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ABSTRACT 

This paper proposes a coevolutionary classification method 
to discover classifiers for multidimensional pattern 
classification problems with continuous input variables. 
The classification problems may be decomposed into two 
sub-problems, which are feature selection and classifier 
adaptation. A coevolutionary classification method is 
designed by coordinating the two sub-problems, whose 
performances are affected by each other. The proposed 
method establishes a group of partial sub-regions, defined 
by regional variable set, and then fits a finite number of 
classifiers to the data pattern by combining a genetic 
algorithm and a local adaptation algorithm in every sub-
region. A cycle of the cooperation loop is completed by 
evolving the sub-regions based on the evaluation results of 
the fitted classifiers located in the corresponding sub-
regions. The classifier system has been tested with well-
known data sets from the UCI machine-learning database, 
showing superior performance to other methods such as the 
nearest neighbor, decision tree, and neural networks. 

1 INTRODUCTION 

Classification learning systems are useful for decision-
making tasks in many application domains, such as 
financing, manufacturing, control, diagnostic applications, 
and prediction systems where classifying expertise is 
necessary (Weiss and Kulikowski 1991). This wide range 
of applicability motivated many researchers to further 
refine classification methods in various domains (Jain et al. 
2000, Simpson 1992). The major objective of classification 
is to assign a new data object represented as features 
(sometimes referred to as attributes or input variables) to 
one of the possible classes with a minimal rate of 
misclassification. Solutions to a classification problem 
have been characterized in terms of parameterized or non-
parameterized separation boundaries that could 
successfully distinguish the various classes in the feature 
space (Pal et al. 1998). A primary focus of study to build 

the separation boundaries has been on learning from 
examples, where a classifier system accepts case 
descriptions that are pre-classified and then the system 
learns a set of separation surfaces that can classify new 
cases based on the pre-classified cases (Nolan 2002). 
Various learning techniques have been contrived to design 
the separation surfaces, employing a variety of 
representation methods, such as mathematical functions, 
neural networks, fuzzy if-then rules, and decision trees.  
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The method proposed in this paper to construct a 
classifier system consists of two levels, i.e. determining the 
feature space and searching the separation boundaries. The 
number and diversity of possible classifying features 
would easily dominate the amount of available decision 
data. When the number of features and the possible 
patterns are huge, a method of feature selection should be 
devised to find the most relevant features before automatic 
classification or decision learning (Liu and Setiono 1998). 
We represent a feature set as a set of pairs of a feature and 
its operational range, which actually represents a hyper-
rectangular sub-region in the dimensional space. The 
feature sets are obtained by iteratively adding a feature and 
its available interval to a current feature set in a sequential 
increasing manner, so that the sub-region expanded from 
the added feature can include as many positive examples as 
possible. In every sub-region, the classifiers, which are 
delineated by geometrical ellipsoids, adjust their 
parameters to search the separation boundaries by using a 
hybrid method of a genetic algorithm (GA) and a heuristic 
local search algorithm. Abe and Thawonmas (1997) 
showed that a classifier with ellipsoidal regions had the 
generalization ability comparable or superior to those of 
classifiers with the other shapes. Motivated by the result of 
Abe and Thawonmas (1997), the ellipsoids are adopted to 
fit the usual non-linear boundaries which hyper-rectangular 
sub-region cannot represent accurately. After the evolution 
stabilizes for the ellipsoidal regions in every feature sets 
represented by sub-regions in the dimensional space, the 
feature sets themselves are subject to evolution based on 
the evaluation results of the fitted ellipsoids located in the 



Lee and Yoon 
 
corresponding sub-regions. The two-level coevolution 
process is iterated until the termination condition is 
satisfied. 

The rest of this paper is organized as follows. In 
section 2, we define the pattern classification problem 
considered in this paper. Section 3 describes the  details 
about a proposed classifier system. Section 4 shows the 
experimental results from evaluating the performance of 
the proposed classifier system. Finally, conclusions are 
stated in section 5. 

