
Proceedings of the 2005 International Conference on Simulation and Modeling
V. Kachitvichyanukul, U. Purintrapiban, P. Utayopas, eds.

ABSTRACT

Reliability enhancement in software system is a crucial and
challenging issue. Applying efficient fault-tolerant
mechanism can fulfill the system reliability requirement.
This paper proposes reliability models for hierarchical and
hybrid fault-tolerant software systems considering failure
dependencies or related faults in software
components/versions. Our system models are based on the
classical Recovery Block (RB) and N-Version
Programming (NVP) schemes which are the most
commonly used software fault-tolerant architectures. Our
software system reliability models are generalized for
higher degree of fault tolerance when higher number of
software versions is provided. We perform reliability
evaluation and comparison of these reliability models
together with the classical models of RBs and NVPs.

1 INTRODUCTION

Many critical systems, such as power plant control, flight
control, transportation and military systems need high
reliability. To achieve system reliability and safety
requirement, very often fault-tolerant techniques are the
only choice to be selected. Several techniques have been
proposed for structuring hardware and software systems to
provide fault tolerance. Software fault tolerance usually
requires design diversity and decision algorithm
considering software modules and an adjudicator.

The first developed software fault tolerant technique is
Recovery Block (RB), and then is N-Version Programming
(NVP). These classical fault-tolerant techniques have some
differences in term of judging results (adjudicator) to be
final output. For RB, the adjudicator is called an
acceptance tester, which acts as a computational module
that evaluates results of all software modules, so the tester
needs to be specially design for the task. For NVP, the

adjudicator is called voter, which acts as a comparator of
all software modules and choose the majority results as
output, so the voter selects the correct output using
majority voting mechanism.

HIERARCHICAL AND HYBRID FAULT-TOLERANT SOFTWARE SYSTEM DESIGN

Denvit Methanavyn and Naruemon Wattanapongsakorn

Department of Computer Engineering
Faculty of Engineering

Mongkut’s University of Technology Thonburi
91 Suksawasd 48, Bangmod, Tung Kru, Bangkok, 10140, Thailand

These two classical models can be combined to create
hybrid fault-tolerant techniques such as Consensus
Recovery Block (CRB), N-Self Checking Programming
(NSCP) and Acceptance Voting (Lyu 1996) to provide
system fault tolerance in extension to the original RB and
NVP schemes.

Faults can be classified into two types: s-independent
faults and dependent (or related) faults. S-independent
faults usually cause distinct errors and make separated
failures. The latter is related faults which cause correlated
failures. Examples of related faults are faults in the design
specification, common fault in the design and
implementation phases. Related (dependent) fault lead to
common-mode failure of multiple software modules.

Many researchers have proposed various mathematical
reliability models for RB and NVP. In previous work,
Randell 1975 developed Recovery Block scheme which is
the software fault-tolerant model. N-Version Programming
(NVP) was developed in 1985 by Avizienis who directly
applied the hardware N-Modular Redundancy to software
architecture. In 1988, Arlat et al, proposed reliability
modeling and evaluation of the Recovery block and N-
Version Programming with can tolerate only a single fault.
Later in 1993, Dugan et al applied this model and proposed
a quantitative comparison of RB and NVP schemes
considering related faults such as probability of failure
between two software modules and among all software
modules. In 1996 Wu et al proposed hybrid software fault-
tolerant models which nested RB with NVP and embedded
RB within NVP. They provided system reliability
comparison for these architectures without considering
related faults. In 1997, Giandomenico et al evaluated
schemes for handling dependability and efficiency of Self-
Configuring Optimal Programming (SCOP) scheme which
accepted consistent result (if inconsistent result occurs,

Methanavyn and Wattanapongsakorn

SCOP activates additional module to compare results for
consistency), NVP with tie-break (enhancing performance
of basic NVP by activating additional module to find an
agreement in results) and NVP schemes. Xu et al, 1997,
proposed new architecture called t/(n-1) variant
programming and compare it with RB and NVP
architectures considering related faults. In 1999, Berman et
al developed reliability model for RB considering only s-
independent faults. In 2002, Leblance et al proposed a
simple approach to estimate the reliability of software
system that composed of a hierarchical of modules with s-
independent of software failure assumption. In summary,
there are many literatures on new fault-tolerant software
architectures developing as well as software system
reliability analysis and optimization. However, none of
them provide reliability evaluation of hierarchical or
hybrid software systems considering related faults or
failure dependencies in the software modules.

