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ABSTRACT 

This paper proposes a coevolutionary classification method 
to discover classifiers for multidimensional pattern classi-
fication problems with continuous input variables. The 
classification problems may be decomposed into two sub-
problems, which are  feature selection and classifier adapta-
tion. A coevolutionary classification method is designed by 
coordinating the two sub-problems, whose performances 
are affected by each other. The proposed method estab-
lishes a group of partial sub-regions, defined by regional 
variable set, and then fits a finite number of classifiers to 
the data pattern by combining a genetic algorithm and a lo-
cal adaptation algorithm in every sub-region. A cycle of 
the cooperation loop is completed by evolving the sub-
regions based on the evaluation results of the fitted classi-
fiers located in the corresponding sub-regions. The classi-
fier system has been tested with well-known  data sets from 
the UCI machine-learning database, showing superior per-
formance to other methods such as the nearest neighbor, 
decision tree, and neural networks. 

1 INTRODUCTION 

Classification learning systems  are useful for decision-
making tasks in many application domains, such as financ-
ing, manufacturing, control, diagnostic applications, and 
prediction systems where classifying expertise is necessary 
(Weiss and Kulikowski 1991). This wide range of applica-
bility motivated many researchers to further refine classifi-
cation methods in various domains (Jain et al. 2000, Simp-
son 1992). The major objective of classification is to assign 
a new data object represented as features (sometimes re-
ferred to as attributes or input variables) to one of the pos-
sible classes with a minimal rate of misclassification. Solu-
tions to a classification problem have been characterized in 
terms of parameterized or non-parameterized separation 
boundaries that could successfully distinguish the various 
classes in the feature space (Pal et al. 1998). A primary fo-
cus of study to build the separation boundaries has been on 

learning from examples, where a classifier system accepts 
case descriptions that are pre-classified and then the system 
learns a set of separation surfaces that can classify new 
cases based on the pre-classified cases (Nolan 2002). Vari-
ous learning techniques have been contrived to design the 
separation surfaces, employing a variety of representation 
methods, such as mathematical functions, neural networks, 
fuzzy if-then rules, and decision trees.  

The method proposed in this paper to construct a clas-
sifier system consists of two levels, i.e. determining the 
feature space and searching the separation boundaries. The 
number and diversity of possible classifying features 
would easily dominate the amount of available decision 
data. When the number of features and the possible pat-
terns are huge, a method of feature selection should be de-
vised to find the most relevant features before automatic 
classification or decision learning (Liu and Setiono 1998). 
We represent a feature set as a set of pairs of a feature and 
its operational range, which actually represents a hyper-
rectangular sub-region in the dimensional space. The fea-
ture sets are obtained by iteratively adding a feature and its 
available interval to a current feature set in a sequential in-
creasing manner, so that the sub-region expanded from the 
added feature can include as many positive examples as 
possible. In every sub-region, the classifiers, which are de-
lineated by geometrical ellipsoids, adjust their parameters 
to search the separation boundaries by using a hybrid 
method of a genetic algorithm (GA) and a heuristic local 
search algorithm. Abe and Thawonmas (1997) showed that 
a classifier with ellipsoidal regions had the generalization 
ability comparable or superior to those of classifiers with 
the other shapes. Motivated by the result of Abe and Tha-
wonmas (1997), the ellipsoids are adopted to fit the usual 
non-linear boundaries which hyper-rectangular sub-region 
cannot represent accurately. After the evolution stabilizes 
for the ellipsoidal regions in every feature sets represented 
by sub-regions in the dimensional space, the feature sets 
themselves are subject to evolution based on the evaluation 
results of the fitted ellipsoids located in the corresponding 
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sub-regions. The two-level coevolution process is iterated 
until the termination condition is satisfied. 

The rest of this paper is organized as follows. In sec-
tion 2, we define the pattern classification problem consid-
ered in this paper. Section 3 describes the  details about a 
proposed classifier system. Section 4 shows the experimen-
tal results from evaluating the performance of the proposed 
classifier system. Finally, conclusions are stated in section 
5. 

