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Abstract:   A commonly recognised problem in defence is defending against incoming missile threats, and 
determining how a variety of platforms and assets must work collaboratively in order achieve mission 
success.

A particular problem is the optimal placement of sensors and surface-to-air missile launchers around a high-
value asset. The primary objective in this instance would be to defend the high-value asset with the greatest 
likelihood of success. The missile defence systems considered include sensors and missile launchers, which 
are used to detect and interdict enemy missiles, respectively.

Our problem is to optimise the arrangement of a sensor and missile launcher to defend a high-value asset 
against threats from any possible direction. We devise an objective function which measures the probability 
of failing to intercept at all possible intercept points across all possible paths of an incoming missile. We use a 
simple simulation to calculate the objective score for a given arrangement of sensors and missile launchers. We 
optimise the arrangement using a Nelder-Mead optimisation method, which calls the simulator with candidate 
arrangements. Nelder-Mead was used because it does not require derivatives, is easy to implement and can 
handle multidimensional non-linear optimisation.

We tested our optimiser and simulator using 6 different test cases where we optimised the missile launcher 
position for various threat scenarios. Some of the resulting optimal missile launcher positions were closer 
to the high value asset than we anticipated. We found, for example, that if the threat was entirely from one 
direction then the optimal missile launcher position is far from the asset it is protecting. But if even a small 
probability of attack, such as 0.0001, occurs from the opposite direction then the missile launcher would move 
back closer to the asset.
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University of South Australia’s Mathematics Clinic for 2021. The Mathematics Clinic is a year-long sponsored 
research project undertaken by final-year undergraduates studying mathematics, and offers in-depth research 
experience in real world mathematics where the project is posed from industry and supported by academic 
advisors.

Keywords:  Missile defence, facility location, optimisation

24th International Congress on Modelling and Simulation, Sydney, NSW, Australia, 5 to 10 December 2021 
mssanz.org.au/modsim2021

848



N. Azzollini et al., Optimal location of launchers in a missile defence system

1 INTRODUCTION

Missile defence systems are used to defend high-value assets against incoming threats. The performance of a
missile defence system will depend on the location of the sensing systems and defending missile launchers.
Our specific problem is to optimise the arrangement of threat sensors and surface-to-air missile launchers
around a single high-value asset.

Australia’s Defence Science and Technology Group (DSTG) has high-fidelity models for simulating missile
defence scenarios. Our focus was to develop an objective function and optimisation method that could be used
with these models to optimise the arrangement of sensors and missile launchers.

In this paper we:

1. describe our mathematical model of a simple missile defence system (Section 2)

2. formulate an objective function that quantifies the performance of an arrangement of sensors and missile
launchers around a high value asset (Section 3)

3. describe our approach to simulating and optimising the arrangements (Section 4)

4. give example results for various defence scenarios (Section 5).

2 PROBLEM FORMULATION

We consider a simple problem with one high value asset to be protected against one threat missile. The missile
defence system has one sensor for detecting threat missiles, and one missile launcher that can launch multiple
defending missiles at the threat.

Figure 1. Plan view of a missile defence
scenario

Figure 1 shows an example. The HVU is a High Value Unit such
as a defended cargo vessel. The sensor is typically a radar, used
to detect and track enemy missiles. The green region around the
sensor indicates the sensor range. Effectors are devices used to
intercept enemy threat missiles; in our case we consider surface-
to-air missiles launched from a fixed location. The yellow cir-
cle represents the effector range. The missile system defends
against a single threat missile that targets the HVU.

We do not know exactly which direction the threat will come
from. Our arrangement of the sensor and effector must be able
to defend against threats from any possible direction.

The sequence of events in a missile defence scenario would be:
initial detection of the incoming threat missile by the sensor, es-
tablishing a track on the threat, predicting where effectors can
intercept the threat, launching effectors, assessing the engage-
ment, and re-engaging if required.

For our simple models, we will assume that:

• we can model defence scenarios in 2 dimensions, looking down from above

• the HVU, sensor and effector launcher do not move during any engagement

• the threat missile travels in a straight line and at constant speed towards the HVU

• we can model the unknown approach direction of the threat missile by directions with given probabilities

• the sensor has a large range (100 km) and can detect threats from any direction

• effectors travel in a straight line at constant speed towards the threat

• we launch effectors one at a time

• if an effector misses the threat, there is a short delay before we can launch another effector.

These assumptions may appear to limit the relevance of our results to real-world missile defence scenarios.
However, our optimisation approach will be general enough that it can work with higher fidelity models.
Further work could be implemented with parameter values such as altitude and radar horizon to make the
problem 3 dimensional and hence more relevant.
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Figure 2. Example missile defence scenario with 8 possible approach paths

3 SCORING METRIC

In order to determine the optimal arrangement of the sensor and effector launcher about the HVU, we must
be able to quantify the performance of any possible arrangement. We have developed a scoring metric that
calculates the probability of failing to neutralise an enemy missile. First, we consider that the incoming enemy
missile could approach along any one of N possible paths, each with a given probability. Figure 2 shows an
example with eight possible approach paths, with probabilities p1, p2, ..., p8.