In this research, we extend the work of Wu et al 1996
considering failure dependencies in software system
reliability analysis using sum-of-disjoint products. We
consider hierarchical fault-tolerant schemes of multi-level
of RBs, multi-level of NVPs and hybrid RB–NVP. We also
propose mathematical formulations to find system
reliability for these schemes. These system reliabilities are
evaluated and compared with those of the traditional RB
and NVP models.

Assumptions and Notations used throughout this paper are
as follows.

Assumptions:
1. Each software module has 2 states: functional or

fail. There is no failure repair for each module or
system.

2. Reliability of each software module is known.
3. All software modules have the same reliability, Pvi

= Pvj
4. Related fault between any two software modules

have same probability of failure, i.e. PRVij = PRVkl
5. Related faults among three or more software

modules are assumed to be negligible. However,
related faults due to error in the software design
specification do exist with probability PRALL.

6. Related fault between adjudicator and software
module(s) are not existed.

Notations:
PV Probability of failure of each software

modules.
QV Reliability of each software modules;

QV = 1 - PV
PRV Probability of failure from related fault

between two software modules; QRV = 1 -

PRV
PRALL Probability of failure from related fault

among all software modules;
QRALL = 1 - PRALL

PD Probability of failure of an adjudicator
(tester or voter); QD = 1 - PD

PDEP(X) Probability of failure of system considering
related faults (dependent);
QDEP(X) = 1 - PDEP(X)

RBN Recovery Block with N modules
NVPN N-Version Programming

2 RESEARCH BACKGROUND

2.1 Fault Tolerant Techniques

Software Fault Tolerance usually requires design diversity.
For design-diversity, two or more software modules are
designed to meet a common service specification and
provide for redundant computations. The modules are
aimed at delivering the same service, but independently
implemented. Since at least two modules are involved, an
adjudicator is used to determine an error-free result based
on the results produced by multiple software modules.
Several techniques have been proposed for structuring FT
software system. Two common techniques are discussed as
follows.
1. Recovery Block (RB) (Randell B., 1975) is the first

scheme developed for achieving software fault
tolerance. Modules are organized in a manner similar to
a standby sparing used in hardware. RB performs a run-
time fault detection by augmenting any conventional
hardware/software error detection mechanism with an
acceptance test applied to the results of execution of a
primary software module. If the test fails, an alternate
module is invoked after backward error recovery is
performed. Figure 1(a) presents the model of RB with
three software modules running sequentially on a
hardware module. Figure 1(b) presents the functioning
sequence of the RB starting at the primary module (M1)
where its result is tested with tester (T) to find an
correct result. If the result is not correct, the result from
the second module (M2) will be produced and tested
next. The result that passes the test is considered the
output of the RB module.

Methanavyn and Wattanapongsakorn

P(Yi) is probability of tester accepts corrects result
while P(Xi) is probability that the tester rejects correct
output or tester accepts incorrect result. N is the number of
software modules.

H H H

M1
M2

M3

Figure. 1(a)

M1

M2

M3

T

Figure. 1(b)

The probability of failure of the NVP scheme (PNVP)
defined by Wu et al 1996 is as follows.

),(1)(

2/)1(),(

KNRNVPP

NKwherePPQCKNR

N

D
N

Ki

iN
V

i
V

N
K

−=

+=−= ∑
=

−

 (2)
Figure 1: Recovery Block Scheme: RB3

2. N-Version Programming (NVP) (Avizienis, 1985),

which directly applied the hardware N-Modular
Redundancy to software architecture. N versions
(modules) of a program are executed in parallel and
their results are compared by an adjudicator called a
voter. By incorporating a majority vote, the system can
eliminate erroneous results and pass on the presumed-
correct results. Figure 2(a) presents the model of NVP3
with three software modules running parallel on a
hardware module. Figure 2(b) shows the functioning
sequence of the NVP3 where all software modules (M1,
M2 and M3) produce their results and find agreement by
voter (V).