2 CLASSIFICATION PROBLEM 

Let us assume that a pattern classification problem has c 
classes in an n-dimensional pattern space [0, 1]n with con-
tinuous input variables. It is also supposed that a finite set 
of points X = {xp, p = 1, 2, …, m} is given as the training 
data. Suppose that each point of X , xp = (xp1, xp2, …, xpn), is 
assigned to one of the c classes, and let the corresponding 
subsets of X, having N1, N2, …, Nc points, respectively, be 
denoted by X1, X2, …, Xc. Because the pattern space is [0, 
1]n, the feature values are xpj ∈ [0, 1] for p = 1, 2, …, m and 
j = 1, 2, …, n. It is desired that the subset Xi (i = 1, 2, …, c) 
are isolated by classifying regions labeled Lij (j = 1, …), so 
that the new points can be assigned to one of the c classes. 
An example of such a pattern classification problem is 
shown in Figure 1 where c = 2 (i.e., two-class problem), n  
= 2 (i.e., two-dimensional pattern space) and m = 40 (i.e., 
40 training patterns). 

 

 
Figure 1: A two-class classification problem with the two-
dimensional pattern space [0, 1]2. 

3 A COEVOLUTIONARY CLASSIFIER SYSTEM  

For the classification problem defined the previous section, 
we propose a coevolutionary method to construct separat-
ing boundaries of classes in feature subsets on the basis of 
the training data. The procedure for establishing a classifier 

system, which produces  class boundaries, consists of two 
phases as follows. 
 

• Phase 1. Determine the feature subspaces of hy-
per-rectangles. In each subspace, a subset of se-
lected features is  used. 

• Phase 2. Search the separation boundaries by 
evolving hyper-ellipsoids in the determined fea-
ture subspaces through a genetic algorithm. 

 
Each phase of the procedure will be explained in detail in 
the following sections.  

3.1 Initial determination of the fe ature subspaces 

We propose in this subsection a spatial feature selection 
method by constructing subspaces, in each of which a spe-
cific subset of relevant features is to be considered. As a 
result, each subspace has different dimensions than the 
others. The spatial feature set constitutes pairs of a feature 
and its valid interval, which actually represents a hyper-
rectangular subspace in the dimensional space. The feature 
subspaces are initially established so as to include as many 
positive examples as possible and to exclude negative ex-
amples according to its initial default class.. A spatial fea-
ture set is obtained by iteratively adding a feature and its 
available interval to the current feature set in a sequential 
manner, so that the subspace expanded by the added fea-
ture can include as many positive examples as possible. In 
later phases, the feature spaces will be subject to an evolu-
tionary process to maximize the performance of ellipsoids 
in them.  

Kudo and Shimbo (1993) proposed a method to obtain 
the hyper-rectangles that was similar to the initial estab-
lishment method of ours. However, their approach differs 
from ours in  the following points. First, their feature selec-
tion approach is performed in a backward manner, remov-
ing redundant features from the initiated maximum hyper-
rectangles. It requires much computation cost to search the 
maximum hyper-rectangles in a large training dataset, 
while our method does not require the additional search for 
the maximum hyper-rectangles due to the forward sequen-
tial feature selection. Second, a binarization procedure is 
needed to apply their method to data with continuous fea-
tures, while ours can be directly employed to the data with 
continuous features. The proposed method to build the fea-
ture subspaces is presented below and also illustrated by 
Figure 2. 

Step 1. An initial subspace T is constructed by defin-
ing the interval in the one-dimensional space of the refe r-
ence feature v0. The lower and upper limits of the interval 
are established on the basis of the nearest negative exa m-
ples from some consecutive positive examples selected 
among training data set on the axis v0. 

Class 1 Class 2 
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Step 2. The initial subspace T is split into subspaces, 
Ti, i=1, 2, …, on the expanded dimensional space of the ex-
isting features and the new feature v ′ . Each Ti is created 
by defining lower and upper limits of its interval on the 
new feature v ′  in the same way of the Step 1. 

