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ABSTRACT 

Particle Swarm Optimization (PSO) is a population based 
stochastic optimization technique. One of its most impor-
tant parameters is the social structure of PSO. Each struc-
ture’s performance depends on geography of the search 
problem. This paper introduces two new versions of parti-
cle swarm optimization algorithm. The first proposed ver-
sion is GLN-PSO. It is based on a structure that is built by 
combining previously published structures. The second is 
GLNR-PSO, a non-homogenous PSO algorithm that is the 
same as the first but allow for some particles to have dif-
ferent parameters. 
 The two proposed algorithms were tested using the 
benchmark test functions previously published, namely 
Sphere, Rosenbrock, Rastrigin and Griewank functions. 
The results of the experiments indicated that the first pro-
posed algorithm GLN-PSO outperformed standard PSO 
and FDR-PSO on all the test functions. The second pro-
posed algorithm GLNR-PSO further outperformed GLN-
PSO on the Sphere, Rosenbrock, and Griewank functions. 

1 INTRODUCTION 

Particle Swarm Optimization (PSO) is a population based 
stochastic optimization technique by Kennedy and Eber-
hart (1995). The underlying motivation for the develop-
ment of PSO algorithm was social behavior of bird flock-
ing or fish schooling. The original PSO algorithm started 
with a population of K particles flying in the D-
dimensional problem space. Each particle is consisted of a 
solution, called “position” of the particle, and a random-
ized set of D dimensions that is used for evolving a new 
position, called “velocity”. The velocity of each particle is 
dynamically adjusted by its own flying experience and that 
of its neighbors. Let the position of the ith particles be rep-
resented by Xi = (xi1, xi2, xi3, ..., xiD) and the velocity of the 
ith particle be represented by Vi = (vi1, vi2, vi3, ..., viD) where 
i = 1, 2, ..., K. To update a new velocity, each particle uses 

its own personal best previous position (pbest) and the best 
previous position that was found by all individuals in the 
population (gbest). The pbest of the ith particle, which is 
the previous position with the best objective function value 
found by the ith particle, is represented by Pi = (pi1, pi2, pi3, 
..., piD) for i = 1, 2, ..., K, and the gbest is represented by Pg 
, the previous position that obtains the best objective func-
tion value found by all K particles. At every iteration, each 
particle updates its new velocity by using pbest, gbest, and 
its old velocity. Then, it uses that new velocity to move to 
a new position. However, the original PSO is weak in its 
ability to converge. To solve that problem, Shi and Eber-
hart (1998) introduced an inertia weight parameter, repre-
sented by w, to reduce the effect of the old velocity on the 
update of new velocity. The social structure of the original 
PSO is called gbest. All particles interact with the particle 
that has Pi that gains the best objective function value. His-
torically, many researches introduced other social struc-
tures to improve performance of PSO such as Local Best 
(lbest), Near Neighbor Best (nbest), wheel topology, pyra-
mid, etc. Each structure’s performance is depended on ge-
ography of the search problem. On the other hand, there 
are some research works that focus on re-initializing posi-
tion and velocity of each particle with the aim to improve 
overall performance such as Dissipative PSO that was in-
troduced by Xie, Zhang, and Yang (2002a). 
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This paper presents a structure that is derived from 
combining some well-known structures, and also presents a 
non-homogenous PSO algorithm in the sense that each par-
ticle is not required to have the same parameters. Section 2 
describes three well-known structures namely Global Best 
(gbest), Local Best (lbest), and Near Neighbor Best 
(nbest). Section 3 presents a modified social structure that 
is build by combining the three well-known structures. 
Section 4 describes a non-homogenous PSO that includes 
particles with added ability to reinitialize their positions 
and with Vmax different from those of other particles in the 
population. The experiments and results are given in sec-
tions 5 and 6. 



Pongchairerks and Kachitvichyanukul 

2 THE THREE SOCIAL STRUCTURES 

The three social structures used in this paper consist of 
Global Best, Local Best, and Near Neighbor Best. A brief 
description is given below.  

1. Global Best (gbest) - This social structure is the 
original structure of particle swarm. Pg is the Pi that 
gains the best objective function value from all K 
particles.  

2. Local Best (lbest) - For this structure, each particle 
is affected by the best performance of its k immedi-
ate neighbors in the population. Neighbors in this 
structure are not related by distance, but related on 
indices of particles. The lbest of ith particle is the 
best position that are found by k immediate 
neighbors of ith particle, included itself, represented 
by Pl i = (pl i1, pl i2, pl i3...pl iD) for i =1, 2, ..., K. The 
lbest will be same as gbest when k is set to equal to 
K. To use lbest, pgd in velocity’s formula is replaced 
by pl id for each ith particle. This structure allows 
particles search on different spaces at the same time. 
However, the system might be slower than gbest in 
terms of convergence. 