The reliability of NVP with use majority voting as
decision algorithm can find by use summation of reliability
of function modules multiply with probability of failure in
failure modules. By select K from N software modules
then increase K by 1 until K equal N, where K is an odd
number.

2.2.2 Considering Related faults

The probability of failures of RB and NVP schemes
considering related faults defined by Dugan 1993 are
presented in sum-of-disjoint products forms which were
prior modified and improved by Veeraraghavan in 1990.
The probability of failure from related fault in all software
versions (PRALL), the probability of failure of decider (PD),
the probability of failure from related fault between two
software versions (PRV) and the probability of failure of a
software version (PV) are considered toward system
reliability of RB and NVP schemes.

H H H

M3M2M1

Figure. 2(a)

M1

M2

M3

V

Figure. 2(b)

The probability of failure of the RB scheme with two
software modules is as follows.

Figure 2: N-Version Programming Scheme: NVP3 P(RB2) = PRALL + PDQRALL +PRVQRALLQD + (3)
 PV

2QRALLQDQRV
2.2 Reliability Analysis

The probability of failure of the NVP scheme with
three software modules is as follows. In this section, we present reliability analysis models for

RBN and NVPN schemes when all failures are assumed s-
independent, and in another assumption where there exist
related faults in the software variants including faults
between and among all software variants which are PRV
and PRALL, respectively.

P(NVP3) = PRALL + PDQRALL +

PRVQRALLQD(1 + QRV+ Q2
RV) + (4)

P2
VQRALLQDQ3

RV
 (1 + 2QV)

2.3 Sum of Disjoint Products
2.2.1 Considering S-Independent Faults

A sum-of-disjoint-products (J.B. Dugan 2001) is an
alternative method to present a union of sets. By
considering sum of the probabilities of individual failure
events yields the exact unreliability (i.e. probability of
failure) of the system. The system unreliability is

. A sum-of-disjoint-products method is
represented in the following form.

][Pr 1∪ p
i iCob =

The probability of failure of the RB scheme (PRB) with s-
independent faults defined by Berman et al 1999 is as
follows.

[]

D)P1)-V(iP(1)DP(11)-V(iP)iP(X

 ,)DP)(1ViP(1)iP(Y

)iP(Y
N

2i

1i

2k
)kP(X)1P(YNRNR1)

N
P(RB

−+−=

−−=

∑
=

∏
−

=
+=−= ;

 (1)

Methanavyn and Wattanapongsakorn

pp

pp

p

i
i

CC...CCC...CCCCCC

)CC...CCC(...

)CCC()CC()C(C

1321321211

1321

321211
1

−

−

=

++++=

=

∪ ∪
∪∪∪

 (5)

P(NVP3) = PRALL + PDQRALL +
 PRVQRALLQD +
 PRVQRALLQDQRV +
 PRVQRALLQDQ2

RV +
 P2

VQRALLQDQ3
RV +

 P2
VQRALLQDQ3

RVQV +
 P2

VQRALLQDQ3
RVQV

where iC is the part of the universal set that is not in
Ci, i.e the negation of Ci. Each term in the right-hand-side
of the expression in equation 5 is a disjoint product, where
all the terms are mutually exclusive.

 (7)

3.2 Generalized Reliability Models

The reliability model formulations represented with sum of
disjoint products are quite complex when the number of
software modules, N, is large. So we apply a mathematical
induction technique to simplify the probability of failure
(i.e. 1- reliability) of RBN module resulted as following.

3 RELIABILITY MODELS OF SOFTWARE
FAULT TOLERANT SYSTEMS WITH FAILURE
DEPENDANCIES

In this section, we proposed mathematical models to find
system reliability of RB and NVP schemes considering
related faults.

...,4,3,2
)!2(!2

!

)(

2

)2(

=
−

==

+

++=
−

Nand
N
NCmwhere

QQQP

QQPmP

QPPRBP

N

m
RVDRALL

N
V

DRALL
N

VRV

RALLDRALLN

3.1 Formulation by Sum of Disjoint Products

With RB3 scheme, causes of system failure are
1. Failure of all software versions due to fault from

the software specification i.e. PRALL.
2. Failure of the adjudicator i.e. PD. (8)
3. S-independent failure of a software version and

related fault in the remaining two software
versions. There are three possible distinct events
i.e. PV1PRV23, PV2PRV13 and PV3PRV12.