Step 3. Each of the divided subspaces expands its in-
terval along the existing features to the nearest negative 
example while keeping the interval of the new feature v ′ . 

 

 
Figure 2: Example of feature subspaces generation 

 
Step 4. If the largest one T* among subspaces ex-

panded from the initial subspace T includes more positive 
exa mples than those of the initial subspace T then repeat 
Step 2 to Step 3 by considering the largest subspace T* in 

Step 3 as an initial subspace T in Step 2. Otherwise the in i-
tial subspace T in Step 2 is inserted to the set of final sub-
space set G on condition that the initial subspace in Step 2 
has at least one positive example that is not included in the 
set of final subspaces. 

Step 5. For every example in the training data set, the 
above procedure from Step 1 to Step 4 repeated to get the 
set of final subspaces G. 

3.2 Evolution of the ellipsoidal classifiers  

In every feature subspace, the classifiers represented by el-
lipsoids adjust their parameters to search the optimal sepa-
ration boundaries through a hybrid GA. A set of adaptive 
operations is devised and used for the local search in the 
hybrid GA. 

3.2.1 Classifier representation with ellipsoids  

Assume that the data subset Xi for class Ci, where i = 1, …, 
c, is covered by several ellipsoidal regions Lij (j = 1, …), 
where Lij denotes the jth region for class Ci. The ellipsoidal 
region Lij is defined by two foci, fij

(1) and fij
(2) and a con-

stant, i.e., size factor, Dij as follows: 
Lij: ijijij Ddistdist ≤+ ) ,() ,( )2()1( fxfx  (1) 

where )()() ,( yxyxyx −−= tdist . 

For each ellipsoidal region Lij, we define the following 
classification rule: 
Rij: If x is in Lij then x belongs to class Ci (2) 

where Rij denotes the label of the jth rule for class Ci. 

3.2.2 Classifier strength and determination of class 

For the pattern classification, it is reasonable to assume 
that the degree of membership of x for classification rule 
(2) increases as x moves toward the center of the ellipsoid 
Lij, and decreases as x moves away from the center. To re-
alize this characteristic, the degree of membership of x for 
a rule Rij is defined as follows. 

 
) ,() ,(
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)2()1(

ijij

ij
ij distdist

D
d

fxfx
x

+
=   (3) 

If the value of dij(x) in (3) is larger than 1, it indicates 
that point x is located within the ellipsoid Lij. The value of 
(3) is less than 1 when x lies out of the boundary of the el-
lipsoid. Now the degree of membership of x for class Ci, 
denoted as di(x), is given by { })(max)(

,1
xx ij

j
i dd

L=
= . The class 

of input x is then determined as class Ci* such that di*(x) is 
the maximum among di(x), i = 1, …, c . 
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3.2.3 Chromosome representation and population 

initiation 

The chromosomes are represented by strings of a floating-
point value in [0, 1], encoding the parameters of ellipsoids. 
Figure 3 shows the structure of a chromosome in a three-
dimensional feature subspace obtained in subsection 3.1 as 
an example.  
 

 
Figure 3: An example of a chromosome in three-
dimensional feature subspace. 
 

An initial population is generated in such a way that 
each individual assigned to one of the classes is encoded in 
terms of two foci, f(1) and f(2), and a size factor D, which 
are randomly allocated in the pattern space [0, 1]n to ensure 
sufficient diversity in the population. For each individuals 
in half of the population, then, one of the foci is seeded 
with randomly selected training sample point for providing 
a good starting solution. The number of individuals with a 
certain class Ci in the population, denoted by Pop(i),  is de-
termined in proportion to the number of training data with 
the same class. Consequently, the size of the population, 
denoted by Pop_size, is defined as the sum of Pop(i), i=1, 
…, c. 

3.2.4 Fitness computation 

Two measures are considered to evaluate an ellipsoid 
based on the classification result  of the corresponding clas-
sifier: generalization ability and classification rate. In order 
to obtain good generalization ability of an ellipsoid, the re-
gion that the ellipsoid covers needs to grow as large as 
possible. Therefore, when we divide the training data by 
ellipsoids, the number of data belonging to an ellipsoid 
should not be too small. For the high classification rate of 
an ellipsoid, the number of correctly classified data should 
be large relative to the number of incorrectly classified 
data among data belonging to the ellipsoid.  