Figure 3 is an engagement timeline that shows the sequence of events that would occur if the missile were
to approach along a particular path. In this particular case, the effector and the sensor are both located at the
HVU. The horizontal axis represents time, while the vertical axis represents the distance the threat is from the
HVU (and sensor and effector).

The threat missile is first detected when t = 0, at the detection range of the sensor. The first attempted intercept
occurs at the effector range, though this is not always possible if the sensor range is close to the effector range.
Each attempted intercept has a probability of failure f = 0.4. If we miss, there is a time delay between the
failed first intercept and the second effector launch. At the second intercept point, the accumulated probability
of failure is 0.42 = 0.16.

To evaluate the number of possible intercepts along a path, the process continues until the threat missile reaches
the ‘Collateral Damage Range’—any intercept beyond this point will inflict significant damage on the HVU—
or flies beyond the effector range. We can see that the probability of failure at the fifth and final intercept
attempt is 0.45 = 0.01024. This is the probability that we miss all possible intercept attempts along the path.

Ultimately, we want to minimise the probability of failing to intercept at all possible intercept points, across
all possible paths. This is calculated using the objective function

Pfail =
∑
i

pif
ni . (1)

where pi is the probability that the threat missile is on path i, with
∑

i pi = 1; f is the probability of a single
defending effector failing to neutralise the threat missile; and ni is the number of intercept attempts possible
along path i. The probability of successfully defending the asset is

Psuccess = 1− Pfail. (2)

The objective value given by (1) will have step changes in it as the number ni of possible intercepts on a
path i changes from one integer to another. A smooth objective function will be easier to optimise, and so
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Figure 3. Engagement timeline

we let ni be a continuous variable. In the example shown in Figure 3, the threat enters the collateral damage
range somewhere between attempt 5 and attempt 6. We use interpolation to determine n1 ≈ 5.19 and so the
probability of failure is 0.45.19 ≈ 0.00860.

4 SIMULATING AND OPTIMISING ARRANGEMENTS

Algorithm 1: Simulator psuedocode
Input: Arrangement
Output: Score and visualisation
read arrangement data;
s← 0;
foreach path i do

calculate the threat missile path;
calculate the first intercept;
ni ← 0;
while intercept is possible do

ni ← ni + 1;
move the threat to the intercept point;
calculate the next intercept point;

end
interpolate ni beyond the last intercept;
s← s+ pif

ni ;
end
write s;
create visualisation;

We developed a simple simulator that, for a given ar-
rangement of sensors and effector launchers, can calculate
the number of possible intercepts along each possible ap-
proach path, and hence calculate the score for that arrange-
ment (see Algorithm 1). With multiple effector launchers,
the simulator chooses the launcher that will give the earli-
est intercept time for the next launch.

Ultimately, our simple simulator can be replaced with
DTSG’s high-fidelity simulators.

For the experiments described in the next section, the sen-
sor range is considerably larger than the effector range, so
we fix the sensor at the HVU location (0, 0) and search
for an effector launcher position (x, y) that minimises the
score. The optimiser objective function calls the simula-
tor with a candidate launcher position, and the simulator
returns the corresponding score.

The optimisation method must work without having ac-
cess to derivatives of the objective function, and should
not require too many objective function evaluations since
each objective function evaluation requires a simulation.

We used the scipy.optimize.minimize function from the Python SciPy package (SciPy 2021) to
optimise the arrangement, using the Nelder-Mead solver.

5 EXAMPLES

To test our optimiser and simulator, we generated a series of test cases for which we defined the expected
output, and compared this to the output from the software.

Table 1 shows optimal effector launcher locations for various scenarios with one HVU, a single sensor centred
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on the HVU, and a single effector launcher. The sensor has a range of 100 km. Threat missiles approach at
400 m/s. Defending missiles travel at 600 m/s and have a range of 40 km. These values were suggested by
our DSTG Liaisons. Each scenario has a single threat with specified possible threat paths, with the angles (in
degrees clockwise from north) and probabilities shown in the table. These threat paths were chosen for each
scenario to test specific aspects of the optimisation. For example, with threats coming from north, south, east
and west with equal probability, we expect the effector to be located at the HVU. Effector launcher positions
are in metres relative to the HVU. Each attempt to intercept a threat has a 0.4 probability of failure. The last
column is the number of simulations performed by the Nelder-Mead algorithm to find the optimal launcher
position.

