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ABSTRACT 

We try to find the best configuration of a stochastic dis-
crete-event simulation model when multiple criteria are 
simultaneously involved in the decision making process. 
We develop and investigate the performance of a genetic 
algorithm that makes use of an interval-based variant of the 
Prométhée MCDM-method to calculate the fitness of the 
chromosomes. We illustrate the performance of this algo-
rithm by applying it for the optimization of a simulation 
model for incident management in a call centre. 

1 INTRODUCTION 

While the optimization of simulation models is extensively 
studied in the literature, it is almost exclusively done from 
a single-response point of view. In reality however, one of-
ten encounters problems where the assessment of the be-
haviour of a system depends on multiple performance 
measures. In these cases, the solution that is perceived as 
the “best” solution will often turn out to be a compromise 
solution, which may differ significantly from the optimal 
solutions that would be found when following a single-
response approach. Different system configurations will 
typically improve some performance measures while dete-
riorating others. The selection of the best candidate (sys-
tem configuration) among a finite set of alternatives as-
sessed for a finite set of criteria (performance measures) is 
a typical multicriteria decision making problem.  

The algorithm that we propose in this paper combines 
a classical MCDM-method with a genetic algorithm, which 
enables us to use the algorithm for the selection of the best 
system configuration in a combinatorial optimization prob-
lem, where the set of candidates, although finite, is prohibi-
tively large.  

This paper is organized as follows. In section 2, we 
start with a general description of the studied optimization 
problem. In section 3, we give a brief overview of the 
Prométhée MCDM-method and its interval-based variant 

Prométhée-i.  In section 4, we propose a genetic algorithm 
that makes use of the Prométhée-i method to calculate the 
fitness of the chromosomes. In section 5, we give a brief 
description of a simplified call centre model. In section 6, 
we present the results of a series of experiments that made 
use of our genetic algorithm to optimize the configuration 
of the simulation model proposed in section 5. Finally, we 
present our conclusions. 
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2 DESCRIPTION OF THE OPTIMISATION 
PROBLEM 

Our aim is to find the best feasible configuration (accord-
ing to the Prométhée MCDM-method, which we describe 
in the following section) for a stochastic discrete-event 
simulator when the number of possible configurations is 
prohibitively large (i.e. evaluating all the candidates is im-
possible within the allocated time-budget).   

Every configuration of the simulator can be defined by 
a vector α = (x1, x2, ... , xm), where xi represents the setting 
for the ith input parameter of the simulator. The n corre-
sponding performance measures are defined by the vector 
β = (y1, y2, ..., yn) where β = f(α). We consider the form of 
the function f to be unknown, the values of the various per-
formance measures are estimated using simulation. A con-
figuration is considered feasible if a given set of con-
straints of the form g(α, β) ≥ c are simultaneously satisfied. 
Note that the feasibility of a configuration can in general 
only be verified after the execution of the simulation, as 
the feasibility constraints are functions of the performance 
measures.  

We define the best configuration αopt as the feasible 
configuration that would be selected by the Prométhée 
MCDM-method if we applied this method on the set of all 
possible feasible configurations. 
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3 THE PROMETHEE AND PROMETHEE-i 

MCDM-METHODS 

For a complete overview of the original Prométhée method 
we refer to Brans et al. (1986).  This MCDM-method is 
based on the assessment of a finite number of n candidates 
(configurations) on k criteria (performance measures). 

For each criterion a pairwise comparison (difference 
of assessment) of candidates a and b is translated on the 
interval [0,1] into a preference indicator Pj(a,b). One of six 
different types of preference indicator functions can be se-
lected. These Pj(a,b) are aggregated over the set of all cri-
teria by : 
 π(a,b)= Σjωj Pj(a,b),   
with ωj in [0,1] being the normalized weight of criterion j.   
Then we calculate for each candidate a the strength φ+(a) 
and the weakness φ-(a): 
 φ+(a)=(1/(n-1)).Σxπ(a,x),   
 φ-(a) =(1/(n-1)).Σxπ(x,a).  
Finally we calculate the net dominance φ(a): 
  φ(a) = φ+(a) - φ-(a).  
The best alternative is the one with the highest net domi-
nance. 