From equation 8, each term is represented as a disjoint
product. There are two common terms PRALL and PD that
always exist at any value of N. The probability of failures
of RB2 and RB3 can be obtained by substituting N =2 and
3, respectively. 4. S-independent failure of three software versions

i.e. PV1 PV2PV3 = PV
3. In similar way, with the mathematical induction

method we can simplify the probability of failure or
unreliability of NVPN module as following.

Thus, the probability of failure of the RB scheme with

three software modules is as follows.

P(RB3) = PRALL + PDQRALL + PVPRVQRALLQD +
 PVPRVQRALLQD(1-PRVPV) +
 PVPRVQRALLQD(1-PRVPV)2+ (6)
 P3

VQRALLQDQ3
RV

With NVP3 scheme, causes of system failure are
1. Failure of all software versions due to fault from

the software specification i.e. PRALL.
2. Failure of the adjudicator i.e. PD.
3. Related fault in any two software versions. There

are three possible distinct events i.e. PRV23, PRV13
and PRV12.

4. S-independent failure of two software versions.
There are four possible distinct events i.e. , PV1
PV2 ,PV1PV3 and PV2PV3

Thus, the probability of failure of the NVP scheme

with three software modules is mathematically presented.

Methanavyn and Wattanapongsakorn

2/)1(

...9,7,5,3
)!2(!2

!
321

5

5}...{

31

5)1(

7

7}...{

)(

2

1

1

11

1

12

1

12
2

1

1

2

2
1

1

11

1

12

3

14
4

1

1

)2(

+=

=
−

==

=+=

==

>=

=++=

=++=

==

>=

+++=

∑
=

−

∑
=

∑
=

∑
−

=−
−∑

=

−

∑
=

−

∑
=

∑
=

∑
−

=−
−∑

=

−

−

NK

N
N
NCM

NwhenQ

NwheniQ

NwhenYQT

NwhenQQ

NwhenQQM

NwheniQM

NwhenYQMSwhere

TQQQP

SQQPPQPPNVPP

N

V

K

i

i
V

i

Y

Y

Y

KY

KY
K

K

i

i
V

RVRV

VV

K

i

i
V

i

Y

Y

Y

KY

KY
K

K

i

i
V

M
RVDRALL

K
V

DRALL
K

VRVRALLDRALLN

(9)
From equation 9, similar to the P(RBN) model, there

are also two common terms PRALL and PD that always exist
at any value of N. The probability of failure of NVP3 can
be obtained by substituting N = 3, respectively.

Detailed information of the derived formulation can be
obtained from our special project study (D. Methanavyn et
al, 2004).

4 RELIABILITY MODELS OF HIERARCHICAL
FAULT -TOLERANT SOFTWARE SYSTEMS

Hierarchical fault-tolerant software system consists of
multi-level of fault-tolerant modules. At the lower level,
RB or NVP modules are used. Each output from the lower-
level modules will be sent to the upper-level module to
perform similar process again and then the final output is
released.

The probability of failure of the hierarchical fault-
tolerant system can be considered in two parts. The first
part is from the lower-level modules considering related
faults. The latter is from the upper-level module where
related faults among the lower-level fault-tolerant modules
are assumed negligible. Hence, s-independent assumption
is applied at this upper-level. The probability of failure of
each lower-level fault-tolerant module is applied as the
failure input used in the upper-level reliability analysis.

4.1 Hierarchical Fault-Tolerant Models

4.1.1 RBiRBj

RBiRBj consists of i lower-level RB modules each
consisting of j software modules and a tester, and one
upper-level RB module which uses i outputs from the

lower-level to test for the final output. Example of RB2RB3
is shown in Figure 3.

M1

M2

M3

T1

M4

M5

M6

T2

T3

P1 P2

Figure 3: RB2RB3

4.1.2 NVPiRBj

NVPiRBj consists of i lower-level RB modules each
consisting of j software modules and a tester, and one
upper level NVP module which uses i outputs from the
lower-level to vote for the final output. Example of
NVP3RB2 is shown in Figure 4.

M1

M2

T1

V1

P1

M3

M4

T2

P2

M5

M6

T3

P3

Figure 4: NVP3RB2

4.1.3 RBiNVPj

RBiNVPj consists of i lower-level NVP modules each
consisting of j software modules and a voter, and one
upper level RB module which uses i outputs from the
lower-level to test for the final output. Example of
NVP3RB2 is shown in Figure 5.

