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ABSTRACT 

Shortened product life cycle resulting in an increasing 
number of obsolete products has caused growing environ-
mental concerns. In recent years, product recovery, which 
is one way of overcoming the waste problem, is becoming 
popular. To effectively implement product recovery or re-
furbishment activities, a reverse supply chain network de-
sign that can facilitate reverse flow of used products in an 
efficient way is required. In this paper, an approach to de-
sign a reverse supply chain network for product refurbish-
ment, incorporating multi-objective functions, multi-period 
planning horizons, and dealing with uncertainties is pre-
sented. This approach consists of mathematical and simula-
tion models; mathematical model in the form of mixed in-
teger programming is used to model the multi-objective, 
multi-period problem of network design, whereas simula-
tion models are used to capture uncertainties. Due to its 
complexities, spanning-tree based genetic algorithms are 
employed to find non-dominated solutions, and preferred 
non-dominated solutions are simulated under several sce-
narios of uncertainties to determine the best-preferred re-
verse supply chain network design. 

 
1   INTRODUCTION 
 
The product life cycle, especially for electronic products, 
has reduced significantly in recent years mainly due to 
rapid advances in technology. This situation results in in-
creasing number of obsolete products that caused environ-
mental concerns due to the rapidly depleting waste disposal 
capacity. 

Product recovery activity thus gained increasing im-
portance because it is considered a way of reducing waste. 
It aims to minimize the amount of total waste sent to land-
fills by recovering materials and parts from used or obso-
lete products by means of recycling and remanufacturing, 
including reuse of parts and products (Gungor and Gupta, 
1999). 

There are three main motivations underlying the im-
plementation of product recovery activities. First, the envi-

ronmental regulations enforced by governments in several 
countries charging manufacturers with responsibility for 
the entire product life cycle, including their safe disposal. 
Take-back obligations have been enacted or are underway 
for a number of product categories, including electronic 
equipment in the European Union and Japan, motor vehi-
cles in the European Union and Taiwan, and packaging 
materials in Germany. Secondly, there is the opportunity to 
recover  economic value in used products, and thirdly, the 
customers’ expectation of “green” products. It was re-
ported that customers are showing preference for environ-
mentally conscious firms and products and are willing to 
pay for a better environment (Vandermerwe and Oliff, 
1990).  

 
 

DESIGNING A REVERSE SUPPLY CHAIN NETWORK 
  FOR PRODUCT REFURBISHMENT 

 
 

Geok Hian Lim,  Ratih D. Kusumastuti and Rajesh Piplani  
 

School of Mechanical & Production Engineering 
Nanyang Technological University 
Singapore, SINGAPORE 639798 

   
   

There are two common ways of electronic product re-
covery, namely, remanufacturing and demanufacturing. 
Remanufacturing focuses on rebuilding product cores 
whereas demanufacturing focuses on disassembling prod-
ucts and recovering materials to reduce waste and extract 
economic value, wherever practicable.  

 However, the rapid change in technology and the 
rapid depreciation in the value of refurbished products 
limit their time-to-market. Therefore, a reverse supply 
chain network that can facilitate the reverse flow of used 
products from consumers to manufacturers in an efficient 
manner is required. Reverse supply chain may be described 
as the process of moving goods from their typical final des-
tination to the manufacturers, for the purpose of capturing 
value or proper disposal. 

