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ABSTRACT 

This paper considers the problem of simultaneously deter-
mining the operation allocation and material handling sys-
tem selection in an FMS environment with multiple per-
formance objectives. A multi-objective 0-1 integer 
programming model is developed which selects the ma-
chines, assigns the operations of the part types to the se-
lected machines, and assigns the material handling equip-
ment to transport the parts, as well as to handle the part at a 
given machine. The first objective function minimizes the 
total costs of the manufacturing operations, material han-
dling operations, and machine setups; the second objective 
function maximizes the part–equipment “compatibility.” 
The “compatibility” is a measure which is computed as a 
function of the capabilities of the equipment, and the tech-
nological characteristics of the parts. A genetic algorithm-
based solution approach is presented and the solution re-
sults are discussed. Some computational aspects of the 
model, which pertain to the design of the genetic algo-
rithm, are also discussed.     

1 INTRODUCTION 

The key issue in manufacturing operations is how to pro-
duce high quality products at low costs to satisfy customer 
demands in the shortest time possible.   Flexible manufac-
turing systems (FMS) are acclaimed for their ability to 
produce a diverse range of parts efficiently, and for their  
capability to respond quickly to changes in demand and re-
sources (Gupta and Goyal, 1989). Therefore, the develop-
ment of FMS is considered one of the most important de-
velopments in industrial automation in recent times.  
 Operation allocation (OA) in FMS refers to the as-
signment of operations of the part types to the machines 
according to the operation sequences prescribed by the 
process plans for each part type, and subject to constraints 
operating on the system. Considering the integrating func-
tion of material handling within manufacturing operations, 

this planning decision is related to the material handling 
operations in the FMS in as much as the requirements of 
part movement must be expressly addressed. 
 Material handling (MH) accounts for 30-75% of the 
total cost of a product, and an efficient material handling 
system (MHS) can potentially reduce the manufacturing 
operation costs by 15-30% (Sule, 1994). These figures un-
derscore the importance of MH costs as an element in im-
proving the cost structure of manufacturing operations.  
The determination of an MH system involves both the se-
lection of suitable MH equipment and the assignment of 
MH operations to each individual piece of equipment.  
Hence, material handling system selection (MHSS) can be 
defined as the selection of MH equipment capable of per-
forming the required  MH operations within the constraints 
operating on the manufacturing system.   
 Given the significance of  material handling in FMS,  
an inadequately designed MHS may indeed interfere se-
verely with the overall performance of the system and lead 
to substantial losses in productivity and operational effi-
ciency, and to longer lead times. Thus, to avoid such pit-
falls, MHS design has to be integrated into the overall de-
sign of the manufacturing system.  
 The paper is organized as follows. Section 2 presents a 
brief review of the related literature. In Section 3, the 
mathematical model is presented. In section 4 a genetic al-
gorithm-based solution procedure is proposed, a numerical 
example is given to demonstrate the application of the 
model, and the computational results are discussed. Fi-
nally, some observations and conclusions are summarized 
in section 5.    
 