M1

M2

M3

V1

M4

M5

M6

V2

T1

P1 P2

Figure 5: RB2NVP3

Methanavyn and Wattanapongsakorn

4.1.4 NVPiNVPj (1- PDEP (NVP3)+ PD (14)

5 EXPERIMENTAL RESULTS
NVPiNVPj consists of i lower-level NVP modules each
consisting of j software modules and a voter, and one
upper level NVP module which uses i outputs from the
lower-level to vote for the final output. Example of
NVP3NVP3 is shown in Figure 6.

The following example illustrates and evaluates our
proposed generalized models for RBs, NVPs, hybrid and
hierarchical reliability models comparing with the classical
reliability models, shown in equations 1 and 2. Table 1
presents an input dataset which is the probability of
failures from related faults, and from s-independent fault in
a software version, PV.

V4

M1

M2

M3

V1

P1

M4

M5

M6

V2

P2

M7

M8

M9

V3

P3

Table 1: Input data: probability of failures

PRALL PD PRV PV
0.000003 0.0001 0.000374 0.0958

Figure 6: NVP3NVP3

4.2 Proposed Reliability Analysis Models

The probability of failure of the hierarchical and hybrid
fault-tolerant systems presented in the previous section can
be obtained by finding probability of failure of the lower-
level modules using equations (8) and (9), where related
faults are considered. For the upper-level modules, we use
equations (1) and (2), where related faults across the lower-
level modules are assumed negligible, to analyze the
system reliability.

Therefore, the probability of failures of RB2RB3,
RB3RB2, RB2NVP3, NVP3RB2, and NVP3NVP3 schemes
are presented in equations 10-14, respectively.

P(RB2RB3) = 1 – {QDEP (RB3) × QD +

Figure 7 presents reliabilities of RB and NVP modules
with various number of software versions i.e. 3 up to 9.
The terms DEP and IND represents dependent failure, and
s-independent failure assumptions, respectively. As
expected, when the number of software version increases,
or in other words, more faults can be tolerated, the system
reliability increases. We can see a great difference in
reliability values when N = 3, 5, 7 and 9. In addition, the
results agree with those in the literature showing that the
RB module offers higher reliability than those of the NVP
module when the same number of software versions is
provided. When the number of software versions is large,
the probability of system failure is getting smaller. In NVP,
the probability of two modules producing an agreed result
is higher when the number of software modules is larger.
At this point, the NVP system is quite comparable with the
RB system.

 First, we evaluate our generalized reliability models
RBN and NVPN shown in equations 8 and 9, where failure
dependencies or related faults in the software versions are
considered, by comparing with the reliability models
expressed in equations 1 and 2, where s-independent
failure assumption is applied .

 [PDEP (RB3) × QD + QDEP (RB3) × PD] ×

0.970

0.975

0.980

0.985

0.990

0.995

1.000

3 5 7 9

NVP-DEP
RB-DEP
RB-IND
NVP-IND

 QDEP (RB3) × (QD)} (10)
P(RB3RB2) = 1 – {QDEP (RB2) × QD +

{[PDEP (RB2) × QD + QDEP (RB2) × PD] +

[PDEP (RB2) × QD + QDEP (RB2) × PD]2} ×

QDEP (RB2) × QD} (11)

P(RB2NVP3) = 1 – {QDEP (NVP3) × QD +

[PDEP (NVP3) × QD + QDEP (NVP3) × PD] ×

QDEP (NVP3) × QD} (12)

P(NVP3RB2) = (PDEP (RB2))3 + 3(PDEP (RB2))2 ×

(1- PDEP (RB2)+ PD (13)
Figure 7: RB and NVP Reliability Trend

 P(NVP3NVP3) = (PDEP (NVP3))3 + 3(PDEP (NVP3))2 ×

Methanavyn and Wattanapongsakorn

In the next step, we consider software systems with

various fault-tolerant architectures and a number of
software versions. When N, which is the number of
software version, is equal to 1, no fault-tolerance can be
applied. When N is equal to 3, RB and NVP schemes are
considered. Reliability evaluation and comparison when N
= 1 and 3 are shown in Table 2. As expected, RB3 offers
higher reliability than the NVP3’s.