A number of reverse supply chain models for product 
recovery have been developed in the past decades. 
Fleischmann et al. (1997) provided a review of the quanti-
tative models of reverse logistics.  Regarding the reverse 
supply chain network models for product recovery, most of 
the existing models dealt with single objective function 
(minimizing costs or maximizing net revenue), single pe-
riod and did not take into account of uncertainties (Shih, 
2001; Jayaraman et al., 2003). Several models incorporated 
multi-objective function, multi-period or uncertainties (Luo 
et al., 2001; Realff et al., 1999), but they did not consider 
the aforementioned characteristics altogether. 
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In this research, we developed an approach to design a 
reverse supply chain network for product refurbishment for 
product with modular design and multi-product configura-
tions. Besides maximizing net revenue, minimizing envi-
ronmental impacts in terms of minimizing energy con-
sumption and CO2 emission are also considered. The 
reason underlying the inclusion is that investments in 
“green” can be resource saving, waste eliminating and pro-
ductivity improving (Porter and van der Linde, 1995). Fur-
thermore, the main driver of product recovery activity is 
environmental concerns, and so it is natural to include 
minimizing environmental impacts as objective functions. 

To ensure that the network will be valid for several pe-
riod of time and can handle uncertain conditions, multi-
period planning horizons and uncertainties are also taken 
into account in the approach.   

This paper is organized as follows. The methodology 
is described in Section 2, followed by a numerical example 
in Section 3, and conclusions in Section 4.  

2     METHODOLOGY 

Mathematical model in the form of mixed integer pro-
gramming (MIP) is developed to model the multi-objective 
and multi-period reverse supply chain network problem, 
whereas simulation models of preferred non-dominated so-
lutions are built to capture uncertainties, see Figure 1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

2.1 Mathematical Model 
The reverse supply chain network is modelled in the form 
of a multi-objective MIP. The assumptions are as follows: 
 1) Product characteristics: Multi-product configura-

tions with modular (product) design and part 
commonalities. 

 2) Reverse flow process: Refurbishment process are 
assumed to be performed at three different facili-
ties namely collection centre for collecting used 
products, disassembly centre for disassembly, 
testing, grading and minor repair of used modules, 
and refurbishment centre for reassembly. The as-
sumed refurbishment process is the following: 
Used products are collected and disassembled into 
modules. Certain types of used modules along 
with newly manufactured modules are use to build 
new type of product configurations (refurbished 
products). It is assumed that new modules are 
used to replace outdated modules, and this as-
sumption is justified since upgrading is a usual 
practice in product refurbishment. Worn-out used 
modules are replaced by recovered used modules 
(it is assumed that portion of recoverable used 
modules is always equal or larger than the number 
required in satisfying demand). Any surplus is 
sold as spare parts. 

3) Multi-objective Functions: As mentioned, objec-
tives functions considered in the model are maxi-
mizing net revenue, minimizing energy consump-
tion and minimizing CO2 emission. Revenues 
considered in the model come from selling refur-
bished products, recovered used modules, and re-
cyclable used modules. As for the costs, they in-
clude transportation costs between facilities, 
processing costs at disassembly and reassembly 
centers, disposal costs of unrecyclable used mod-
ules, and fixed costs at all facilities. Fixed costs 
for new facilities comprised of opening and oper-
ating costs; opening costs apply at the opening pe-
riod whereas operating costs apply at the subse-
quent periods. For energy consumption, the ones 
considered are energy consumed during transpor-
tation between facilities and during processing at 
disassembly and refurbishment centers. As for the 
third objective function, CO2 emissions consid-
ered are vehicles’ exhaust emission during goods 
transportation between facilities. 

4) Multi-period: The model assumes multi-period 
planning horizon. Supply, demand, prices, costs 
and capacities of forward chain facilities may be 
varied across periods. However, both energy con-
sumption and CO2 emission are assumed to be 
constant across periods. Used products collected 
in each period are assumed to be either refur-
bished, recycled or disposed during that period. 
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Figure 1:  The Methodology 
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This assumption is justified because logically it is 
more profitable to recycle or dispose the goods at 
the end of the period rather than to carry them un-
til next period’s demand is received. 