The Prométhée-i method is an interval-based variant 
of this method that can be used when the assessments are 
not crisp data, but are defined by intervals. Pastijn et al. 
(2003) showed how this method can be used for the selec-
tion of an optimal configuration amongst a limited number 
of candidates for the configuration of a stochastic discrete-
event simulator. The crisp assessments of Prométhée are 
then replaced by either the interquartile interval or a confi-
dence interval of the mean. They compared the application 
of the original Prométhée method using the mean values 
across replications with the Prométhée-i method and found 
that the use of Prométhée-i with interquartile intervals gen-
erally gives the best results (requiring the smallest number 
of replications for a correct ranking). The following para-
graph summarizes the method: 

When we have executed m replications of a stochastic 
discrete-event simulation, then we obtain for each alterna-
tive configuration m assessments for each criterion (per-
formance measure).  These m assessments can be repre-
sented for alternative a by an interval [al,au], which we can 
take either as the interquartile interval, or as a confidence 
interval on the mean. All the arithmetic of Prométhée is 
now extended, keeping intervals all along the calculations, 
by means of the following definitions: 
 [al,au] + [bl,bu] = [al+ bl , au+ bu],  
 [al,au] - [bl,bu] = [al- bu , au- bl]. 
We obtain consecutively: 
 Pj(a,b) = [Pj

l(a,b) , Pj
u(a,b) ], 

 π(a,b) = [πl(a,b)  , πu(a,b) ], 
where 
 πl(a,b) = Σjωj Pj

l(a,b) and 
          πu(a,b) = Σjωj Pj

u(a,b). 

Then we calculate 
 φ+(a) = [φ+l(a)  , φ+u(a)], 
 φ-(a) = [φ-l(a)  , φ-u(a)],          
where 
 φ+l(a) =(1/(n-1)).Σxπl(a,x), 
           φ+u(a) =(1/(n-1)).Σxπu(a,x) , 
 φ-l(a) =(1/(n-1)).Σxπl(x,a), 
           φ-u(a) =(1/(n-1)).Σxπu(x,a). 
And finally 
 φ(a) = φ+(a) - φ-(a) = [φl(a)  , φu(a) ]. 

In addition the original Prométhée method is applied 
by taking into account all the worst bounds of the assess-
ment intervals [al,au] and another time by taking all the 
best bounds of these assessment intervals [al,au] for all 
candidates on all criteria.  This yields for each candidate 
another interval [φl’(a)  , φu’(a) ] .   

Finally this Prométhée-i procedure returns a trapezoi-
dal fuzzy number  [φl(a)  , φl’(a)  , φu’(a) ,  φu(a) ]  for each 
candidate a. On these fuzzy numbers we apply the Yager 
operator Ψ (Yager, 1981), (Detyniecki et al., 2001), and 
the best candidate corresponds to the highest value for this 
Yager operator Ψ. 

4 THE GENETIC ALGORITHM 

For an in-depth discussion of genetic algorithms, we refer 
the reader to Goldberg (1989), Davis (1991), Chambers 
(1995) and Reeves (1997). The pseudo-code of our genetic 
algorithm is represented below: 

 
  Program Begin 
 Generate Random First Generation of Chromo-
somes; 

 While Stopping Criterion not reached 
    Begin 
      Current chromosome =  
     First Chromosome of Current Generation; 
   Repeat 
      Initialize Simulation Model with 
     Configuration Represented by 
     Current Chromosome; 
     Run m Replications of the Simulation; 
     Save Performance Measures; 
     Current Chromosome = 
     Next Chromosome of Current 
     Generation; 
   Until End Of Generation Reached 
    Rank Configurations of Current Genera-

tion with Prométhée-i; 
Modify Ranking to Promote Feasible 
Configurations; 
Attribute Fitness to Chromosomes; 

 Generate New Current Generation; 
   End 

 Program End  
The following paragraphs briefly describe the different fea-
tures and options that have been implemented in the differ-
ent parts of the code. 
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4.1 Chromosome representation 

The chromosomes in our algorithm are strings of bits, 
whose problem-dependent size varies depending on the 
number and value range of the input parameters. Every 
possible configuration α ∈ A has to be mapped into exactly 
one chromosome. The first generation is generated ran-
domly.  