Table 2: Reliability Analysis (N = 1 and 3)

N Model Unreliability Reliability-Rank
1 1 V 9.5800E-02 -
2 3 RB3 1.0890E-03 1
3 3 NVP3 2.6997E-02 2

Then, we consider N = 6, where several fault-tolerant

schemes can be applied including classical models (RB6),
hierarchical models (RB2RB3, RB3RB2) and hybrid models
(NVP3RB2, RB2NVP3). The corresponding reliability
evaluation and comparison are shown in Table 3.

Table 3: Reliability Analysis (N = 6)

Model Unreliability Reliability-Rank
1 RB6 1.0424E-04 3
2 RB2RB3 1.5213E-06 1
3 RB3RB2 1.9009E-06 2
4 NVP3RB2 3.7758E-04 4
5 RB2NVP3 7.3512E-04 5

Similarly, we also consider N = 9, where several

reliability models are captured. The corresponding
reliability evaluation and comparison are shown in Table 4.

Table 4: Reliability Analysis (N = 9)

Model Unreliability Reliability-Rank
1 RB9 1.0300E-04 3
2 NVP9 1.1312E-03 5
3 RB3RB3 1.1067E-07 1
4 NVP3NVP3 2.2425E-03 6
5 RB3NVP3 2.2591E-05 2
6 NVP3RB3 1.0355E-04 4

Figures 8 and 9 graphically present reliability

comparison of classical, hierarchical and hybrid software
fault tolerant systems when the number of software
modules equals to six and nine, respectively.

When considering the reliability of software fault-
tolerant systems with N = 6, shown in Table 3 and Figure

8, the model with the highest reliability value is RB2RB3
which a hierarchical RB. This result is also the same when
N = 9, where RB3RB3 is the best. The next best belongs to
hybrid and classical fault-tolerant software models, while
NVP hierarchical models offer the lowest reliability values.
With hierarchical and hybrid architectures, an important
factor to gain high system reliability is the reliability of the
low-level modules. With high reliability of the lower-level
modules, the over-all system reliability can be enhanced.
This can be explained by considering NVP3RB2 and
RB2NVP3 models where RB is the lower-level modules
for the first model and the NVP is for the later model. With
RB, the first model has higher reliability at the lower-level
than those of the later model, resulting to higher reliability
of the overall NVP3RB2 model. With the same reason,
NVP3RB3 model offers higher reliability than those of the
RB3NVP3, as shown in Table 4 and Figure 9.

0.99900

0.99920

0.99940

0.99960

0.99980

1.00000

R
B6

R
B2

R
B3

R
B3

R
B2

N
VP

3R
B2

RB
2N

VP
3

N = 6

Figure 8: Reliability Comparison When N = 6

0.99750

0.99800

0.99850

0.99900

0.99950

1.00000

R
B9

N
VP

9

R
B3

R
B3

N
VP

3R
B3

RB
3N

VP
3

N
VP

3N
VP

3

N = 9

Figure 9: Reliability Comparison When N = 9

Methanavyn and Wattanapongsakorn

 Another main factor for high system reliability is the
reliability of the higher-level module. For example, let’s
consider RB3RB3 and NVP3RB3 models which both have
RB scheme for the lower-level modules. The first model
also has RB scheme for the higher-level module, resulting
to higher system reliability than those of the counter part
where NVP scheme is applied for its higher-level module.

6 CONCLUSION

In this research, we proposed mathematical models to find
probability of failures of RB and NVP schemes
considering failure dependencies or related faults in
software versions. These models are generalized for any
value of N, which is the number of software versions used
in the schemes.

In addition, essentially we proposed reliability models
for hierarchical and hybrid fault-tolerant software
architectures consisting of multi-level RBs, multi-level
NVPs, or combinations of RBs and NVPs. We perform
reliability evaluation and comparison of these reliability
models together with the classical model RBN and NVPN.

Our results indicate that hierarchical RB models
provide higher reliability than those of the classical models
and the hybrid model, while hierarchical NVP models offer
lower reliability. These results agree with the literature that
RB scheme provides higher reliability than those of the
NVP scheme, given the same number of software versions.

