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Abstract:  We discuss several regression-based methods for simulation meta-modelling and illustrate these 
methods using combat simulator data. Since the use of common random numbers (CRNs) as a variance 
reduction technique induces correlations in the outputs generated by different simulation inputs, it is crucial 
to accommodate the possibility of heterogeneity, heteroskedasticity, and correlation when building meta-
models. Furthermore, mainstream combat simulators produces a variety of output types, including 
continuous, binary, and count data. While extensive work has been done towards the development of 
simulation meta-modelling methods for continuous outputs, the meta-modelling of discrete, binary, and count 
data seems to be less understood.

To this end, we consider the use of estimated generalized least squares (EGLS), finite mixture generalized 
linear models (GLMs), and heteroskedastic binary regression, which specifically incorporate correlation, het-
eroskedasticity, and heterogeneity, for meta-modelling with continuous, binary, and count output data. EGLS 
extends the ordinary least squares (OLS) model by allowing the errors to have a non-diagonal covariance 
matrix. Finite mixture GLMs capture the possible heterogeneity in regression intercepts and slopes due to 
the possible existence of latent clusters in the simulation inputs. Heteroskedastic binary regression is a latent 
variable approach for binary data which jointly models the conditional mean and the scale parameter of the 
distribution of the latent error term.

An analysis of combat simulator data using the aforementioned methods shows that there is significant het-
erogeneity in the base mean levels and in the marginal effects of individual input variables for continuous 
and binary output data. Furthermore, likelihood ratio tests suggest an improved fit t o t he data when using 
heteroskedastic probit and logistic regression models over their homoskedastic counterparts. However, the 
analysis of count output data points to severe underdispersion in the data rather than heterogeneity in the sense 
of the finite mixture G LMs. This also suggests that approaches which jointly model the mean and dispersion 
may be viable alternatives.
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1 INTRODUCTION

Simulation studies are commonly used to inform recommendations and support decision-making on competing
outputs simulated under comparable conditions. Simulators used for this purpose, are executed for a total ofm
replications across n experiment design points, and generates a number of output metrics. The m replications
in the simulation are designed to capture the stochastic variability in simulation conditions. As m and n
increase, simulation analysis can become enormously time-consuming. Depending on the configuration of
design points, the run time of a single replication of mainstream combat simulators can span from hours to
days. The use of meta-models to obtain a functional approximation of the relationship between the black-box
simulation input (design points) and output performance responses (metrics) addresses this issue. Common
random numbers (CRNs) are typically used as a variance-reduction technique for simulation experiments. In
this approach the same pseudo-random number stream is used for each of the design points to subject all
scenarios to the same statistical environment, allowing for a fair comparison between distinct design points.
It is well-known however that the use of CRNs in simulation experiments induces correlation in the outputs
generated by distinct design points (see e.g. Kleijnen, 1992; Gill et al., 2018), thereby complicating analyses
using ordinary least squares (OLS) regression or generalized linear models (GLMs).

A further complication lies in the nature of the output which may yield metrics which are categorical, contin-
uous, and discrete. Meta-modelling approaches for continuous output metrics have been extensively covered
in the literature (see e.g. Chen et al., 2009, for a review of these methods). However, there appears to be very
little attention paid to simulation meta-modelling with binary, discrete, or count output metrics. Meckesheimer
et al. (2001) tackles the problem of meta-modelling with piecewise-continuous responses, where breaks are
dictated by some other discrete output, but their approach does not accommodate the meta-modelling of strictly
binary, discrete, or count outputs. Furthermore, Gill et al. (2018) assumed that metrics followed a continuous
distribution to enable the use of OLS regression, but such an approach for modelling binary, discrete, or count
outputs is problematic.

This paper contributes to the simulation meta-modelling literature by discussing a framework for a regression-
based meta-modelling of simulations with continuous, binary, and count outputs. The methods discussed in
this paper also account for possible heterogeneity and correlation induced by the use of CRNs. Specifically, we
illustrate the application of estimated generalized least squares (EGLS) (Kleijnen, 1992), finite mixture GLMs
(Wedel and DeSarbo, 1995), and heteroskedastic binary regression (Alvarez and Brehm, 1995) and compare
these results to those obtained from the usual OLS or GLM models. By taking into account any possible
heteroskedasticity, heterogeneity, or correlation in the data, we obtain more statistically reliable estimates and
inferences. These can then be used for other purposes such as sensitivity analysis, design point comparison,
and ranking of alternatives, especially in defence-related situations. We prefer regression-based approaches
since these structures are more interpretable compared to other competing methods.

The rest of the paper is organized as follows. Section 2 briefly discusses the EGLS, finite mixture GLM, and
heteroskedastic binary regression methods. We then apply these methods in Section 3 using actual combat
simulator data. Section 4 synthesizes the findings in the paper.