4.2 Stopping Criterion 

The stopping criterion can be defined either as a maximum 
number of generations or as a maximum number of non-
improving iterations. 

4.3 The Simulation 

The replication length and the number of replications used 
are problem dependent and require some experience with 
the underlying simulation model. Our simulation models 
were implemented in ARENA, and we make use of com-
mon random numbers to reduce the variability of the dif-
ference between the performance measures for two con-
figurations.  

4.4 Prométhée-i ranking 

All configurations in the current generation are ranked us-
ing the Prométhée-i method based on the interquartile in-
tervals for the elements of β, the vector of performance 
measures. 

4.5 Promotion of feasible configurations 

This procedure verifies whether the performance measures 
of the configurations fulfill the set of i constraints gi(α, β) 
≥ ci. Every constraint has an associated weight. We define  
the feasibility score of a configuration as the sum of the 
weights of all the satisfied constraints.  

The final ranking of the configurations is now calcu-
lated as follows: all configurations are ranked by decreas-
ing feasibility score. All ties are broken in favour of the 
configuration with the highest Prométhée-i ranking. If no 
constraints were imposed, then the Prométhée-i ranking 
remains unmodified. 

4.6 Attribute Fitness 

The chromosomes are assigned a fitness value that is a 
(scalable) linear function of their final ranking. 

4.7 Creation of the next generation 

The algorithm makes use of elitism, crossover and muta-
tion. 

The elitism ensures that a specified number of the best 
chromosomes are copied into the next generation without 
modification. Moreover, the first-ranked chromosome is 
marked as immune to mutation. Not only does this guaran-
tee the survival of the fittest genes, it also removes the 
need to save the best configuration. 

One of three different crossover operators can be se-
lected: the classic one-point and two-point crossover, and 
uniform crossover. The uniform crossover copies a bit-
value from parents to offspring if both parents’ chromo-
somes agree on the value of the specified bit position. The 
bitvalue is randomly assigned if the parents disagree.  

One of two different parent-selection methods can be 
selected: the classic roulette-wheel selection and the less 
well-known stochastic universal selection (Baker 1987). 

Mutation takes place using the classical mutation op-
erator.  

Crossover and mutation rate can be fixed constants, or 
can be selected to increment/decrement linearly between an 
initial value and a final value.  

Whenever a new child chromosome has been gener-
ated, we verify whether it is unique within the current gen-
eration. If an identical chromosome already exists, we gen-
erate another child and replace the duplicate chromosome. 

5 THE SIMULATION MODEL AND THE 
PERFORMANCE MEASURES 

The stochastic discrete-event simulator used is a model of 
an incident management process of a call centre. A com-
plete description of this model can be found in Van Loock 
et al. (2003). We briefly summarize the key elements of 
this simulation below. Figure 1 gives a schematic overview 
of the process-flow of the model. 
The incidents are initiated by the customers of the call cen-
tre. These incidents are represented by the calls that arrive 
at the centre. These incoming calls follow a stochastic arri-
val pattern. The calls are subdivided into categories and 
subcategories, depending on the area of expertise required 
by the customer. Each category has a specified probability 
of occurrence, while the subcategories within a certain 
category are assumed to be equiprobable.  

The resources in our model are the dispatcher(s) and 
the system engineers. Each resource has its own weekly 
working schedule, an hourly cost (based on the number of 
skills known) and a FIFO queue associated with it. Incom-
ing calls will wait in the FIFO queue if the resource is 
busy. A call will be rejected (and leaves the system imme-
diately) if the time spent waiting in a FIFO queue exceeds 
a certain fixed threshold.  