2 CLASSIFICATION PROBLEM 

Let us assume that a pattern classification problem has c 
classes in an n-dimensional pattern space [0, 1]n with 
continuous input variables. It is also supposed that a finite 
set of points X = {xp, p = 1, 2, …, m} is given as the 
training data. Suppose that each point of X, xp = (xp1, xp2, 
…, xpn), is assigned to one of the c classes, and let the 
corresponding subsets of X, having N1, N2, …, Nc points, 
respectively, be denoted by X1, X2, …, Xc. Because the 
pattern space is [0, 1]n, the feature values are xpj ∈ [0, 1] for 
p = 1, 2, …, m and j = 1, 2, …, n. It is desired that the 
subset Xi (i = 1, 2, …, c) are isolated by classifying regions 
labeled Lij (j = 1, …), so that the new points can be 
assigned to one of the c classes. An example of such a 
pattern classification problem is shown in Figure 1 where c 
= 2 (i.e., two-class problem), n = 2 (i.e., two-dimensional 
pattern space) and m = 40 (i.e., 40 training patterns). 

 

 
Figure 1: A two-class classification problem with the two-
dimensional pattern space [0, 1]2. 

3 A COEVOLUTIONARY CLASSIFIER SYSTEM  

For the classification problem defined the previous section, 
we propose a coevolutionary method to construct 
separating boundaries of classes in feature subsets on the 
basis of the training data. The procedure for establishing a 

classifier system, which produces class boundaries, 
consists of two phases as follows. 
 

Phase 1. Determine the feature subspaces of 
hyper-rectangles. In each subspace, a subset of 
selected features is used. 

• 

• Phase 2. Search the separation boundaries by 
evolving hyper-ellipsoids in the determined 
feature subspaces through a genetic algorithm. 

 
Each phase of the procedure will be explained in detail in 
the following sections.  

3.1 Initial determination of the feature subspaces 

We propose in this subsection a spatial feature selection 
method by constructing subspaces, in each of which a 
specific subset of relevant features is to be considered. As 
a result, each subspace has different dimensions than the 
others. The spatial feature set constitutes pairs of a feature 
and its valid interval, which actually represents a hyper-
rectangular subspace in the dimensional space. The feature 
subspaces are initially established so as to include as many 
positive examples as possible and to exclude negative 
examples according to its initial default class.. A spatial 
feature set is obtained by iteratively adding a feature and 
its available interval to the current feature set in a 
sequential manner, so that the subspace expanded by the 
added feature can include as many positive examples as 
possible. In later phases, the feature spaces will be subject 
to an evolutionary process to maximize the performance of 
ellipsoids in them.  

Class 2  Class 1 
1.0 

Kudo and Shimbo (1993) proposed a method to obtain 
the hyper-rectangles that was similar to the initial 
establishment method of ours. However, their approach 
differs from ours in the following points. First, their feature 
selection approach is performed in a backward manner, 
removing redundant features from the initiated maximum 
hyper-rectangles. It requires much computation cost to 
search the maximum hyper-rectangles in a large training 
dataset, while our method does not require the additional 
search for the maximum hyper-rectangles due to the 
forward sequential feature selection. Second, a binarization 
procedure is needed to apply their method to data with 
continuous features, while ours can be directly employed 
to the data with continuous features. The proposed method 
to build the feature subspaces is presented below and also 
illustrated by Figure 2. 

x2 

 

0.0 1.0 
x1 

Step 1. An initial subspace T is constructed by 
defining the interval in the one-dimensional space of the 
reference feature v0. The lower and upper limits of the 
interval are established on the basis of the nearest negative 
examples from some consecutive positive examples 
selected among training data set on the axis v0. 
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Step 2. The initial subspace T is split into subspaces, 
Ti, i=1, 2, …, on the expanded dimensional space of the 
existing features and the new feature . Each Tv′ i is created 
by defining lower and upper limits of its interval on the 
new feature  in the same way of the Step 1. v′

Step 3. Each of the divided subspaces expands its 
interval along the existing features to the nearest negative 
example while keeping the interval of the new feature v′ . 