2 RELATED WORKS 

This section contains a brief review of the recent literature 
pertaining to genetic algorithm-based approaches to opera-
tion allocation and material handling system selection 
problem.  
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 Joines et al. (1996) used a genetic algorithm to solve 
an integer programming model of the design of a cellular 
manufacturing system. The formulation is a unique repre-
sentation scheme since it reduces the size of the cell forma-
tion problem and increases the scale of the problem that 
can be solved. This approach also improves the design 
flexibility by allowing a variety of evaluations of functions 
to be employed and by incorporating design constraints 
during formation.  Gravel et al. (1998) presented a genetic 
approach to find efficient solutions to the problem of form-
ing manufacturing cells for products having multiple rout-
ings. The method seeks to generate an efficient set of solu-
tions which the decision maker may choose by evaluating 
the  consequences for each of the objectives. 
 Sinriech and Meir (1998) suggested a genetic algo-
rithm solution approach to solve the process selection and 
part cell assignment problem. The study assumed a produc-
tion environment where each part has several process 
plans, each manifested by a required set of tools. A mixed 
integer linear program was developed to minimize the pro-
duction cost. Morad and Zalzala (1999) proposed a genetic 
algorithm to solve the integrated process planning and 
scheduling problem as a multi-objective weighted-sum op-
timization model intended to minimize makespan,  the total 
rejects produced and the total cost of production. Kumar 
and Shanker (2000) used genetic algorithm to solve a 
mixed integer programming model of part type selection 
and machine loading problems in the production planning 
of flexible manufacturing systems.  Tiwari and Vidyarthi 
(2000) developed a genetic algorithm-based heuristic to 
solve the machine loading problem of a random type FMS. 
The objectives of the loading problems were to minimize 
the system unbalance and to maximize the throughput sat-
isfying the technological constraints on the system. 
 Rai et al. (2002) applied a fuzzy goal-programming 
concept to model the problem of machine-tool selection 
and operation allocation with the objective of minimizing 
the total cost of manufacturing operations, material han-
dling and set-up. A genetic algorithm (GA)-based approach 
was used to solve this model. Moon et al. (2002) formu-
lated a 0-1 integer programming model of an integrated 
machine tool selection and operation sequencing, and used 
a genetic algorithm approach to solve the model. The 
model determines machine visiting sequences for all part 
types, such that the total production time is minimized and 
the workloads among machine tools are balanced.  
 Yang and Wu (2002) developed a genetic algorithm-
based method to obtain the solution to a mixed-integer 
programming model of the part type selection and machine 
loading problems by minimizing the difference between 
maximum and minimum workloads of all the machine re-
sources. 
 Given the complexity of the MHSS problem, only a 
few researchers have addressed the material handling prob-
lem using GA-based algorithms. Lim (1997) considered 

the problem of determining cyclic schedules for a material 
handling hoist in the printed-circuit-board (PCB) electro-
plating line by using a genetic algorithm-based approach. 
The objective was to determine an optimal simple-cycle 
schedule of the hoist which maximizes the line throughput 
rate. 
 Sinriech and Samakh (1999) developed a genetic algo-
rithm approach for the pickup/delivery station location 
problem in MH systems that have a segmented flow topol-
ogy (SFT), considering the intradepartmental flows in the 
problem formulation.  
 Aiello et al. (2002) proposed an integrated approach to 
the facilities and MH system design, and used a genetic al-
gorithm approach to find the solution which minimizes the 
MH cost.  
 Paulo et al. (2002) presented a new framework for the 
joint consideration of the operation allocation and the ma-
terial handling system selection problems. Two 0-1 integer 
programming models were proposed, one for OA, and the 
second for MHSS, and solved sequentially. Lashkari et al. 
(2004) extended the work of Paulo et al. (2002) by devel-
oping modified 0-1 integer programming models that were 
solved iteratively to obtain a locally optimal solution. The 
current work extends and modifies the previous works by 
Paulo et al. (2002) and Lashkari et al. (2004), by integrat-
ing the OA and MHSS models into a unified model in an 
attempt to generate an overall optimal  solution.  

3 MATHEMATICAL MODEL 

In this section, a single, integrated model of OA and 
MHSS is presented. The model extends and modifies the 
works of Paulo et al. (2002) and Lashkari et al. (2004). 
However, the structural changes introduced in the previous 
two models are substantial, resulting in a model which in 
fact represents a new formulation of the problem.  
 The complete statement of the 0-1 integer program-
ming model is as follows: 
P(OA-MHSS):  
1) Minimize Total Cost 
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2) Maximize Compatibility 
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 There are two objectives associated with the model: 
equation (1) minimizes the costs related to the manufactur-
ing operations, set ups, and MH operations; equation (2) 
maximizes the “compatibility” of the part types and the 
MH equipment assigned to handle the parts.  
 The constraint equation (3) is to ensure that each part 
type is processed under a single process plan. The con-
straint equation (4) ensures that for a given (ip), each op-
eration of the selected process plan is assigned to only one 
of the available machines. The constraint equation (5) is to 
ensure that, once a machine is selected for operation s of 
(ip), then all the MH operation- sub-operation combina-
tions (hĥ) corresponding to (sj)  have to be performed. The 
MH operation- sub-operations (hĥ) refer to the MH activi-
ties at a machine when the part arrives for a manufacturing 
operation. The operation h refers to the main MH operation 
in relation to the manufacturing operation s, whereas the 
operation ĥ refers to a secondary MH operation that nor-
mally follows the main MH operation, depending on the 

characteristics of the part type in question. The MH opera-
tion- sub-operations are defined below: 