3. Near Neighbor Best (nbest) - This structure was pre-
sented in Veeramachaneni, Peram, Mohan, and 
Osadciw (2003) by combining nbest term and the 
three standard terms, i.e., inertia term, pbest, and 
gbest. Each particle interacts with a particle that is 
nearby and obtains a good objective function value. 
The nbest of ith particle is represented by Pn i = (pn i1, 
pn i2, pn i3, ..., pn iD) for i =1, 2...K. The velocity of  ith 

particle in dth dimension is updated by using Pn, with 
prior best position Pj, selected to maximize 

  FDR (j, i, d) = Fitness (Xi) – Fitness (Pj)   
         |pjd – xid| 

  for minimization problem. 
 

3 A PARTICLE SWARM OPTIMIZATION WITH 
COMBINED GBEST, LBEST, AND NBEST 
SOCIAL STRUCTURES (GLN-PSO) 

In this algorithm, movement of each particle is pulled by 
an inertia term, a cognitive term pbest, and three social 
terms: gbest, lbest, and nbest. A parameter to control iner-
tia term is the inertia weight (w), and parameters to control 
cognitive and social terms are the acceleration constants. In 
the case that some of these terms are moving in the same 
direction, the particle is pulled faster toward that direction 
by multiple forces. On the other hand, these forces may be 
canceling each others, when directions of these terms are 
opposite. Formulae to update the new velocity and position 
are shown below. 

vid (t+1) =  w*vid (t)  
      + cp*rand ()*(pid – xid (t))  
      + cg*rand ()*(pgd – xid (t))  
      + cl*rand ()*(plid – xid (t))  
      + cn*rand ()*(pnid – xid (t))    (1) 
xid (t+1) =  xid (t) + vid (t+1)       (2) 
 
where the definitions of variables are given in the nomen-
clature below. 
 
Indices:  
i = index of particle i = 1, 2, ..., K 
d = dimension d = 1, 2, ..., D 
t = iteration t = 1, 2, ..., T 
 
Variables:  
xid (t) =  the current position of ith particle at dth dimension 

in tth iteration 
vid (t) =  the current velocity of ith particle at dth dimension 

in tth iteration 
pid      =  the best previous position at dth dimension known 

by ith particle 
pgd     =  the best previous position at dth dimension known 

by all K particles 
plid     =  the best previous position at dth dimension known 

by neighbors of ith particle 
pnid     =  the best previous position at dth dimension known 

by near-neighbors of ith particle 
 
Parameters: 
w = inertia weight 
cp = acceleration constant of cognitive term (pbest) 
cg = acceleration constant of gbest social term 
cl = acceleration constant of lbest social term 
cn = acceleration constant of nbest social term 
rand () = random number in range [0, 1] 
 
The GLN-PSO can be implemented as follows: 

1. Initialize K particles as a population, generate the ith 
particle with a random position Xi Є [-Xmax, Xmax], 
vid = 0 for the dth dimension of velocity Vi, each ith 
particle also has k immediate neighbors 

2. Evaluate the objective function value for each ith 
particle 

3. Compare the objective function value of each ith par-
ticle with its pbest. The current position is set to be 
pbest if the objective function value of current posi-
tion is better than pbest. And, the current position is 
also set to be gbest if the objective function value of 
the current position is better than gbest. 

4. Compare the objective function value of each ith 
pbest with pbest of its k immediate neighbors. lbest 
of each ith particle is the best pbest of its k immedi-
ate neighbors. 
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5. For each dth dimension of the ith particle, nbest of dth 
dimension of the ith particle is selected by the posi-
tion that is maximizing FDR (j, i, d)   

  when FDR (j, i, d) = Fitness (Xi) – Fitness (Pj)  
            |pjd – xid| 
  for minimization 
6. Update the velocity and position of each ith particle 

depending on equations (1) and (2) 
7. If vid (t+1) is less than −Vmax then vid (t+1) = −Vmax. 

And, if vid (t+1) is exceed than Vmax then vid (t+1) = 
Vmax 

8. If xid (t+1) is less than −Xmax then xid (t+1) = −Xmax 
and vid (t+1) = 0. And, if xid (t+1) is exceed than 
Xmax then xid (t+1) = Xmax and vid (t+1) = 0.  

9. Return to step 2 until the stop criteria is met. 
 

The notation used in this paper is in the form GLN-
PSO [cp cg cl cn]. The figures inside the bracket [...] are val-
ues of the acceleration constants. GLN-PSO [2200] repre-
sents the standard PSO that cp = cg = 2. GLN-PSO [1102] 
represents a FDR-PSO (1, 1, 2) that cp = cg = 1, and cn =2. 
GLN-PSO [1111] is a full version of GLN-PSO that all 
values of acceleration constants are equal to 1. 