 

 
Figure 2: Example of feature subspaces generation 

 
Step 4. If the largest one T* among subspaces 

expanded from the initial subspace T includes more 
positive examples than those of the initial subspace T then 
repeat Step 2 to Step 3 by considering the largest subspace 

T* in Step 3 as an initial subspace T in Step 2. Otherwise 
the initial subspace T in Step 2 is inserted to the set of final 
subspace set G on condition that the initial subspace in 
Step 2 has at least one positive example that is not included 
in the set of final subspaces. 

Step 5. For every example in the training data set, the 
above procedure from Step 1 to Step 4 repeated to get the 
set of final subspaces G. 

3.2 Evolution of the ellipsoidal classifiers 
T 

In every feature subspace, the classifiers represented by 
ellipsoids adjust their parameters to search the optimal 
separation boundaries through a hybrid GA. A set of 
adaptive operations is devised and used for the local search 
in the hybrid GA. 

v0 
(a) Step 1 

v′ 

T1 
3.2.1 Classifier representation with ellipsoids 

Assume that the data subset Xi for class Ci, where i = 1, …, 
c, is covered by several ellipsoidal regions Lij (j = 1, …), 
where Lij denotes the jth region for class Ci. The ellipsoidal 
region Lij is defined by two foci, fij

(1) and fij
(2) and a 

constant, i.e., size factor, Dij as follows: T2 

Lij:  (1) ijijij Ddistdist ≤+ ) ,() ,( )2()1( fxfx

where )()() ,( yxyxyx −−= tdist . 
T3 For each ellipsoidal region Lij, we define the following 

classification rule: 
Rij: If x is in Lij then x belongs to class Ci (2) 

v0 where Rij denotes the label of the jth rule for class Ci. (b) Step 2 
v′ 3.2.2 Classifier strength and determination of class 

T1 For the pattern classification, it is reasonable to assume 
that the degree of membership of x for classification rule 
(2) increases as x moves toward the center of the ellipsoid 
Lij, and decreases as x moves away from the center. To 
realize this characteristic, the degree of membership of x 
for a rule Rij is defined as follows. 

T2 
 

) ,() ,(
)( )2()1(

ijij

ij
ij distdist

D
d

fxfx
x

+
=   (3) 

If the value of dij(x) in (3) is larger than 1, it indicates 
that point x is located within the ellipsoid Lij. The value of 
(3) is less than 1 when x lies out of the boundary of the 
ellipsoid. Now the degree of membership of x for class Ci, 
denoted as di(x), is given by { })(max)(

,1
xx ijji dd

=
= . The class 

of input x is then determined as class Ci* such that di*(x) is 
the maximum among di(x), i = 1, …, c. 

T3 

v0 (c) Step 3 
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The weight value for an ellipsoid Lij is used to 
determine the tradeoff between the generalization ability 
and the expected classification rate of the ellipsoid on the 
basis of the ratio of the number of data with same class Ci 
to the total number of remaining data. Given a training data 
set with a large value of the ratio the ellipsoids is apt to be 
large with the large fitness value caused by large expected 
value of NC(·) and small expected value of NI(·). This will 
over-emphasize the generalization power relative to the 
classification rate. On the other hand, a small value of the 
ratio has the ellipsoids be small with the small fitness value 
caused by small NC(·) and large NI(·), which leads to low 
generalization ability. If the ratio has a large value, the 
expected classification rate should be emphasized with a 
large value of weight. Otherwise the generalization ability 
should be emphasized with a small value of weight. Based 
on the above relation, the weight value of each ellipsoid is 
calculated as follows. 

3.2.3 Chromosome representation and population 
initiation 

The chromosomes are represented by strings of a floating-
point value in [0, 1], encoding the parameters of ellipsoids. 
Figure 3 shows the structure of a chromosome in a three-
dimensional feature subspace obtained in subsection 3.1 as 
an example.  
 