 
     Operations h             Sub-operations ĥ 
L = loading/unloading   O = orientation change 
H = handling/rehandling  P = position change 
T = transportation   Q = quantity change 
I = inspection     S = sequence change 
S = storage/retrieval   T = time change 
       N = no change 
 
The constraint equation (6) states that each (hĥ) combina-
tion corresponding to operation s of (ip), to be performed 
at machine j, has to be assigned to only one piece of MH 
equipment which is available and able to perform that 
combination. The constraint equation (7) ensures that, if 
machine j is selected, then at least one operation has to be 
allocated to that machine. The constraint equation (8) 
guarantees that the allocated operations do not burden a se-
lected machine beyond its capacity. The constraint equa-
tion (9) specifies that a piece of MH equipment e may be 
chosen only after another piece of equipment êhas been 
selected. The constraint equation (10) is to ensure that once 
a piece of MH equipment is selected, then at least one MH 
combination (hĥ) has to be assigned to it. The constraint 
equation (11) states that the allocated tasks do not load a 
selected piece of MH equipment beyond its capacity. Fi-
nally, The constraint equation (12)  imposes the binary re-
strictions on the variables.  
 The parameter Cei in the objective function equation 
(2) is proposed by Paulo et al. (2002) as a measure of the 
“compatibility” of a piece of MH equipment and a part 
type. The three rating factors (Whĥe, Wet and Ŵit) are largely 
subjective, and relate the key product variables, as pro-
posed by Ayres (1988), to the MH equipment and the part 
type. For details, see Paulo et al. (2002). 

4 EXPERIMENTS AND DISCUSSION 

4.1 A numerical Example 

The following numerical example is taken from Paulo et 
al. (2002), and is solved using genetic algorithm. Due to 
space limitation, however, only selected portions of the 
problem data are presented. The full set of data is available 
upon request.  
 It is assumed that, over the planning period, there are i 
= 1,…,14 part types to be processed on j=1,…,10 machines 
each with a capacity of 57,600 seconds. Table 1 presents 
the data for part type 7 which is used here as an example. 
Part type 7 has P(7) = 2 process plans. The capabilities of 
the machines to perform the operations of this part type are 
as follows. Under process plan p = 1, this part type has 
S(71) = 2 operations with the indices  s g {1,2}, whereas 
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under process plan p = 2, it has S(72) = 2 operations, with 
indices  s g {1,2}. Operation s = 1 of process plan p = 1 for 
part type 7 can be completed on any of the machines j g  
J711 = {1,6,7,9,10}, and operation s = 2 on any of the ma-
chines j g J712 = {3,7,8}. The demand for part type 7 as 
well as the machine setup costs are also listed in Table 1. 
 
Table 1: Manufacturing operations time tsj(ip) and costs 
OCsj(ip), part type demands di and machine setup costs SCj 

Part Types, i   
7 Machine 

Process Plan, p Set-up 
1 2 Cost 

Operation, s Operation, s SCj Machine, 
j 1 2 1 2   

10    7 
1 $15     $11  120 

    11   
2     $14    230 

  7    
3   $3     450 

      9 
4       $18  60 

       
5        180 

8       
6 $11        220 

5 10    
7 $3  $6     310 

  11   8 
8   $10    $7  90 

9   11   
9 $14    $18    260 

9   9   
10 $11    $11    550 

Demand, di 90  
 

 The MH requirements are derived from the data in Ta-
ble 1, and they explain the sequence of MH operation-sub 
operations  required when a part arrives at a machine for a 
manufacturing operation to be performed.  For example, a 
part arriving at machine may need (un)Load/None and 
Transportation/None, implying that, at that machine, the 
part is loaded with no specific requirements, and is then 
transported to the next machine. The data also specify what 
MH equipment are capable of  performing these MH com-
binations.  
 It is assumed that the information about the MH cost 
Tijhĥe for each part type, for various (hĥ) combinations and 
for various MH equipment e with respect to each machine 
is available. The times needed by MH equipment to per-
form the various operation/sub-operation combinations are 
also available.   
 Table 2 shows the relative weight of the product vari-
able t on all part types. From this table, it can be seen that 
each part has different ratings corresponding to its charac-
teristics, with scales ranging from 1 to 5. For  part type 7 

for example, it is noted that the part is rated 1 on complex-
ity and precision which means that this part exhibits a very 
low level of these two key variables. In other words, part 
type 7 comprises a low measure of the geometrical or di-
mensional information embodied in it and is not held to 
high tolerance in manufacture. The very high value for di-
versity indicates that the corresponding part family has a 
large number of parts. It also can be inferred that this part 
type is manufactured in large-size batches. The very low 
rating for mass/linear dimension indicates that the physical 
size or dimension of the part is small.  