Considering the two measures, the fitness value of 
each ellipsoid is defined as follows. 

 
 fitness(Lij) = NC (Lij) – weight(Lij) × NI(Lij) (4) 
 

where fitness(Lij) is the fitness value of the ellipsoid 
Lij, NC(Lij) is the number of training data that are correctly 
classified by Lij, NI(Lij) is the number of training data that 
are incorrectly classified by Lij, and weight(Lij) is the 
weight value that multiplies NI(Lij).  

The weight value for an ellipsoid Lij is used to deter-
mine the tradeoff between the generalization ability and the 
expected classification rate of the ellipsoid on the basis of 
the ratio of the number of data with same class Ci to the to-
tal number of remaining data. Given a training data set 
with a large value of the ratio the ellipsoids is apt to be 
large with the large fitness value caused by large expected 
value of NC (·) and small expected value of NI(·). This will 
over-emphasize the generalization power relative to the 
classification rate. On the other hand, a small value of the 
ratio has the ellipsoids be small with the small fitness value 
caused by small NC(·) and large NI(·), which leads to low 
generalization ability. If the ratio has a large value, the ex-
pected classification rate should be emphasized with a 
large value of weight. Otherwise the generalization ability 
should be emphasized with a small value of weight. Based 
on the above relation, the weight value of each ellipsoid is 
calculated as follows. 

 

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i
ij N

N
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where Ni is the number of data of which class is Ci 
among remaining training data, Nremain is the number of to-
tal remaining training data, and α (α > 1) and β (0 < β < 1) 
is constant. 

3.2.5 Genetic operations 

In order to generate new offspring for class Ci, a pair of in-
dividuals with the same class Ci is selected from the cur-
rent population. Each individual is selected by the follo w-
ing selection probability based on the roulette wheel 
selection with the linear scaling: 

 
∑ ∈

−
−

=
iik SL iik

iij
ij SfitnessLfitness

SfitnessLfitness
LP

)}()({
)()(

)(
min

min  (6) 

where )(min iSfitness  is the minimum fitness value of 
the individuals in the current set Si. 

From the selected pair of ellipsoids, the arithmetic  
crossover for randomly taken genes generates two off-
spring. For an example of the i-th genes, ai and bi of the se-
lected pair of ellipsoids are replaced by ii ba )1( λλ −+  and 

ii ba λλ +− )1(  respectively, where 0<λ<1. Note that the 
size factor is determined by a random number drawn from 

a uniform distribution U(dist(
′)1(f ,

′)2(f ), 1) in order to 
keep the size of the ellipsoid greater than distance between 
its two modified foci. 

Each parameter of ellipsoids generated by the cross-
over operation is randomly replaced using a random num-
ber from U(0, 1) at a pre -specified mutation probability. As 
in the crossover operation, the size factor is recomputed 
with the modified distance between the two altered foci. 
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3.2.6 Adaptive operations  

The adaptive operations consist of three operations, 
i.e., expansion, avoidance, and move. The most probable 
one of the three operations is selected for each ellipsoid 
based on its fitness value. The ellipsoid with a positive 
value of fitness is expanded to have a chance to contain 
more data patterns. If the fitness value of an ellipsoid is 
less than zero (i.e., an ellipsoid contains at least one mis-
classified data), the ellipsoid rotates or contracts to avoid 
the misclassified examples. Finally if an ellipsoid has a 
zero value of fitness (i.e., an ellipsoid does not contain any 
training data), the ellipsoid moves to other location in the 
pattern space. The fitness value of an ellipsoid can be zero 
even though the ellipsoid contains data from equation (4). 
However, there is a bare possibility that the number of cor-
rectly classified data is same as the number of misclassi-
fied data multiplied by weight value because the value of 
weight in equation (5) is a real number calculated by an 
exponential function with a real number of parameter. 
Nevertheless, the overall performance does not take a sud-
den turn for the worse. 