 

x1 x2 x3 x1 x2 x3 

1 0.2 0.1 0.8 0.9 0.3 0.5 0.4

f(1) f(2) class size factor

Figure 3: An example of a chromosome in three-
dimensional feature subspace. 
 

An initial population is generated in such a way that 
each individual assigned to one of the classes is encoded in 
terms of two foci, f(1) and f(2), and a size factor D, which 
are randomly allocated in the pattern space [0, 1]n to ensure 
sufficient diversity in the population. For each individuals 
in half of the population, then, one of the foci is seeded 
with randomly selected training sample point for providing 
a good starting solution. The number of individuals with a 
certain class Ci in the population, denoted by Pop(i),  is 
determined in proportion to the number of training data 
with the same class. Consequently, the size of the 
population, denoted by Pop_size, is defined as the sum of 
Pop(i), i=1, …, c. 
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where Ni is the number of data of which class is Ci 
among remaining training data, Nremain is the number of 
total remaining training data, and α (α > 1) and β (0 < β < 
1) is constant. 

3.2.5 Genetic operations 

In order to generate new offspring for class Ci, a pair of 
individuals with the same class Ci is selected from the 
current population. Each individual is selected by the 
following selection probability based on the roulette wheel 
selection with the linear scaling: 3.2.4 Fitness computation 
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min  (6) Two measures are considered to evaluate an ellipsoid 
based on the classification result of the corresponding 
classifier: generalization ability and classification rate. In 
order to obtain good generalization ability of an ellipsoid, 
the region that the ellipsoid covers needs to grow as large 
as possible. Therefore, when we divide the training data by 
ellipsoids, the number of data belonging to an ellipsoid 
should not be too small. For the high classification rate of 
an ellipsoid, the number of correctly classified data should 
be large relative to the number of incorrectly classified 
data among data belonging to the ellipsoid.  

where  is the minimum fitness value of 
the individuals in the current set S

)(min iSfitness
i. 

From the selected pair of ellipsoids, the arithmetic 
crossover for randomly taken genes generates two 
offspring. For an example of the i-th genes, ai and bi of the 
selected pair of ellipsoids are replaced by ii ba )1( λλ −+  
and ii ba λλ +− )1(  respectively, where 0<λ<1. Note that 
the size factor is determined by a random number drawn 

from a uniform distribution U(dist( ,
′)1(f

′)2(f ), 1) in order 
to keep the size of the ellipsoid greater than distance 
between its two modified foci. 

Considering the two measures, the fitness value of 
each ellipsoid is defined as follows. 

 
 fitness(Lij) = NC(Lij) – weight(Lij) × NI(Lij) (4) Each parameter of ellipsoids generated by the 

crossover operation is randomly replaced using a random 
number from U(0, 1) at a pre-specified mutation 
probability. As in the crossover operation, the size factor is 
recomputed with the modified distance between the two 
altered foci. 

 
where fitness(Lij) is the fitness value of the ellipsoid 

Lij, NC(Lij) is the number of training data that are correctly 
classified by Lij, NI(Lij) is the number of training data that 
are incorrectly classified by Lij, and weight(Lij) is the 
weight value that multiplies NI(Lij).  
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3.2.6 Adaptive operations  Another avoidance method is carried out when the 

misclassified examples are located in the shading part of 
Figure 4 (c). The misclassified examples is hard to avoid 
by the previous two methods because they are located 
around the center of the ellipsoid. Therefore we propose 
the third method that randomly modifies the location of a 
randomly selected focus to avoid the misclassified 
examples around the center of the ellipsoid. 