REFERENCES

Arlat, J., K. Kanoun, and J.C. Laprie. 1988. Dependability
Evaluation of Software Fault-Tolerance. 18th
International Symposium on Fault tolerant
Computing: 142-177.

Avizienis, A. 1985. The N-version approach to fault-
tolerant software. IEEE Transactions on Software
Engineering Vol. 12: 1491-1501.

Berman, O., and U.D. Kumar. 1999. Optimization models
for recovery block schemes. European Journal of
Operational Research Vol. 115 : 368-379.

Dugan, J.B. 2001. Fault-Tree Analysis of Computer-Based
Systems. In Proceedings of Annual Reliability and
Maintainability Symposium Tutorial Notes.

Dugan, J.B., and F.A. Patterson-Hine. 1993. Simple
Models of Fault Tolerant Software. In Proceedings
Annual Reliability and Maintainability Symposium :
354-359.

Dugan, J.B., and M.R. Lyu. 1993. System Reliability
Analysis of an N-version Programming Application..
IEEE Transactions on Software Engineering Vol. SE3:
103-111.

Giandomenico, F.D., A. Bondavalli, J. Xu, and S.
Chiaradonna. 1997. Hardware and Software Fault
Tolerance: Definition and Evaluation of Adaptive

Architectures in A Distributed Computing
Environment. In Proceedings of ESREL 97 Int.
Conference on Safety and Reliability : 341-348.

LeBlance, S.P. and P.A. Roman. 2002. Reliability
Estimation of Hierarchical of software system. In
Proceedings of Annual Reliability and Maintainability
Symposium.: 249-253.

Lyu, M.R. 1996. Handbook of Software Reliability
Engineering, IEEE Computer Society Press,
McGrawHill, Chapter 14.

Methanavyn, D. and N. Wattanapongsakorn. 2004. Hybrid
software fault tolerance system design. A special
project studies.

Randell, B. 1975. System structure for software fault
tolerance. IEEE Transactions on Software
Engineering Vol. SE-1: 220-231.

Veeraraghavan, M. and K.S. Trivedi. 1989. An Improved
Algorithm for the Symbolic Reliability Analysis of
Networks. In Proceedings 9th Symposium on Reliable
Distributed Systems: 34-43.

Wu, J., E.B. Fernandez, and M. Zhang. 1996. Design and
Modeling of Hybrid Fault-Tolerant Software With
Cost Constraints. J. System Software Vol. 35: 141-149.

Xu, J., and B. Randell. 1997. t/(n-1)- variant Programming.
IEEE Transactions on Reliability Vol. 46: 60-68.

AUTHOR BIOGRAPHIES

DENVIT METHANAVYN is a graduate student in
Computer Engineering at King Mongkut’s University of
Technology Thonburi, Thailand. He received a B. Eng.
Degree from Chiang Mai University in 2000. His research
interests include fault tolerant system design and reliability
engineering. His email address is
<denvitbox@yahoo.com>

NARUEMON WATTANAPONGSAKORN is an
assistant professor in Computer Engineering at King
Mongkut’s University of Technology Thonburi. She
received the B.S. degree and the M.S. degree, both from
The George Washington University, and Ph.D. degree in
Electrical Engineering from the University of Pittsburgh,
USA. Her research interests include fault tolerant
technique, reliability engineering, network design and
optimization technique. She is a member of IEEE and
IEEE Reliability Society. Her email address is
<naruemon@cpe.kmutt.ac.th>

	INTRODUCTION
	RESEARCH BACKGROUND
	Fault Tolerant Techniques
	Reliability Analysis
	Considering S-Independent Faults
	Considering Related faults

	Sum of Disjoint Products

	RELIABILITY MODELS OF SOFTWARE FAULT TOLERANT SYSTEMS WITH FAILURE DEPENDANCIES
	Formulation by Sum of Disjoint Products
	Generalized Reliability Models

	RELIABILITY MODELS OF HIERARCHICAL FAULT -TOLERANT SOFTWARE SYSTEMS
	Hierarchical Fault-Tolerant Models
	RBiRBj
	NVPiRBj
	RBiNVPj
	NVPiNVPj

	Proposed Reliability Analysis Models

	EXPERIMENTAL RESULTS
	CONCLUSION
	Back to Table of Content