In summary, each ellipsoid in a pool is updated by it-
eratively adapting one of three adaptive operations based 
on the fitness value of the ellipsoid: 

• Avoidance: If the fitness value of an ellipsoid is 
negative, avoid misclassified data located in the 
ellipsoid. 

• Expansion: If the fitness value of an ellipsoid is 
positive, expand the ellipsoid.  

• Move: If the fitness value of an ellipsoid is zero, 
move the ellipsoid to other location in the pattern 
space. 

The following three subsections describe these opera-
tions in detail. 

3.2.6.1 Avoidance 

We propose three methods to avoid the misclassified ex-
amples considering the locations of the misclassified ex-
amples. Figure 4 illustrates the three methods in two-
dimensional pattern space. The first one is to avoid the 
misclassified examples by rotating the ellipsoid as shown 
in Figure 4 (a). The rotation method is selected when the 
misclassified examples are located in near to boundary of 
the ellipsoid like the shading region in Figure 4 (a). We ro-
tate the ellipsoid by moving the focus nearby the misclassi-
fied examples in parallel to one variable axis while fixing 
the other focus and its size factor. 

The other avoidance method is to shrink the ellipsoid 
as shown in Figure 4 (b). The contraction method is ap-
plied when the misclassified examples are located in the 
shading area of Figure 4 (b). To avoid the misclassified ex-
amples, the ellipsoid is shrunk by moving two foci to the 
opposite directions of one another and its size factor fixed. 

Another avoidance method is carried out when the 
misclassified examples are located in the shading part of 
Figure 4 (c). The misclassified examples is hard to avoid 
by the previous two methods because they are located 
around the center of the ellipsoid. Therefore we propose 
the third method that randomly modifies the location of a 
randomly selected focus to avoid the misclassified exa m-
ples around the center of the ellipsoid. 

 

 
Figure 4: Three methods of avoidance operation 

 

3.2.6.2 Expansion 

An ellipsoid is expanded by one of following two methods 
(i.e., directed and undirected expansion) as shown in Fig-
ure 5, which assumes the ellipsoid in a two-dimensional 
pattern space. In the directed expansion as expressed in 
Figure 5 (a), the ellipsoid extends its area to the opposite 
direction of a location-fixed focus, which is randomly se-
lected among two foci. The direction can be chosen rather 
efficiently by analyzing data around the ellipsoid. The eff i-
cient selection of the expanding direction can reduce the 
number of iterations and help the ellipsoids fit class 
boundaries more effectively. However, it may not be crit i-
cal to overall performance of a resulting classifier. The fit-
ness of the ellipsoid expanded to the wrong direction may 

: Focus 
: Modified focus 
: A misclassified exa mple 

(c) 
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(b) 
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be degraded. However, the reduced fitness value will be 
compensated by the avoidance operation invoked by the 
decreased fitness value in the next iteration. Moreover, the 
rotation operation can rectify the wrong direction during 
the avoidance step. Thus we consider the random method 
only in deciding the expanding direction. The directed ex-
pansion method is performed by modifying the locations of 
the foci and the size factor. 

In the undirected expansion, the ellipsoid is enlarged 
toward all directions as depicted in Figure 5 (b). The undi-
rected expansion of the ellipsoid is carried out by increas-
ing only its size factor. 

 

 
Figure 5: Two methods of expansion operation 

 

3.2.6.3 Move 

If the ellipsoid does not contain any examples, it randomly 
moves to other location in the pattern space. For the fast 
adaptation of the ellipsoid, the ellipsoid needs to be moved 
to the area where no ellipsoids exist and training examples 
are densely distributed. Thus if there exist training exa m-
ples which are not included in any ellipsoids, we place a 
focus to randomly selected one among the training exa m-
ples. 