Every system engineer has his own areas of expertise, 
which are specified in the skills matrix. Every line in the 
matrix represents a subcategory, while every column repre-
sents a system engineer.  

 



Van Utterbeeck, Van Loock and Pastijn 
 

 
     Figure 1: Call Centre Process Flow 

 
The process flow used in our model can be summa-

rized as follows. Every incoming call must pass through a 
dispatcher. The dispatcher will route the call to a system 
engineer whose area of expertise covers the category and 
subcategory of the call. If multiple system engineers are 
eligible, the dispatcher will route the call to the resource 
with the shortest queue. Ties are broken in favour of the 
resource located the most to the left in the skills matrix. 
The dispatching time (the time needed by the dispatcher to 
decide on the routing of the call) follows a stochastic dis-
tribution.  

The processing time (the time the system engineer 
needs to handle a call) follows a stochastic distribution, re-
gardless of the subcategory. For every processed call, there 
is a fixed probability that the customer is not completely 
satisfied with the assistance provided. These customers 
will call back after a stochastic delay. These subsequent 
rework calls will result in a decrease in the performance of 
the call centre. If the customer is satisfied with the assis-
tance provided, the call is disposed and leaves the system. 

We use four performance measures: waiting times in 
queues, resource utilization or productivity, service level 
and system cost. Waiting times in queues and resource 
utilization are average values obtained from standard 
ARENA statistics.  Service level is expressed as the per-
centage of arriving calls which are finally disposed after a 
successful handling by the available resources (and as a 
consequence were not ejected from the system).  The cost 
of a system engineer depends on his degree of polyvalence 
(number of skills).  The overall system cost is a stochastic 
entity due to the fact that the resources continue to work at 
the end of their daily schedule until all calls waiting in 
their queue at the end of the working day have been proc-
essed. 

6 EXPERIMENTAL RESULTS 

6.1 Problem description 

We want to determine the best combination of input pa-
rameters (the number of dispatchers, the number of system 
engineers and the elements of skills matrix) for our call 
centre simulation. For this experiment, we define the range 
for the of number of dispatchers as 1 to 4, the range for the 
number of system engineers as 1 to 10 and the size of the 
skills matrix as 6 rows (corresponding to the number of 
skills in our model) multiplied by the number of columns 
(corresponding to the number of system engineers). 

We will compare the results of 5 scenarios. The first 
scenario, labeled “MCDM” uses 4 criteria. The best con-
figuration will be determined using the Prométhée parame-
ters summarized in table 1 below. We refer to Brans et al. 
(1986) for a detailed description of the 6 types of prefer-
ence function and the associated parameters p and q.  

 
Table 1: Prométhée Parameters 

Performance 
Measure 

Weight Min/max Type Q P 

Productivity 6 Max 5 0.1 10 
Service Level 8 Max. 3 0 5 

Queue W. Time 3 Min. 6 0.5 0 
Cost 9 Min. 3 0 500 

 
We impose 4 equally important feasibility constraints, one 
for each performance measure, as summarized in table 2 
below. 
 

Table 2: Feasibility Constraints 
Performance 

Measure 
Weight Constraint 

Productivity 1 ≥ 50% 
Service Level 1 ≥ 90% 

Queue W. Time 1 ≤ 2 minutes 
Cost 1 ≤ 5000 Euro 

 
The other 4 scenarios will be used as a benchmark. The 
setup of these scenarios is completely identical to the first 
scenario, except for the fact that we only try to optimize 
one of the four performance measures (using the corre-
sponding parameters from table 1), while imposing the 
same 4 constraints. These scenarios are labeled “Max Pro-
ductivity”, “Max Service Level”, “Min Queue Waiting 
Time” and “Min Cost”.  