5) Refurbishment Facilities: Refurbishment activities 
can be done in forward chain facilities or new re-
furbishment facilities. Due to its high starting 
fixed cost, once a new facility is opened, it has to 
be opened for the rest of the periods (new facili-
ties constraints). Collection, disassembly, testing 
and grading, and minor repair can be done in one 
location (integrated collection and disassembly 
center), and disassembly, testing and grading, mi-
nor repair and reassembly processes can also be 
done in one location (integrated disassembly and 
refurbishment center). However, it is assumed that 
only existing and new facilities in the next stage 
(distribution center or potential new disassembly 
center for integrated collection and disassembly 
center, and the same condition for integrated dis-
assembly and refurbishment center) are feasible 
for integrated refurbishment centers. Furthermore, 
if distribution/new disassembly centers are chosen 
as collection centers, disassembly center must also 
be assigned to the respective location and the 
same condition applies to the integration of disas-
sembly and refurbishment centers (integrated fa-
cilities constraints). 

6) Recyclability and Recoverability: Fraction of re-
cyclability and recoverability may be different for 
each module and period, but assumed to be the 
same throughout each period. It is assumed that 
for each type of used module in each period, per-
centage of recoverability is less than or equal to 
percentage of recyclability. 

 
The mathematical model can be described as follows: 
 
Maximize net revenue  
Minimize energy consumptions 
Minimize CO2 emissions  
 
Subject to:  
 
Balances of inflows and outflows in each facility 
Capacity limitations in each facility 
Integrated facilities constraints  
New facilities constraints  

 
The above model can be used to model network for prod-
uct refurbishment. It can also model the possibility of hav-
ing integrated facilities and the flexibility to open new fa-
cilities at any period in the multi-period planning horizon. 
However, these features (especially the last two con-
straints) make the model difficult to solve using conven-

tional method; therefore genetic algorithms are used to find 
the non-dominated solutions. 

2.2 Solving The Model and Selecting Preferred Non-
Dominated Solutions 

 Evolutionary techniques for multi-objective optimization 
are gaining attention due to their effectiveness and robust-
ness in searching for a set of global trade-off solutions 
(Tan et al., 2001). The most well known class of evolu-
tionary techniques is GA, which deals with a coding of the 
problem instead of decision variables, thus requires no 
domain knowledge, only the payoff information or fitness 
function (Goldberg, 1989).  
 The use of spanning tree based GA for solving some 
network problems was introduced by Gen & Cheng (1997, 
2000). They used Prufer number to represent a candidate 
solution to the problem and developed feasibility criteria of 
Prufer number to be decoded into a spanning tree, and they 
also developed its encoding and decoding procedures. 
Zhou and Gen (1996) noted that the use of Prufer number 
is more suitable for encoding a spanning tree. It is shown 
that it takes only m + n - 2 digit numbers to uniquely repre-
sent a network with m origins and n destinations, where 
each digit is an integer between 1 and m + n inclusive.  
 Syarif et al. (2002) encoded the network problem as a 
chromosome with a combination of binary and Prufer sub-
strings; binary substrings represent opened/closed facilities 
whereas Prufer substrings represent the distribution pattern 
between facilities. Since, infeasible chromosomes can be 
produced from generation or genetic operations due to in-
feasible Prufer substrings or unsatisfied constraints; they 
improved the method by developing feasibility check and 
repair procedure for infeasible binary and Prufer sub-
strings.  
 Here, we adopted their coding principle, but made 
modification to accommodate multi-product flow and 
multi-period planning horizon. Each period is represented 
by seven substrings; the first three substrings are binary 
digits representing feasible locations of collection, disas-
sembly and refurbishment centers, each with a length 
equals to the number of feasible locations in each stage. 
The subsequent four substrings are Prufer numbers repre-
senting multi-product flows in each period between first 
market-collection centre, collection centre-disassembly 
centre, disassembly centre-recovery centre and recovery-
centre-second market. 
 We also modified the feasibility and checking proce-
dures to accommodate the abovementioned characteristics. 
We also added two feasibility checking and repair proce-
dures related to last two constraints of the model. Further-
more, the decoding procedure of Gen and Cheng (2000) is 
also modified to incorporate those characteristics and con-
straints. 
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 One-point crossover, inverse and displacement muta-
tion operations are employed as genetic operators, whereas 
Pareto ranking-based fitness assignment method (Fonseca 
and Fleming, 1998) is adopted to determine the individ-
ual’s fitness value. In this fitness assignment method, re-
stricted fitness sharing is performed to avoid premature 
convergence. The selection strategy, on the other hand, is a 
combination of (µ+χ) with roulette wheel selection. Lastly, 
the non-dominated solutions obtained in a given generation 
are preserved separately from the population pool. The 
overall procedure can be summarized as follows: 
Step 1:  Set GA parameters’ values. 

