and  F(D|∆)  is the cumulative  
distribution function of the sufficient statistic D given  ∆. 
The distribution f (D|∆) is not easy but an asymptotic result 
provides an alternate approach. 

Under H0, D has an asymptotic chi-squared distribu-
tion with v degrees of freedom equal to the reduction from 
the total number of parameters in ψ1 and ψ2 to the num-

ber of parameters in ψ. Under Ha, D has an asymptotic 
non-central chi-squared distribution,  

f( χ2 ;v, λ.) with v degrees of freedom and non-
centrality parameter 

                                                                                   (4)        
 

where θr and θro correspond to a reparameterization of 
the hypotheses as 

          H0: θr = θro  versus   Ha: θr ≠ θro                                  (5)       
      

                                                                                                          
and where Vr0-1 is the inverse of the dispersion ma-

trix, with elements 
 
                                                                                                              
 
                                                                                   (6) 
 
                                                                            
                                                                              
 

2; 

v, λ). We therefore consider the fiducial distribution of λ 
given D, ff (λ|D), employing the fiducial argument Ff 
(λ|D) = F(D|λ) (Fisher, 1973; Quenouille, 1958), esti-

mating F(D|λ) by F(D |λ ), now subsequent to the demon-
stration that λ  is a sufficient statistic. The question arises: 
Is λ as a suitable measure of the distance between the two 
distributions as is ∆? 

Both ∆ and λ are random variables ranging from 0 to 
∞. If ∆=0, H0 is true, as that is the only possible way for 
the numerator and denominator of the likelihood ratio to be 
equal. If λ=0, then H0 is true, by the definition of λ. As 
each ∆ and λ increases, evidence builds in support of Ha; 
therefore each increases as the distributions differ. The re-
lationship between ∆ and λ is implicit, but monotonic. 
Therefore, asymptotically, λ is as suitable a measure of the 
distance as is ∆.   

To perform the TEA, information must be elicited 
from a clinical expert in order to establish the maximum 
clinically insignificant difference between the two distribu-
tions. This information, which we will base on median sur-
vival times, must then be used to determine a clinically 
specified value, λexpert. Once λexpert has been established, 
one simply calculates Pf (λ ≤ λexpert |D) = Ff (λexpert |D) 
≈ F(λexpert |λ ) to obtain the fiducial probability that the 
two distributions are as close as λexpert or closer. Note that 
the same value λexpert is used for both the fiducial and 
Bayesian methods. λ  is asymptotically sufficient. Notably, 
there is no need to set a significance level a priori; in fact, 
there is considerable flexibility for individual clinical deci-
sion making at this point. 

 
Remark: As pointed out by the referee, the proposed 

approach can be translated into a confidence interval ap-
proach. The non-centrality parameter, λ, is a transforma-
tion of the unknown parameter, θr, . In fact, it is the Maha-
lanobis distance of θr  from the value specified by the null 
hypothesis. By using standard asymptotic arguments one 
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could derive a confidence interval for λ, for example, 
through the delta method or the likelihood ratio test. Con-
fidence interval could then be compared with λexpert . An 
alternate way is to build, instead of a confidence interval, 
an upper limit for  λ  that can be computed with  λexpert .  

3 WEIBULL DISTRIBUTION DATA 

The likelihood function of r survival times and n - r times 
of loss-to-follow-up is  

          e L( , )β γ  = 
∑

∏ =

−

=

−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
n

i

ior

i
ir

r

et 1

1

1

1

γ
γβγ

γβ
γ

            (7)

      
where  denotes a survival time until death; uncensored 
time,  denotes a censored time, o  for uncensored 
observations and o  for censored observations.  In 
terms of testing 

ti

ti
+ ti = i

iti =
+

                     H0: f(t; βA, γA) = f(t; βA, γA), versus 
                     Ha: f(t; βA, γA) ≠ f(t; βB, γB)                 (8)

     
 
the estimated likelihood ratio is given by 

                   Λ = 
e

e

L

L A A B B

( , )

( , , , )

β γ

β γ β γ
, 0 < Λ < 1     (9) 

The MLEs  and β γ  must be obtained by an iterative 

procedure.  Estimates of the asymptotic variances of  and β
γ  and of the asymptotic covariances of  and β γ  are, re-
spectively, by   
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Determination of the Non-centrality Parameter (λ ) 

and an Asymptotic Fiducial Distribution for TEA 
 
We reparameterize the hypotheses as follows: 
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The non-centrality parameter is given by  
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 whose estimate is given as follows: 
 
 
                                                                     
 
                         (15)

  
As the two groups receive different treatments, the two 

populations are independent, and  Var(βA − βB) = Var(βA) 
+ Var(βB),  Var(γA − γB) = Var(γA) + Var(γB), and 
Cov( , )β β γ γA B A B− −  = Cov(βA, γA) + Cov(βB, γB) 
are used. We estimate the individual information compo-
nents by the inverses of their separately determined vari-
ance estimates.  We therefore estimate V  by  1

0
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and then obtain λ  as  
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Having obtained , an asymptotic fiducial distribu-
tion, ff(λ|D), may now be defined as discussed in Section 
2.0. 