Table 1. Optimal locations for a single effector launcher

Scenario Threat paths (θ, P ) Launcher position Score Simulations

1 (0, 0.25), (90, 0.25), (180, 0.25),
(270, 0.25)

(0, 0) 8.32× 10−4 112

2 (0, 1) (-9, 33 341) 4.93× 10−5 136
3 (0, 0.9), (180, 0.1) (-19, 1022) 6.66× 10−4 133
4 (0, 0.9999), (180, 0.0001) (-26, 33 341) 7.69× 10−5 141
5 (0, 0.5), (90, 0.5) (248, 237) 7.66× 10−4 113
6 (190, 0.1), (210, 0.3), (280, 0.3),

(290, 0.1), (350, 0.2)
(-84, 27) 8.14× 10−4 115

Figure 4 shows the optimal arrangement for each of the scenarios in Table 1. In each diagram, the HVU and
sensor are located at the centre, with the effector launcher positioned where the optimiser suggests. The sensor
range is indicated by the green ring, the effector range by the yellow ring, and the threat paths by the red lines.
The intercept points are depicted by the black points.

In Scenario 1 the threat directions are uniformly spaced around the HVU. The optimal effector position found
by the optimiser is at the HVU, as we would expect based on the symmetry of the problem. The optimal
arrangement is shown in Figure 4(a).

Scenario 2 has only one threat direction. We expected the effector to be shifted towards the approach direction
so that the effector range covers as much of the approach path as possible. Perhaps surprisingly, the effector
is moved far enough north that the northern effector range almost coincides with the sensor range, as seen in
Figure 4(b). This means that the first intercept cannot occur at the effector range, because it takes time for an
effector to fly out after detection. The launcher fires effectors at the threat as it approaches from the north,
then turns around and fires effectors at the threat as it recedes to the south. For Scenario 2 we also plotted the
sequence of effector launcher locations generated by the Nelder-Mead method (Figure 5). The path starts at
(0, 0), and finishes at (−9, 33 341).
Scenario 3 has approach probabilities p(0◦) = 0.9 and p(180◦) = 0.1. The effector position shifts north by
1 km, which is not as much as we expected as we initially thought the effector would be shifted further north
like Scenario 2. But shifting the effector further north would reduce the number of possible intercepts to the
south, resulting in an increased probability of failure for that path. In this scenario, there are 8.27 intercepts
on the northern approach, and 6.76 intercepts on the southern approach, as shown in Figure 4(c). As the path
probability on θ = 0◦ approaches 1, the effector will be positioned further in this direction. Scenario 4 verifies
this. As we increase p(0◦) to 0.9999, the optimal effector position is shifted to 17 km north of the HVU, as
shown in Figure 4(d).

Scenario 5 has equally likely approach paths from the north and east. Although we might expect the effector
to move in the north-east direction, the optimal effector location is close to the HVU (Figure 4(e)). We see
this result because if we move the effector north, the number of intercepts on the eastern approach path will be
reduced. Similarly, if we move the effector east then the number of intercepts on the northern approach path
will be reduced. Moving the effector diagonally north-east would reduce the number of intercepts on both
paths. The optimal launcher position is about (250, 250). The scores for (0, 0) and (500, 500) are both worse.

Finally, Scenario 6 was devised in order to investigate how the effector position changes when the threats
approach from a variety of different bearings, all to the west. Figure 4(f) shows how the effector moves only
84 metres west.
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(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

(d) Scenario 4 (e) Scenario 5 (f) Scenario 6

Figure 4. Optimised effector locations. The sensor range is indicated by the green ring, the effector range by
the yellow ring, and the threat paths by the red lines. The intercept points are depicted by the black points.

Figure 5. Scenario 2 Nelder-Mead optimisation path
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The number of simulations required to find an optimal solution will be important if the time taken to do a
high-fidelity simulation will be significant. The Nelder-Mead method takes between 112 and 141 simulations
to find an optimal solution.

6 CONCLUSION AND FURTHER WORK

We have developed an objective function that can be used to optimise the locations of sensors and missile
launchers around a high-value asset in a missile defence system. We assume that we do not know the path that
an incoming threat missile will use to approach the target, but we do know the probability of every possible
approach path. The objective function value to be minimised is the probability that an incoming threat missile
will be missed by every successive intercept attempt.

We have also developed a simple simulation that can calculate the objective score for any specified arrangement
of threat approach paths, sensors and missile launchers.

Our objective function is a continuous function of sensor and missile launcher positions so that it can be
optimised using popular optimisation tools. We have demonstrated the optimisation using the Nelder-Mead
method from the Python SciPy library.

Our work so far has considered simple 2-dimensional models. In reality, the range at which an incoming threat
missile can be detected depends on its altitude—‘sea-skimming’ threat missiles cannot be detected until they
are relatively close to the sensor. We could model this without resorting to a full 3-dimensional model by
having different detection ranges for different approach paths.

Ultimately, our optimisation approach could be used with DSTG’s high-fidelity simulators to help optimise
the performance of missile defence systems.
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