In this example, there are nine different types of MH 
equipment which are available to perform the MH  

 
Table 2: The Ŵit values for the numerical example 

Part, 
i Complexity Precision Diversity 

Batch  
Size 

Mass/linear  
Dimension 

1 2 2 3 2 2 
2 5 5 1 3 4 
3 3 3 1 2 3 
4 4 2 2 4 4 
5 2 3 4 1 3 
6 3 2 1 2 2 
7 1 1 5 5 1 
8 4 3 2 1 2 
9 2 1 2 1 3 
10 2 1 3 3 3 
11 2 2 2 4 1 
12 4 5 1 2 3 
13 4 2 2 5 2 
14 2 3 2 2 4 

 
operation/sub-operation combinations, each with a capacity 
of 57,600 seconds during the planning period. Table 3 
shows the relative weight of the product variable t on mate-
rial handling equipment e. The rating scales range from 0 
to 5 for the material handling equipment against the 
choices of manufacturing technology.  

 
Table 3: The Wet values for the numerical example 

Equipment, 
e 

Com-
plexity 

Preci-
sion 

Diver-
sity 

Batch  
Size 

Mass/linear  
Dimension 

1.Light-
load robot 4 4 2 4 1 
2.Heavy-
load robot 4 4 2 4 4 
3. Human 5 4 4 2 2 
4. Powered 
hand truck 1 1 4 3 3 
5.Forklift 
truck 1 1 4 4 5 
6.Roller 
belt con-
veyor 2 2 4 3 4 
7. Light belt 
conveyor 2 2 4 3 2 
8. AGV 4 4 1 1 2 
9. AS/RS 4 4 5 3 3 
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4.2 Multi-objective Genetic Algorithms (MOGA) 

In this section, we present a multi-objective genetic algo-
rithm for the solution of the mathematical model presented 
in section 3. The algorithm will generate the part-process 
plans, operation, machine and MH assignments for the 
model.  

4.2.1 Real-coded MOGAs 

MOGA codes the optimization problem in the model as a 
chromosome by using real number-coded strings having 
o’s to 9’s where each gene corresponds to an operation al-
location and MH selection sequence possibility in which 
one part is assigned. The structure of the gene is repre-
sented in Table 4. The sequence denotes the formation of 
operation allocation and MH system selection. In this table, 
Seq. No. is the sequence number, O1 is manufacturing op-
eration 1, and O2 is manufacturing operation 2. In the MH 
Selection section, the three characters refer to the MH op-
eration h, the MH sub- operation ĥ, and the manufacturing 
operation s, respectively, as explained earlier. For example, 
LO2 denotes load/unload-orientation change for manufac-
turing operation s=2.   

 
Table 4: Operation allocation and material handling system 
selection sequence possibility 

OA MH Selection Seq. 
   No. 

 O1 O2 LO1 TN1 IO1 LO2 TN2 IP2 SN2 

1 1 3 1 4 3 1 4 3 9 

2 1 3 1 4 3 1 4 6 9 
. 
. 

    .                

24300                   

 
 The table shows a few of the possible sequences for  
operation allocation and material handling system selection 
for part 7. Sequence number 1 is taken as an example. The 
first manufacturing operation will be performed on ma-
chine 1 and the second operation on machine 3. The “load-
ing/unloading-orientation” combination for manufacturing 
operation 1 will be carried out using MH equipment 1 (i.e., 
light-load robot). “Transportation-none” will be performed 
by MH equipment 4 (i.e., powered hand truck) and the “in-
spection-orientation” combination by MH equipment 3 
(i.e., human.) “Loading/unloading-orientation” for manu-
facturing operation 2 is performed by light-load robot; 
“transportation” by powered hand truck; “inspection-
position” by human; and “storage/retrieval” combination 
by AS/RS. Similar interpretations can be made for other 
sequences.  Table 5 represents the number of possible se-
quences for each part type and the number of digits for the 
numerical example described in section 4.1   

 Figure 1 illustrates the chromosome design in MOGA 
for part type 7. The length of the chromosome is the sum 
of the digits required to represent the maximum number of 
sequences.  Hence, the length of the chromosome for the 
numerical example is 80. Figure 1 only depicts the genes 
representation of part 7 corresponding to the operation al-
location and material handling system selection sequence 
number 2; however, the general design of the structure  is 
the same for other part types, and similar interpretations 
can be drawn for other gene representations. 