Set the population size (pop-size), maximum num-
ber of generation (max-gen), crossover rate (Pc) 
and mutation rate (Pm). 

Step 2:  Generate initial population P(t). 
Generate each individual, check its feasibility, and 
repair it if infeasible. Repeat this procedure pop-
size times. 

Step 3:  Evaluate all individuals.  
Decode each individual, and calculate its objective 
function values. 

Step 4:  Record all non-dominated solutions. 
Find all non-dominated solutions that exist in ini-
tial population and record it in separate set E(t). 

Step 5:  Perform crossover operation. 
Do one-point crossover operation on P(t) with Pc, 
check the feasibility of the resulted offspring and 
repair them if infeasible. 

Step 6:  Perform mutation operation. 
Do displacement and inverse mutation operations 
(randomly chosen) on P(t) with Pm, check the fea-
sibility of the resulted offspring and repair them if 
infeasible. 

Step 7:  Evaluate all offspring O(t). 
Decode all offspring and calculate their objective 
function values. 

Step 8:  Update the non-dominated solution set E(t). 
Update E(t) with O(t). 

Step 9: Assign fitness values to P(t) and O(t). 
Step 10: Select new population P(t+1) from P(t) and O(t). 

Select the best pop-size chromosomes available 
from P(t) and O(t), if there are not pop-size differ-
ent chromosomes available, the vacant pool is 
filled by using roulette wheel selection. 

Step 11: Terminating condition. 
Increase the generation number, if it is less than or 
equal to max-gen, go to step 5, otherwise stop. 

Step 12: Output the non-dominated solutions set. 
 
 Only selected non-dominated solutions are tested in 
uncertain conditions using simulation models. The selec-
tion is done by determining the weights of all criteria, 
which carried out by the decision makers (DMs) using 
paired-comparisons, and then rank and score the solutions 

based on those criteria, and finally select solutions with the 
highest total score. The total score of each solution is the 
weighted sum of criteria’s scores. The number of selected 
solutions is decided by the DMs according to the time and 
budget available for the project. 

2.3  Simulation Model and Selecting Best-Preferred 
Solution 

To deal with uncertainties, selected (preferred) solutions 
are simulated under several scenarios of uncertain condi-
tions. Firstly, the simulation models of selected solutions 
(the network designs and their allocations) are developed. 
Secondly, scenarios of uncertainties are formed by setting 
some parameters e.g. supply and demand varied stochasti-
cally in each period. Finally, the simulation models are run 
under those scenarios. For each scenario, the averaged 
value of each criterion of the selected solutions are ranked 
and scored. The score of each solution in each scenario is 
the weighted sum of all criteria’s scores. The overall score 
of each solution is the sum of all scenarios’ scores. The so-
lution with the highest overall score is the best-preferred 
design. 
 