λ

 
Determination of  λ  expert
We propose the required elicitation from an expert to 

be simply an estimate of the maximum clinically insignifi-
cant difference in median survival times for the two treat-
ment groups; we shall call the estimate dsme. We first 
compute mid, the midpoint of A and B, and β β β γ mid, the 
midpoint of γ A and γ B.  Simultaneously, we "spread" the 

s and β γ s, around their respective midpoints, decrement-
ing and incrementing by 1% of each respective midpoint.  
We search until the implied median difference reaches dsme 
(the median of the Weibull distribution is given by med = 

 × β 0 69314718 1. γ ), obtaining Asme, Bsme, β β γ Asme, 
and γ Bsme.  We compute the implied value of λ, naming it 

, as λexpert
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We estimate V  by  rsme

−1
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with components given by  
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Note that a disadvantage of the estimation of Vrsme12

1−  = 
Vrsme21

1−  and Vrsme22
1−  is that the sums that they contain are 

functions of the raw data and the original MLEs; unfortu-
nately, these approximations are arguably among the best 
available choices. Also, note that although the subject mat-
ter expert only provides information to estimate implied 
medians with a difference of dsme, we are actually able to 
estimate the parameters of the distribution, resulting in the 
ability to make inferences regarding therapeutic equiva-
lence of the distributions, and not merely therapeutic 
equivalence of the medians. 

4 ACUTE MYELOGENOUS LEUKEMIA DATA 

A phase III trial was performed to compare remission in-
duction in two groups of acute myelogenous leukemia pa-
tients (Vogler et al., 1992). The goal of the trial was to 
demonstrate that the experimental treatment, the anthracy-
cline idarubicin (IDR) in combination with cytarabine 
(CA), was superior, in remission induction, to a standard 
treatment, the anthracycline daunorubicin (DNR) in com-
bination with CA. The trial demonstrated the hypothesized 
superiority of IDR in remission induction. The only infer-
ence made with respect to survival was that no statistically 
significant difference existed between the two treatment 
groups, assessed by the log-rank and generalized Wilcoxon 
rank sum tests. In this section, we demonstrate the likeli-
hood ratio based asymptotic fiducial method for TEA by 
applying it to this leukemia data, with the goal of demon-
strating therapeutically equivalent survival in the two 
treatment groups. We begin with description of the data 
structure as well as preliminary descriptive analyses of the 
data. 

Two hundred thirty patients were randomized, 111 to 
IDR, and 119 to DNR. We use 109 and 115 patients, re-
spectively (the exclusions are for incorrect diagnosis, ran-
domized but not treated, or death prior to treatment). There 
were 104 deaths in the IDR group and 103 deaths in the 
DNR group, implying 5 and 12 censored observations, re-



Singh et.al  
 
spectively. The data are measured in months. To examine 
the Weibull distributions to model the survival patterns, we 
perform the likelihood ratio test comparing, one Weibull 
population with two Weibull populations. 

The maximum likelihood estimates (MLEs) of the 
Weibull distribution for the IDR group and the DNR group 
are e  = 16.371 and β γ e  = 0.910, and s  = 14.595 and β
γ s = 0.814, respectively. The MLEs for the two groups 

combined are c  = 15.447 and β γ c  = 0.858.  For one 
Weibull population versus two Weibull populations the 
likelihood ratio test has a p-value of 0.552, failing to dem-
onstrate evidence for two populations. This result is the de-
sired one as a preliminary for TEA, and we may later ex-
amine clinically equivalent survival using the Weibull 
distribution. We examine goodness of fit using the 
method of Hollander and Proschan (1979) and Lee (1992, 
p. 191). It is noteworthy that this method does lack power, 
as the test is against a universal alternative. However, the 
strength of this test is its ability to handle progressive  cen-
sored data. For IDR and DNR, the test has p-values of 
0.8734 and 0.8695, respectively, yielding conclusions that 
the Weibull distribution is not inappropriate. 

Now, we consider Weibull TEA. The maximum clini-
cally insignificant difference in median survival times for 
the two treatment groups, dsme, has been specified by a 
subject matter expert to be 3 months. The fiducial probabil-
ity of therapeutic equivalence with dsme = 3 months is 
0.949. The first consideration for a patient is whether or 
not an approximately 95% “chance” of “equivalent” sur-
vival is acceptable. The subject matter expert has also 
specified 3 < dsme < 6 to be a clinical “gray area”. There-
fore, further flexibility for individual clinical decision mak-
ing is derived by examining the fiducial probability 
through this “gray area”. The fiducial probabilities of 
therapeutic equivalence with dsme 3.5, 4, 4.5, 5, and 5.5= 

months are 0.98981, 0.99864, 0.99988, 0.99999, and 
0.99999, respectively. For instance, if an individual is will-
ing to consider a difference of 4 months in median survival 
times to be clinically insignificant, then the “chance” of 
“equivalent” survival is better than 99%. All of this infor-
mation, in conjunction with all other information regarding 
the treatments (e.g., quality of life), may be used by an in-
dividual patient with his or her physician to make a treat-
ment decision.  
The authors of this manuscript have illustrated a very nice 
application of fiducial approach in therapeutic studies. This 
contribution is significant in dealing with the complex is-
sue of understanding non-observed parameter with infor-
mation in observed data.   
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