 
Table 5: Number of possible sequences for f each part and 
number of digits 

Part Maximum Sequence Number Number of Digits 
1 309150 6 
2 282150 6 
3 316500 6 
4 681075 6 
5 372825 6 
6 810000 6 
7 24300 5 
8 660825 6 
9 28350 5 
10 214650 6 
11 168300 6 
12 247725 6 
13 810000 6 
14 9450 4 

TOTAL 80 

 
  
 

 

 

 
 
 
Figure 1: The chromosome representation for MOGA for 
part type 7 
 

4.2.2 Fitness Function 

Genetic algorithms have been largely applied to single-
objective optimization problems. In order to apply genetic 
algorithms to a multi-objective optimization problem, the 
multiple objective functions may be combined into a single  
“fitness” function.   
 The weighted sum (WS) approach has been success-
fully applied to multi-objective GAs by Murata and Ishibu-
chi (1996), Gravel et al. (1998) and Morad and Zalzala 
(1999), and will be used her in order to obtain the set of so-
lutions. This approach assigns weights to each objective 
function and combines the weighted objectives into a sin-
gle objective function. Hence, the objective function of the 
model P(OA-MHSS) becomes: 

Part Type 7 
 

0 0 0 0 2 
 
OA & MHSS possible sequence  #2 
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  Min f = w1F1 – w2F2       (13) 
where: 
wi  = weight i, i = 1, 2 
F1 = objective function 1 (total costs) 
F2  = objective function 2 (compatibility)  

4.2.3 Constraints 

Violation of constraints in a GA is handled in two ways. 
The first method prescribes the chromosomes to be  de-
signed in such a way that constraints are not violated when 
new solutions are generated. This method increases the 
computational time in generating new solutions but it al-
ways generates feasible solutions. The second method con-
structs a ‘penalty function’  to penalizes the fitness of a so-
lution that violates a certain constraint. This method has 
been the most popular for constrained optimization by GA, 
but it increases the search time of the algorithm. Consider-
ing the structure of constraints (8) and (11) in our model, 
the penalty function method is the more suitable technique.  
These two constraints are converted into penalty functions 
and combined with the objective function, as explained be-
low. 

4.2.3.1 Machine Time Penalty Function (P1) 

Machine time penalty comes into effect when operation al-
location time on a machine exceeds the available time on 
that machine, i.e. when constraint (8) is violated. The pen-
alty for machine time (P) is given by: 
   0      if MA ≥ ML 
 P1=                               (14) 
   K (MA – ML) if MA < ML 
where: 
K  =  a positive constant 
MA =  machine availability 
ML  =  machine load    

4.2.3.2 Equipment Time Penalty Function (P2) 

Equipment time penalty is the penalty for violating equa-
tion 11, i.e. when the total operation time of material han-
dling equipment exceeds its capacity. The penalty for 
equipment time (P) is given by: 
   0      if EA ≥ EL 
 P2 =                 (15) 
   K (EA – EL)  if EA < EL 
where: 
K  =  a positive constant 
EA =  machine availability 
EL  =  machine load   
Both penalty functions are merged with the main objective 
function to form the fitness function of a chromosome: 
 Fitness = f + P1 + P2                    (16) 

4.2.4 GA Operators 

4.2.4.1 Selection Strategy 

Reproduction is usually the first operator applied to a 
population. Reproduction selects good strings in a popula-
tion and forms a mating pool. Both stochastic and determi-
nistic sampling mechanisms are used in this study.   
 The best known stochastic method is Holland’s pro-
portionate selection or roulette wheel selection.  The basic 
idea is to determine selection probability (also called sur-
vival probability) for each chromosome proportional to the 
fitness value. In addition, the elitist strategy is employed to 
specify that the best individual always survives intact into 
the next generation so as to enable the GA to converge 
faster. In the absence of such a strategy, it is possible for 
the best chromosome to disappear due to sampling error, 
crossover or mutation. 