The adaptive operations consist of three operations, 
i.e., expansion, avoidance, and move. The most probable 
one of the three operations is selected for each ellipsoid 
based on its fitness value. The ellipsoid with a positive 
value of fitness is expanded to have a chance to contain 
more data patterns. If the fitness value of an ellipsoid is 
less than zero (i.e., an ellipsoid contains at least one 
misclassified data), the ellipsoid rotates or contracts to 
avoid the misclassified examples. Finally if an ellipsoid 
has a zero value of fitness (i.e., an ellipsoid does not 
contain any training data), the ellipsoid moves to other 
location in the pattern space. The fitness value of an 
ellipsoid can be zero even though the ellipsoid contains 
data from equation (4). However, there is a bare possibility 
that the number of correctly classified data is same as the 
number of misclassified data multiplied by weight value 
because the value of weight in equation (5) is a real 
number calculated by an exponential function with a real 
number of parameter. Nevertheless, the overall 
performance does not take a sudden turn for the worse. 

 

 

: Focus 
: Modified focus 
: A misclassified example 

(c) 

(a) 

(b) 

In summary, each ellipsoid in a pool is updated by 
iteratively adapting one of three adaptive operations based 
on the fitness value of the ellipsoid: 

• Avoidance: If the fitness value of an ellipsoid is 
negative, avoid misclassified data located in the 
ellipsoid. 

• Expansion: If the fitness value of an ellipsoid is 
positive, expand the ellipsoid.  

• Move: If the fitness value of an ellipsoid is zero, 
move the ellipsoid to other location in the pattern 
space. 

The following three subsections describe these 
operations in detail. 

3.2.6.1 Avoidance Figure 4: Three methods of avoidance operation 
 

We propose three methods to avoid the misclassified 
examples considering the locations of the misclassified 
examples. Figure 4 illustrates the three methods in two-
dimensional pattern space. The first one is to avoid the 
misclassified examples by rotating the ellipsoid as shown 
in Figure 4 (a). The rotation method is selected when the 
misclassified examples are located in near to boundary of 
the ellipsoid like the shading region in Figure 4 (a). We 
rotate the ellipsoid by moving the focus nearby the 
misclassified examples in parallel to one variable axis 
while fixing the other focus and its size factor. 

3.2.6.2 Expansion 

An ellipsoid is expanded by one of following two methods 
(i.e., directed and undirected expansion) as shown in 
Figure 5, which assumes the ellipsoid in a two-dimensional 
pattern space. In the directed expansion as expressed in 
Figure 5 (a), the ellipsoid extends its area to the opposite 
direction of a location-fixed focus, which is randomly 
selected among two foci. The direction can be chosen 
rather efficiently by analyzing data around the ellipsoid. 
The efficient selection of the expanding direction can 
reduce the number of iterations and help the ellipsoids fit 
class boundaries more effectively. However, it may not be 
critical to overall performance of a resulting classifier. The 
fitness of the ellipsoid expanded to the wrong direction 
may be degraded. However, the reduced fitness value will 

The other avoidance method is to shrink the ellipsoid 
as shown in Figure 4 (b). The contraction method is 
applied when the misclassified examples are located in the 
shading area of Figure 4 (b). To avoid the misclassified 
examples, the ellipsoid is shrunk by moving two foci to the 
opposite directions of one another and its size factor fixed. 
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be compensated by the avoidance operation invoked by the 
decreased fitness value in the next iteration. Moreover, the 
rotation operation can rectify the wrong direction during 
the avoidance step. Thus we consider the random method 
only in deciding the expanding direction. The directed 
expansion method is performed by modifying the locations 
of the foci and the size factor. 

In the undirected expansion, the ellipsoid is enlarged 
toward all directions as depicted in Figure 5 (b). The 
undirected expansion of the ellipsoid is carried out by 
increasing only its size factor. 

 

 
Figure 5: Two methods of expansion operation 

 

3.2.6.3 Move 

If the ellipsoid does not contain any examples, it randomly 
moves to other location in the pattern space. For the fast 
adaptation of the ellipsoid, the ellipsoid needs to be moved 
to the area where no ellipsoids exist and training examples 
are densely distributed. Thus if there exist training 
examples which are not included in any ellipsoids, we 
place a focus to randomly selected one among the training 
examples. 