3 A NUMERICAL EXAMPLE 
 
The above methodology is applied to a case study concern-
ing computer refurbishment. The potential network con-
sists of 1 primary market location, 5 feasible locations of 
collection centers, 3 feasible locations of   disassembly 
center, 3 feasible locations of recovery centers, and 3 sec-
ondary market locations. As mentioned, integrated recov-
ery facilities can only be assigned to existing or new loca-
tions. Therefore, there will be 7 feasible locations for 
collection centers and 5 feasible locations for disassembly 
centers, see Figure 2.  
 Four types of used PC CPUs (with 17 types of mod-
ules) are refurbished into two types of refurbished PC 
CPUs, and the length of each period is one year with a 
planning horizon of 5 years.  
  In this example, it is assumed that DMs think: maxi-
mizing net revenue (Objective 1) is weakly more important 
than minimizing energy consumption (Objective 2), maxi-
mizing net revenue is weakly more important than mini-
mizing CO2 emission (Objective 3), and minimizing en-
ergy consumption is as important as minimizing CO2 
emission.  
 Therefore,  the  criteria weights of the three objective 
functions respectively are 0.6, 0.2, and 0.2. Furthermore, it 
is assumed that a score is given as an inverse of rank and 
only 3 solutions are tested using simulation models. 
 The st-GA is developed using C language. Here, the st-
GA is run with pop-size = 500, max-gen = 5000, Pc = 0.4, 
and Pm = 0.2. The program is run 10 times, and 24 non-
dominated solutions are found. 
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 Based on the above paired-comparisons, three solu-
tions with the highest total scores are selected (see Table 
1). In descending orders, they are Solutions 8, 3, and 2 
(Figures 3 & 4). The first two solutions have the same net-
work design but different allocations of goods between fa-
cilities.  
 Simulation models of these solutions are developed 
using ARENA 7.01. The simulation models are run (10 
replications each) under 8 scenarios of uncertainties. Each 
scenario is a combination of variability in supply of used 
PC CPUs (low and high), demand of refurbished PC CPUs 
(low and high), and recoverability of used modules (low 
and high). 
 Overall scores of preferred solutions are calculated 
based on the simulation output, and the results show that 
Solution 2 is the best-preferred solution (see Table 2). 
Thus, even though Solutions 8 and 3 have the highest total 
score in previous stage, Solution 2 has the highest overall 
score in the simulation stage, indicating that among the 
three of them, it has the best performance under uncertain-
ties. 
 
 
 
 
 
 

Table 1: 
Total Scores of Non-
Dominated Solutions 

 Table 2: 
Overall Scores of 

Preferred Solutions 
 

ND Solutions Total 
score 

 Preferred 
Solutions 

Scenario  Total  
Score 

Solution 8 18.80   Solution 8 1 2.2 
Solution 3 18.80    2 1.4 
Solution 2 18.40    3 2.2 
Solution 9 18.20    4 2.2 
Solution 20 17.50    5 1.6 
Solution 14 16.30    6 1.8 
Solution 4 15.90    7 2.2 
Solution 13 15.80    8 2.8 
Solution 15 15.70  Overall Score 16.4 
Solution 12 13.80   Solution 3 1 2 
Solution 6 13.20    2 2.2 
Solution 11 12.80    3 1.4 
Solution 5 12.60    4 1.4 
Solution 18 11.10    5 1.8 
Solution 22 10.50    6 2 
Solution 19 9.50    7 1.8 
Solution 17 9.40    8 1.6 
Solution 16 8.90  Overall Score 14.2 
Solution 10 8.60  Solution 2 1 1.8 
Solution 7 8.40    2 2.4 
Solution 21 8.00    3 2.4 
Solution 23 6.20    4 2.4 
Solution 1 6.00    5 2.6 
Solution 24 5.60    6 2.2 
     7 2 
     8 1.6 
   Overall Score 17.4 
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4  CONCLUSIONS 
 
 An approach to designing reverse supply chain for 
product refurbishment, with modular design and multi- 
product configurations is presented. The method considers 
the possibility of having integrated recovery facilities and 
the flexibility of opening new facility at any period in the 
planning horizon. It also incorporates multi-objective func-
tions, multi-period planning horizons, and uncertainties, so 
that the resulted network is more applicable in the real 
world. 
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