4.2.4.2 Crossover Operator 

Blended crossover (BLX-α ) is applied in this MOGA ap-
plication. This operator produces offspring on a segment 
defined by two parents and a user specified parameter α  
as described below. 

Offspring 1 = ү.Parent1 + (1-ү).Parent2  
Offspring 2 = (1-ү).Parent1 + ү.Parent2  
ү = (1 + 2α).RAND1 - α 

where offspring 1and offspring 2 denote encoded design 
variables of the offspring, members of the new population, 
and parent 1,2 denote the parents, a mated pair of the old 
generation. The random number, RAND1, is a uniform 
random number in the range [0-1].  

4.2.4.3 Mutation Operator 

The mutation operator alters the gene of a selected chro-
mosome by a random change with a probability equal to 
the mutation rate (pm). A number between 0 and 1 is gen-
erated at random. If the random number is less than equal 
to pm, then the mutation occurs. The mutation operator 
simply replaces a gene (i.e., a real parameter value) in a 
chromosome with another number randomly chosen within 
the bounds of the parameter value.  
 

4.2.5 GA Procedures 

The algorithm operates by calling several procedures, 
which can be summarized as follows: 

1. Procedure GENERATE: The initial population is 
randomly generated. The string for the population 
is described in Figure 2. 
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2. Procedure EVALUATION: The fitness value of 
each string recorded in the population is evalu-
ated. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Figure 2: Flow chart of real coded GA 

 

3. Procedure SELECTION/REPRODUCTION: A 
new population is created by selecting good 
strings among the old population and forming a 
mating pool. 

4. Procedure CROSSOVER: Two new string records 
are created by randomly selecting two strings 
from the current population and mating their 
string structures. 

5. Procedure MUTATION: A new string record is 
created by altering the value of gene or genes in 
one randomly selected string structure. 

4.2.6 Computational Experience 

The GA was coded in Java language program, and the 
computations were carried out using an Intel Pentium 4, 
1.7 GHz computer, 256 MB RAM. The program contains 
about 1600 lines.   
 A summary of the results obtained by GA is shown in 
Table 6, and the portion of the results for part type 7 (cor-
responding to the case of W1=1, W2=2) is presented in Ta-
ble 7. Part type 7 will be processed under process plan 1. 
Manufacturing operation 1 is assigned to machine 7, and  
manufacturing operation 2 is assigned to machine 3.  

Table 6: Results obtained by GA using the weighted sum 
method 

GA’s General Pa-
rameters W1 W2 

Total 

Cost Compatibility 

  1 1 $ 15,007 322 

Population Size: 220 1 20 $ 15,657 332  

Crossover Probability: 0.95 1 40 $ 16,500 342.2 

Mutation Probability: 0.2 1 60 $ 17,059 349.3 

Maximum Generation: 100 1 80 $ 18,561 364 

  1 100 $ 19,492 370.5  

 
 
 
Table 7: The model solution corresponding to first experi-
ment  

Part Type 7 

Plan 
Manuf.. 

Operation Machine 
MH Opera-

tions Equipment 

1 7 
(un)Load/ 
None 

Light-load 
robot 

   

 
Inspection /  
Orientation 

Roller  belt  
conveyor 

    

 
Transportation / 
 Orientation 

 
Light belt  
conveyor 

2 3 
(un)Load/ 
Orientation Human 

   
Inspection/  
Position 

 
Roller belt  
conveyor 

   

 
Transportation /  
None 

Power hand 
truck 

1 

    S&R/None AS/RS 

 
 During the first manufacturing operation, a light-load 
robot performs the MH operation load/unload;  the part is 
then inspected, requiring an orientation change and using a 
roller belt conveyor. Next, the part is  transported to the 
next machine, using a light belt conveyor, and its  orienta-
tion changed. At machine 3 to perform the next manufac-
turing operation, the part requires the MH operation 
load/unload,  using a human. It is then inspected and its 
position changed using a roller belt conveyor; next, the 
part is transported, on a power hand truck, to the storage 
area using the AS/RS equipment.  
 Figure 3 present the objective function values from 
GA. It should be noted that genetic algorithm-based heuris-
tics do not guarantee truly optimal solutions, and the selec-
tion of a “best” solution is left to the decision maker to 
choose a solution, from among the set of Pareto- optimal 
solutions, that strikes an acceptable balance between the 
two objective function values. However, experience has 
shown that, in general, the computation of a well-diverse 