3.2.7 Update of the population 

The proposed hybrid GA procedure applies genetic 
operations and adaptive operations after population elitist 
selection (Eshelman 1991). With the population elitist 
selection, pre-defined Pop_size individuals are selected 
from the current population and a set of the newly 
generated offspring. This updating method guarantees that 
the best Pop_size individuals seen so far always survived. 

3.2.8 Termination Test 

The proposed hybrid GA iterates the GA operations and 
the local improvement procedure (i.e., adaptive operations) 
until a termination criterion is met. The termination 
criterion used in this study is to terminate the iteration 
when either all the training samples are covered by the 
ellipsoids in the population or the specified maximum 

number of iterations is exceeded. The final solution 
obtained by our hybrid GA procedure is not the final 
population itself but the best ellipsoids in the final 
population, which cover all the training samples contained 
by the final population. The selection of the best ellipsoids 
in the final population for the final output of the algorithm 
can eliminate the redundant ellipsoids whose removal does 
not change the recognition capability of the classifier. 

3.3 Evolution of the feature subspaces 

The feature subspaces evolve on the basis of the 
performance of the regional ellipsoid classifiers they 
contain in their regions. The evolution procedure for the 
feature subspace population is composed of two phases, 
i.e., creating new individual feature subspaces and 
updating the current population. A feature subspace is 
considered to be evolved when the regional agents in the 
subspace have one of more positive examples included in 
other feature subspaces. This means that the feature 
subspace seeks for opportunities to expand to include the 
corresponding examples by adopting the features of the 
targeted examples that are not yet included in the subspace 

(b) (a) 

: Focus 
: Modified focus 

The newly obtained feature subset is inserted into the 
feature subspace population if any of its positive examples 
are not included in other feature subspaces. The insertion 
of new subspaces activates a deletion process that finds 
and deletes subspaces that are enclosed by those new 
subspaces. 

3.4 Experimental Results 

We applied the proposed methods to three data sets both to 
introduce a simple example of ellipsoids adaptation result 
and to verify the effectiveness of our methods. The data 
sets are available from the UCI Machine Learning 
Repository (Blake and C.J. Merz  1998). Each example of 
the data sets has continuous variables. As a preprocessing 
of the data for our classifier system, the value of each 
variable is normalized as having the maximum value of 
one and the minimum value of zero.  

3.4.1 Illustrative Example 

In order to demonstrate the applicability of the proposed 
adaptation method, the iris data is taken as an example. 
The iris data consist of 150 examples with four featues 
(sepal length, sepal width, petal length and petal width) 
and three types of iris plant, i.e., three classes (iris setosa, 
iris versicolour and iris virsinica). There are 50 examples 
in each class and the statistical summary of four variables 
is shown in table 1.  
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3.4.2 Data sets used for performance evaluation Table 1: Statistical summary of variables in the iris data 

* SD: Standard Deviation 

Feature Min Max Mean SD* Correl** 
Sepal length 4.3 7.9 5.84 0.83 0.7826 
Sepal width 2.0 4.4 3.05 0.43 -0.4194 
Petal length 1.0 6.9 3.76 1.76 0.9490 
Petal width 0.1 2.5 1.20 0.76 0.9565 

The performance of the proposed hybrid GA procedure 
was evaluated on two data sets which are usually employed 
as benchmarks for classification applications (i.e., glass, 
and ionosphere data). The data sets were normalized so 
that continuous variables ranged from [0, 1], and then each 
data set was partitioned into training set and test set. The 
summary of the data sets is described in Table 2 and the 
detailed explanation is presented in the following 
subsections. 