3.2.7 Update of the population 

The proposed hybrid GA procedure applies genetic opera-
tions and adaptive operations after population elitist selec-
tion (Eshelman 1991). With the population elitist selection, 
pre-defined Pop_size individuals are selected from the cur-
rent population and a set of the newly generated offspring. 
This updating method guarantees that the best Pop_size in-
dividuals seen so far always survived. 

3.2.8 Termination Test 

The proposed hybrid GA iterates the GA operations and 
the local improvement procedure (i.e., adaptive operations) 
until a termination criterion is met. The termination crite-
rion used in this study is to terminate the iteration when ei-
ther all the training samples are covered by the ellipsoids in 

the population or the specified maximum number of itera-
tions is exceeded. The final solution obtained by our hybrid 
GA procedure is not the final population itself but the best 
ellipsoids in the final population, which cover all the train-
ing samples contained by the final population. The selec-
tion of the best ellipsoids in the final population for the fi-
nal output of the algorithm can eliminate the redundant 
ellipsoids whose removal does not change the recognition 
capability of the classifier. 

3.3 Evolution of the feature subspaces 

The feature subspaces evolve on the basis of the perform-
ance of the regional ellipsoid classifiers they contain in 
their regions. The evolution procedure for the feature sub-
space population is composed of two phases, i.e., creating 
new individual feature subspaces and updating the current 
population. A feature subspace is considered to be evolved 
when the regional agents in the subspace have one of more 
positive examples included in other feature subspaces. This 
means that the feature subspace seeks for opportunities to 
expand to include the corresponding examples by adopting 
the features of the targeted examples that are not yet in-
cluded in the subspace 

The newly obtained feature subset is inserted into the 
feature subspace population if any of its positive examples 
are not included in other feature subspaces. The insertion 
of new subspaces activates a deletion process that finds 
and deletes subspaces that are enclosed by those new sub-
spaces. 

3.4 Experimental Results 

We applied the proposed methods to three data sets both to 
introduce a simple example of ellipsoids adaptation result 
and to verify the effectiveness of our methods. The data 
sets are available from the UCI Machine Learning Reposi-
tory (Blake and C.J. Merz  1998). Each example of the data 
sets has continuous variables. As a preprocessing of the 
data for our classifier system, the value of each variable is 
normalized as having the maximum value of one and the 
minimum value of zero.  

3.4.1 Illustrative Example 

In order to demonstrate the applicability of the proposed 
adaptation method, the iris data is taken as an example. 
The iris data consist of 150 examples with four featues (se-
pal length, sepal width, petal length and petal width) and 
three types of iris plant, i.e., three classes (iris setosa, iris 
versicolour and iris virsinica). There are 50 examples in 
each class and the statistical summary of four variables is 
shown in table 1.  
 

 

(a) (b) 

: Focus 
: Modified focus 
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Table 1: Statistical summary of variables in the iris data 

* SD: Standard Deviation 
** Correl: Correlation between class and corresponding feature 
 

The proposed coevolutionary procedure of feature 
subsets and ellipsoids was conducted in four-dimensional 
space made by normalization of the values of the two se-
lected variables into 0 to 1. The best four ellipsoids that 
cover the maximum number of examples are evolved from 
feature subsets formed by two features of petal length and 
petal width. Accordingly, the best ellipsoids are defined in 
two-dimensional space with the two features, petal length 
and petal width, which have the relatively high correlation 
values between class and variables as shown in Table 1. 
The final result of the ellipsoids adaptation procedure is 
shown in Figure 6, where four ellipsoids are constructed to 
cover 149 examples. One exa mple could not be covered as 
the result of eliminating ellipsoids that cover only one ex-
ample to avoid the overfitting problem.  

From the example of iris data, we can see that the fea-
ture subspace determination can choose highly correlated 
variables with classes and the proposed hybrid GA method 
can fit ellipsoids to the data patterns in the dimensional 
space defined by the chosen feature space. In the following 
section, the comparative evaluation is conducted for more 
complicated classification problems.  