4 A NON-HOMOGENOUS PSO 

This version is modified from GLN-PSO version by adding 
the ability to reinitialize position for some particles in the 
population. These extra particles are assigned ability to ex-
plore new search areas that might lead to better solutions 
while other particles are still following the rule of GLN-
PSO. It is commonly accepted that initial position of the 
population has high influence on performance of PSO and 
the position re-initialization might improve overall per-
formance. This section describes a non-homogenous PSO 
with different values of parameters for each particle. 
 The extra particles start to reinitialize their positions at 
the Rth iteration, after that they will reinitialize their posi-
tion every r iterations. It means that these extra particles 
reinitialize their position at Rth, (R+r)th, (R+2r)th, 
(R+3r)th...and stop at Tth iteration. Vmax of the extra parti-
cles is much smaller than others to allow these particles to 
spend enough times to search in other areas before they are 
pulled back by social terms. Formula to update new veloc-
ity and position is shown below. 

 
Formula to update new velocity and new position: 
vid (t+1) =  w*vid (t)  
      + cp*rand ()*(pid – xid (t))  
      + cg*rand ()*(pgd – xid (t))  
      + cl*rand ()*(plid – xid (t))  
      + cn*rand ()*(pnid – xid (t))    (3) 
xid (t+1) =  xid (t) + vid (t+1)       (4) 
IF (i Є G and t >= R and t mod r = 0)  
THEN xid (t+1) = Random (-Xmax, Xmax)    (5) 
IF (i Є G and t >= R and t mod r = 0)  

THEN vid (t+1) = 0        (6) 
 
where the additional index and parameters are defined as: 
Indices:  
G  = set of particle’s indices that have ability to  
  reinitialize position 
 
Parameters: 
R  = the first iteration that particles in G  
  reinitialize their positions 
r  =  number of iterations between position- 
  reinitialization of particle in G 
 
The non-homogeneous PSO, GLNR-PSO, can be imple-
mented as follows: 

1. Initialize K particles as a population, generate the ith 
particle with a random position Xi Є [-Xmax, Xmax], 
vid = 0 for dth dimension of velocity Vi, each ith par-
ticle also has k immediate neighbors 

2. Assign particle’s indices to set G 
3. Evaluate the objective function value for each ith 

particle 
4. Compare the objective function value of each ith par-

ticle with its pbest. The current position is set to be 
pbest if the objective function value of current posi-
tion is better than pbest. Then, the current position is 
also set to be gbest if the objective function value of 
current position is better than gbest. 

5. Compare the objective function value of each ith 
pbest with pbest of its k immediate neighbors. lbest 
of each ith particle is the best pbest of its k immedi-
ate neighbors. 

6. For each dth dimension of the ith particle, nbest of dth 
dimension of the ith particle is selected by the posi-
tion that maximizes FDR (j, i, d)   

  when FDR (j, i, d) = Fitness (Xi) – Fitness (Pj)  
            |pjd – xid| 
  for minimization 
7. Update the velocity and position of each ith particle 

depending on equations (3), (4), (5), and (6) 
8. If vid (t+1) is less than −Vmax then vid (t+1) = −Vmax. 

And, if vid (t+1) is exceed than Vmax then vid (t+1) = 
Vmax 

9. If xid (t+1) is less than −Xmax then xid (t+1) = −Xmax 
and vid (t+1) = 0. And, if xid (t+1) is exceed than 
Xmax then xid (t+1) = Xmax and vid (t+1) = 0.  

10. Return to step 2 until the stop criteria is met. 
 

This Non-homogenous PSO version is represented by 
GLNR-PSO [cp cg cl cn], and notations inside the bracket 
[...] are the values of the acceleration constants. 

5 THE EXPERIMENTS 

The comparison of performance in this paper includes the 
following PSO versions: 
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1. GLN-PSO [2200] represents the standard PSO 
2. GLN-PSO [1102] represents a version of FDR-PSO 
3. GLN-PSO [1111] represents a full version of GLN-

PSO 
4. GLNR-PSO [1111] represents a version of position 

reinitializing GLN-PSO 
notations inside the bracket [...] are values of cp, cg, cl, and 
cn. 