** Correl: Correlation between class and corresponding feature 
 

The proposed coevolutionary procedure of feature 
subsets and ellipsoids was conducted in four-dimensional 
space made by normalization of the values of the two 
selected variables into 0 to 1. The best four ellipsoids that 
cover the maximum number of examples are evolved from 
feature subsets formed by two features of petal length and 
petal width. Accordingly, the best ellipsoids are defined in 
two-dimensional space with the two features, petal length 
and petal width, which have the relatively high correlation 
values between class and variables as shown in Table 1. 
The final result of the ellipsoids adaptation procedure is 
shown in Figure 6, where four ellipsoids are constructed to 
cover 149 examples. One example could not be covered as 
the result of eliminating ellipsoids that cover only one 
example to avoid the overfitting problem.  

 
Table 2: Summary of data sets used for evaluation 
Data set # features # classes # Instances 
Glass 9 6 214 
Ionosphere 33 2 351 

3.4.2.1 Glass data 

The glass data set consists of 214 examples with nine 
continuous features from six classes, which classifies the 
types of glasses based on the mixture ratio of constituents. 
This data set is available from UCI database. We evaluated 
the performances for test data using a random sub-
sampling technique. In the computer simulations, 2/3 of the 
given examples were independently and randomly selected 
for training data and the other 1/3 were used as test data. 
The random split of the given data was iterated 15 times.  

From the example of iris data, we can see that the 
feature subspace determination can choose highly 
correlated variables with classes and the proposed hybrid 
GA method can fit ellipsoids to the data patterns in the 
dimensional space defined by the chosen feature space. In 
the following section, the comparative evaluation is 
conducted for more complicated classification problems.  

3.4.2.2 Ionosphere data 

The proposed method is applied to the ionosphere data that 
includes 351 examples with 33 continuous features and 2 
classes, which determines “good” or “bad” one by the 
information of the received returns from the ionosphere 
through 16-arrayed antenna. Since this data set has many 
features, we can evaluate the effectiveness of the proposed 
method combined with automated feature selection by 
using the data. The ten-fold cross validation (10-fold CV) 
was used for evaluating the performance of our 
classification method.  

petal width
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3.4.3 Results of computational evaluation 

Here we present the results achieved by the proposed 
hybrid GA approach and compare them with the 
performances of existing well-known classifiers, i.e., a k 
nearest neighbor (Weiss and Kulikowski 1991), a decision 
tree with C4.5 (Quinlan 1993), and a neural network with 
backpropagation (Haykin 1994). We tried to guarantee the 
proper prediction power of the classifiers even under 
insufficient training data for scarce classes by adopting 
rather simple structures such as k=3 and 1 hidden layer. 
Table 3 shows the comparison results of the average 

petal length

Figure 6: A set of ellipses generated from the hybrid GA 
procedure for the iris data 
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classification rate for the three data sets mentioned in the 
previous subsection. We can see that the proposed hybrid 
GA classification method with ellipsoidal regions achieved 
a superior classification rate of test data in comparison 
with other popular methods such as the k nearest neighbor, 
the decision tree, and the neural network.  

 
Table 3. Comparison results in terms of classification rate 

4 CONCLUSION 

This paper proposes a coevolution-based classification 
method for multidimensional pattern classification 
problems. The method consists of two layers. Feature sets, 
pairs of a feature variable and its range, determine the sub-
regions where they apply.  For each sub-region, a pool of 
ellipsoids is developed to fit the data patterns in the 
training examples. The ellipsoids are subject to the inner 
loop of adaptation process whereas the evolution of the 
feature sets forms the outer loop.  

The proposed representation of ellipsoids, whose 
parameters are two foci and a size factor, has the advantage 
of interpretability, tractability and robust generalization 
ability. The GA procedure to fit the ellipsoids to the data 
patterns is expedited by a few common adaptive 
operations: expansion, avoidance, and move. The feature-
ellipsoid coevolution allows robust performance in 
problems with a large number of features  

The proposed coevolutionary classification method 
was applied to well-known data sets with various numbers 
of continuous variables (i.e., 4 to 33 features). The 
performance results showed the superiority of the proposed 
method to the existing methods regardless of the number of 
the features.  
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