6.2 Chromosome Representation 

Our chromosome representation requires 2 bits to represent 
the number of dispatchers. The skills matrix has 6 rows 
(constant, equal to the number of skills in the model) and 1 
to 10 columns (variable, equal to the number of system en-
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gineers) and consists of elements that can be either true (if 
the engineer possesses the skill) or false. This requires 10 
groups of 6 bits. These 60 bits implicitly define the number 
of system engineers, as every group containing at least one 
bit set to true corresponds with a system engineer. This 
gives us a fixed chromosome length of 62 bits per configu-
ration. To obtain a unique one-to-one relationship between 
configurations and chromosomes, we need to apply a trans-
formation to the chromosomes: the 10 bit groups represent-
ing the engineers are ranked from left to right in decreasing 
order of the integer value corresponding with their 6-bit 
code. This ensures that “empty” bit groups (which are pre-
sent in configurations where the number of system engi-
neers is inferior to 10) are shifted to the right-hand side of 
the chromosome. 

6.3 Initialization 

The initialization phase is an important step in the algo-
rithm, as we have to ensure that the selected initial chro-
mosomes cover the entire search-space as uniformly as 
possible. Failure to do this might cause our algorithm to 
overlook potentially interesting portions of the search-
space. To ensure this property, every initial chromosome is 
generated in two steps: first we randomly determine the 
number of dispatchers and system engineers, and then we 
randomly generate as many 6-bit sequences as we have 
system engineers. At least one bit in these sequences has to 
be set to true. The chromosome is then right-filled with ze-
ros.  

6.4 Results 

Table 3 below contains the performance measures corre-
sponding to the optimal configurations found by our 5 sce-
narios.  

All numerical results were obtained using a stopping 
criterion of 200 generations or 15 non-improving genera-
tions, a generation size of 40, elitism for the top 4 chromo-
somes, a crossover-rate decreasing from 60% to 20% by 
1% decrements, a mutation rate increasing from 0.1% to 
0.5% by increments of 0.01% and a linear fitness decreas-
ing from 100 to 2.5 by 2.5 unit decrements. 

A comparison of the MCDM-scenario with the other 
four scenarios clearly shows that the configuration selected 
by this scenario represents a middle ground between the 
other four. If we focus e.g. on the productivity performance 
measure, we note that the MCDM-scenario returns the sec-
ond-best result. Max Productivity obviously returns the 
highest productivity, while in 2 out of the other 3 scenarios 
the productivity drops down to just above the imposed 
lower constraint of 50%.  

Our experiments indicate furthermore that our algo-
rithm is quite robust. Consecutive runs of the algorithm 
give very comparable results, as can be seen in table 4, 

which shows the mean, standard deviation, minimum and 
maximum values of the performance measures for the op-
timal configuration obtained during 15 consecutive runs of 
the MCDM-scenario. The  variability in the observed per-
formance measures is of the same order of magnitude as 
the variability that is observed when executing 15 replica-
tions of the same configuration. 

 
Table 3: Experimental Results 

  Productivity 
Service 
Level 

Queue 
W. Time  Cost 

MCDM 56,86 90,46 0,62 1449 

Max Productivity 64,6 90,09 0,51 2402 

Max Service Level 50,9 97,11 0,18 4080 
Min Queue Wait-

ing Time 50,7 96,73 0,18 3756 

Min Cost 54,71 90,12 0,52 1236 
 

Table 4: MCDM-scenario Results 
 Productivity Service 

Level 
Queue W. 

Time Cost 

mean 56,86 90,46 0,62 1448,80 

std dev 1,37 0,35 0,06 54,59 

min 54,87 90,05 0,49 1356,00 

max 58,95 91,16 0,68 1557,00 

 

7 CONCLUSIONS 

We have described a genetic algorithm that allows us to 
find the optimal configuration for a stochastic discrete-
event simulator when multiple performance measures have 
to be considered simultaneously. This type of algorithm 
may prove particularly interesting when the decision mak-
ing authority is shared by multiple decision makers with 
conflicting priorities. The optimal solutions found with this 
algorithm typically represent a middle ground solution that 
may be acceptable to all the involved parties. 

The multi-criteria approach relies on an interval-based 
variant of the Prométhée method, which is combined with 
a feasibility score to obtain the ranking of the chromo-
somes within a certain generation of the genetic algorithm.  
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