S T A R T 

Call Procedure 
GENERATE 

Input the prob-
lem data and 

GA parameter 

Call Procedure 
EVALUATION  
Call Procedure 
SELECTION 
Call Procedure 
CROSSOVER 
Call Procedure 
MUTATION 

Increase number of 
generation by one 

Create Report for 
this generation 

Generation =  
Max Genera-

tion ? 

YES 

NO 

Create Final Report  
and 

Call Procedure 
SUMMARY 

TERMINATE 
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set of Pareto-optimal solutions is usually time consuming 
(Laumanns et al., 2002).  
 

310

320

330

340
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360

37 0

380

$14,800 $15,800 $16,800 $17 ,800 $18,800 $19,800

Total Cost

C
o
m
p
a
ti
b
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Figure 3: Solutions obtained using the weighted-sum 
method 

 

5 CONCLUSIONS 

In this paper, a mathematical model is developed to simul-
taneously solve the problems of operation allocation and 
material handling system selection. The purpose of this 
multi-objective model is to determine: (i) the allocation of 
the different operations of the part types to machines so as 
to minimize the total costs of operations, machine set-up 
and material handling; and (ii) the assignment of the MH 
equipment to the MH operation/sub-operations correspond-
ing to the operation allocations (part, plan, operation, ma-
chine) so as to maximize the compatibility of MH equip-
ment with part type.  The solutions to the model are 
generated using a genetic algorithm-based approach. From 
the range of solutions generated by the algorithm, the deci-
sion maker may choose the one that achieves an acceptable 
balance between the two objective function values.  
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APPENDIX: NOTATION 

Indices and sets 
i Є {1,2,…,n}  part types 
p Є {1,2,…P(i)} process plans for part type i 
(ip)    a part type i, process plan p combination 
s Є {1,2,…S(ip)} operations of part type i under process  
    plan p 
h Є {1,2,…H} major MH operations 

ĥ Є {1,2,… }Ĥ  MH sub-operations 

(hĥ)    a MH operation-sub operation combina-
tion 

e Є Ejhĥ {1,2,..,E} set of MH equipment that can handle the 
combination (hĥ) at machine j  

j Є Jips {1,2,..,m} set of machines that can perform opera-
tion s of (ip) 

(sj)    an operation s,  machine j combination 
 
Parameters 
bj   time available on machine j (units of time) 
OCsj (ip)   cost of performing operation s of (ip) on ma-

chine j ($) 
di     demand for part type i (units)  
SCj   setup cost of machine j ($) 
tsj (ip)  time for performing operation s of (ip) on 

machine j (units of time) 
Tijhĥe  MH cost of performing the (hĥ) combination 

for part type i on machine j using MH equip-
ment e ($) 

Le   time available on MH equipment e (units of 
time) 

lhĥe    time for MH equipment e to perform the (hĥ) 
combination (units of time) 

Ŵit     relative weight of the product variable t on 
part type i 

Wet    relative weight of the product variable t on 
MH equipment e 

Whĥe    relative degree of the capability of MH 
equipment e to perform the (hĥ) combination 

Cei    compatibility between MH equipment e and 
part type i 

 
Decision Variables 
Z(ip) ε {1,0}  = 1 if part type i is processed under proc-

ess plan p; 0 otherwise 
Ysj(ip) ε {1,0} = 1 if machine j is used to perform opera-

tion s of (ip); 0 otherwise 
Asjhĥ(ip) ε {1,0} = 1 if (ip) requires the combination (hĥ) 

at machine j where manufacturing opera-
tion s is performed; 0 otherwise 

Xsjhĥe(ip) ε {1,0} = 1 if the combination (hĥ) requires MH 
equipment e at machine j where manu-
facturing operation s of (ip) is per-
formed; 0 otherwise 

Mj ε {1,0}  = 1 if machine j is selected; 0 otherwise 
De ε {1,0}  = 1 if MH equipment e is selected; 0 oth-

erwise 
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