 
Figure 6: A set of ellipses generated from the hybrid GA 
procedure for the iris data 

3.4.2 Data sets used for performance evaluation 

The performance of the proposed hybrid GA procedure 
was evaluated on two data sets  which are usually employed 

as benchmarks for classification applications (i.e., glass, 
and ionosphere data). The data sets were normalized so 
that continuous variables ranged from [0, 1], and then each 
data set was partitioned into training set and test set. The 
summary of the data sets is described in Table 2 and the 
detailed explanation is presented in the following subsec-
tions. 

 
Table 2: Summary of data sets used for evaluation 

Data set # features # classes  # Instances 
Glass 9 6 214 

Ionosphere 33 2 351 

3.4.2.1 Glass data 

The glass data set consists of 214 examples with nine con-
tinuous features from six classes, which classifies the types 
of glasses based on the mixture ratio of constituents. This 
data set is available from UCI database. We evaluated the 
performances for test data using a random sub-sampling 
technique. In the computer simulations, 2/3 of the given 
examples were independently and randomly selected for 
training data and the other 1/3 were used as test data. The 
random split of the given data was iterated 15 times.  

3.4.2.2 Ionosphere data 

The proposed method is applied to the ionosphere data that 
includes 351 examples with 33 continuous features and 2 
classes, which determines “good” or “bad” one by the in-
formation of the received returns from the ionosphere 
through 16-arrayed antenna. Since this data set has many 
features, we can evaluate the effectiveness of the proposed 
method combined with automated feature selection by us-
ing the data. The ten-fold cross validation (10-fold CV) 
was used for evaluating the performance of our classifica-
tion method.  

3.4.3 Results of computational evaluation 

Here we present the results achieved by the proposed hy-
brid GA approach and compare them with the perform-
ances of existing well-known classifiers, i.e., a k  nearest 
neighbor (Weiss and Kulikowski 1991), a decision tree 
with C4.5 (Quinlan 1993), and a neural network with 
backpropagation (Haykin 1994). We tried to guarantee the 
proper prediction power of the classifiers even under insuf-
ficient training data for scarce classes by adopting rather 
simple structures such as k=3 and 1 hidden layer. Table 3 
shows the comparison results of the average classification 
rate for the three data sets mentioned in the previous sub-
section. We can see that the proposed hybrid GA classifi-
cation method with ellipsoidal regions achieved a superior 
classification rate of test data in comparison with other 

Feature Min Max Mean SD* Correl** 

Sepal length 4.3 7.9 5.84 0.83 0.7826 
Sepal width 2.0 4.4 3.05 0.43 -0.4194 
Petal length 1.0 6.9 3.76 1.76 0.9490 
Petal width 0.1 2.5 1.20 0.76 0.9565 
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popular methods such as the k  nearest neighbor, the deci-
sion tree, and the neural network.  

 
Table 3. Comparison results in terms of classification rate 

4 CONCLUSION 

This paper proposes a coevolution-based classification 
method for multidimensional pattern classification prob-
lems . The method consists of two layers. Feature sets, pairs 
of a feature variable and its range, determine the sub-
regions where they apply.  For each sub-region, a pool of 
ellipsoids is developed to fit the data patterns in the train-
ing examples. The ellipsoids are subject to the inner loop 
of adaptation process whereas the evolution of the feature 
sets forms the outer loop.  

The proposed representation of ellipsoids, whose pa-
rameters are two foci and a size factor, has the advantage 
of interpretability, tractability and robust generalization 
ability. The GA procedure to fit the ellipsoids to the data 
patterns is expedited by a few common adaptive opera-
tions: expansion, avoidance, and move. The feature-
ellipsoid coevolution allows robust performance in prob-
lems with a large number of features  

The proposed coevolutionary classification method 
was applied to well-known data sets with various numbers 
of continuous variables (i.e., 4 to 33 features). The per-
formance results showed the superiority of the proposed 
method to the existing methods regardless of the number of 
the features.  
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Classification rate (%) 
Classifier 

Glass Ionosphere 
k  Nearest Neighbor (k  = 3) 63.74 84.90 

C4.5  65.70 88.89 

Neural Network 63.36 90.03 

This study 67.10 90.88 
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