Test functions and their Xmax values in this paper are 
based on Comparing Inertia Weights and Constriction Fac-
tors in Particle Swarm Optimization introduced by Eber-
hart and Shi (2000) as shown below: 

1. Sphere  (Xmax = 100) 
f = ΣD

d=1 xd
2   

2. Rosenbrock  (Xmax = 30) 
f = ΣD-1

d=1 (100(xd+1 – xd
2) 2 + (xd – 1)2) 

3. Rastrigin  (Xmax = 5.12) 
f = ΣD

d=1 (xd
2 – 10cos (2πxd) + 10) 

4. Griewank  (Xmax = 600) 
f = 1 + (ΣD

d=1 xd
2 /4000) – (ПD

d=1 cos (xd / √d)) 
 
Parameters setting of the PSO for the experiments are as 
follows: 

1. Number of experiments = 30 
2. Population size (K) = 30 
3. Neighborhood size (k) = 5 
4. Number of dimension (D) = 30 
5. Max. iteration (T) = 1000 
6. w was set to 0.9 at the first iteration and reduced 

linearly to 0.4 at the 1000th iteration 
7. Vmax = Xmax 

(Steps 8 to 11 are for GLNR [1111], only) 
8. Indices of reinitializing particles G = {10th , 20th, 

30th } 
9. First iteration to reinitialize (R) = 500 
10. iteration between reinitializing (r) = 10 
11. V’max = Vmax / 40 

 

6 RESULT AND DISCUSSION 

The results from the experiments are summarized in Table 
1 below. The entries in the table are the average of the 
minimum objective function values found within 1000 it-
erations by four benchmarking versions. GLN-PSO [2200] 
represents the standard PSO, GLN-PSO [1102] represents 
a version of FDR-PSO, GLN-PSO [1111] represents a full 
version of GLN-PSO, and GLNR-PSO [1111] represents a 
non-homogenous PSO that is introduced in this paper. Pa-
rameters of these versions are set as shown in section 5.    

The result shows that GLNR-PSO [1111] gains the 
best performance in Sphere, Rosenbrock, and Griewank, 
while GLN-PSO [1111] gains the best performance in 
Rastrigin. And, GLN-PSO [1111] outperforms the standard 
PSO and the FDR-PSO in all four test functions. 

 

Table 1: The average of the minimum objective function 
value of benchmarking versions 

FUNCTION 
VERSION 

Sphere 
Rosen-
brock Rastrigin Griewank 

GLN-PSO [2200] 2.07E-03 3.23E+02 6.28E+01 1.68E-02 
GLN-PSO [1102] 1.22E-13 4.23E+01 7.16E+01 1.87E-02 
GLN-PSO [1111] 3.80E-14 3.88E+01 5.21E+01 8.83E-03 

GLNR-PSO [1111] 2.23E-16 2.31E+01 6.79E+01 7.51E-03 
 
 In the case of multi-modal functions, the GLN-PSO 
[1111] allows particles to search in different spaces before 
the system starts to converge. Each particle is pulled by 
two neighbor social terms that are lbest and nbest. Then, it 
has higher opportunity to find some good search spaces. 
Each particle searches space around gbest, lbest, and nbest 
when these terms are in difference positions. On the other 
hand, particle is faster to move when these forces are in the 
same direction. In the case of uni-modal functions, GLN-
PSO [1111] also performs best. It might be because all the 
social terms are heading in same direction. The system 
converges to the optimum faster than other versions.  
 For GLNR-PSO [1111], this version is better than 
GLN-PSO [1111] in Sphere, Rosenbrock, and Griewank. 
This may be that the GLNR-PSO allowed only 10 percent 
of whole population to have the ability to reinitialize and 
the three special particles are allowed to explore some 
other regions without negative impact on information shar-
ing and convergence’s ability of the whole population. 
However, this version does not perform well for the 
Rastrigin function. It is because this function’s characteris-
tic has many deep local optimums and position re-
initialization might reduce convergence’s ability of overall 
system. 
 For GLN-PSO version, it is still not conclusive that all 
acceleration constants equal to 1 are the best set of parame-
ters. Some researches may still be needed to find suitable 
values of acceleration constants. And, the result might be 
changed when some importance parameters such as Vmax, 
Xmax, and inertia weight are changed. 

7 CONCLUSION 

This paper introduces two new versions of particle swarm 
optimization algorithm. The first proposed version is GLN-
PSO. It combines three social structure terms to the veloc-
ity’s equation. The movement of each particle is forced by 
five terms that include inertia, cognitive, global social, lo-
cal social, and near neighbor social terms. The result of the 
experiments indicated that a full version of GLN-PSO out-
performs standard PSO and FDR-PSO for all the test func-
tions. The second proposed version is the non-
homogeneous version called GLNR-PSO. It is modified 
from GLN-PSO by allowing some particles to reinitialize 
theirs position. These modified particles have much 
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smaller Vmax than other particles in the population and are 
able to explore other spaces before they are pulled back by 
social terms. This version is an example of a non-
homogenous particle swarm optimization algorithm in the 
sense that some particles may have different parameters 
from the population. According to experimental results, 
performance of this version is better than GLN-PSO in 
Sphere, Rosenbrock, and Griewank functions. 
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