2 DISCUSSION OF REGRESSION-BASED APPROACHES

2.1 Estimated Generalized Least Squares

In this section, we review the EGLS method proposed by Kleijnen (1992). We adopt the following notation
in this section. For each design point i, i = 1, . . . , n, we let xi = (1, xi,1, . . . , xi,L)> denote the regressors
(possibly including interaction or higher-order terms) and {wi;r}mr=1 the m realizations of the continuous
output variable wi. Let w̄ = (w̄1, . . . , w̄n)>, where w̄i = 1

m

∑m
r=1 wi;r, be the vector of simulation output

averages. Let X be the n × (L + 1) matrix whose ith row is x>i . We denote by β = (β0, β1, . . . , βL)> the
unknown regression coefficients and by ε = (ε1, . . . , εn)> the vector of error terms.

The generalized least squares (GLS) framework extends the OLS model by accommodating possible het-
eroskedasticity and correlated errors. The GLS model assumes the linear input-output relationship wi =
x>i β + εi, and assumes that Var[ε|X] = Σ, where Σ = [σi,j ] is a usually unknown n × n positive semi-
definite matrix with possibly unequal main diagonal entries and nonzero off-diagonal entries. The GLS esti-
mator of β is given by β̂GLS = (X>Σ−1X)−1X>Σ−1w̄, which can be calculated if Σ is known. Replicated
measurements of the output allow us to estimate Σ via the sample covariance matrix Σ̂ = [σ̂i,j ], where
σ̂i,j = 1

m−1
∑m
r=1(wi;r − w̄i)(wj;r − w̄j), for i, j = 1, . . . , n. Using the estimated covariance matrix in the

828



Garces et al., Regression-based approaches for simulation meta-modelling...

GLS estimator yields the EGLS estimator of β, which is given by

β̂EGLS = (X>Σ̃−1X)−1X>Σ̃−1w̄ (1)

where Σ̃ = Σ̂/m and Σ̂ = [σ̂i,j ]. This process requires m > n since Σ̂ is singular otherwise (Kleijnen, 2015).

Confidence intervals for the regression coefficients based on the EGLS estimator can be constructed via jack-
knifing. Jackknifing involves, for each r = 1, . . . ,m, calculating the EGLS estimator β̂J;(−r) after removing
the rth replication. For each regression coefficient β`, ` = 0, 1, . . . , L, we calculate the m pseudo-values
J`;r = mβ̂EGLS` − (m− 1)β̂

J;(−r)
` (where β̂EGLS` is the `th element of the EGLS estimator given in (1)), for

r = 1, . . . ,m and calculate the average pseudo-value J̄` = 1
mJ`;r. Assuming that the pseudo-values are i.i.d.

with a normal distribution, the endpoints of the 100(1− α)% jackknifed confidence interval for β` are

J̄` ± t1−α2 ,m−1 × S
J
` , where SJ` =

√∑m
r=1(J`;r − J̄`)2
m(m− 1)

,

and t1−α2 ,m−1 is the critical t-value with left-tail probability 1− α
2 andm−1 degrees of freedom. Since EGLS

estimation is performed after removing one replication at a time, jackknifing requiresm−1 > n to ensure that
all the estimated covariance matrices are nonsingular. Alternatively, one can construct confidence intervals
using the asymptotic covariance matrix of the EGLS estimator, but this is problematic for small sample sizes.
Bootstrapping procedures can also be used to construct confidence intervals (see e.g. Kleijnen, 2015, Section
3.5), but we do not consider this method in this analysis.

2.2 Finite Mixture Generalized Linear Models

For non-continuous output metrics, the notion of “correlation” is not as well-defined as it is the case for contin-
uous outputs. As such, even with access to replicated output measurements for each design point, it becomes
difficult to assess how much correlation is induced by CRNs. Thus, in the case of non-continuous outputs, we
instead consider the possibility of heterogeneity induced by CRNs. Here, we define heterogeneity as the situ-
ation where there may exist smaller unknown subsets or latent classes of the unique design points where the
base effect (i.e. regression intercept) or the main effect of input variables (i.e. regression coefficients/slopes)
may vary across the latent classes. This heterogeneity can be modelled using a finite mixture of GLMs as pro-
posed by Wedel and DeSarbo (1995). This approach accommodates any output type, e.g. continuous, binary,
and count output, that can be modelled using a member of the exponential family.

Finite mixture GLMs are specified as follows. Taking S to be the number of latent classes, for each unique
design point i we define the vector ui = (ui,1, . . . , ui,S), where ui,s = 1 if design point i belongs to class
s, s = 1, . . . , S. For each i, the ui,s’s are assumed to be i.i.d. multinomial with probabilities αs, i.e. ui
has joint probability mass function p(ui;α) =

∏S
s=1 α

ui,s
s , where α = (α1, . . . , αS). We note that the

ui’s are unobserved and the αs’s satisfy
∑S
s=1 αs = 1 and αs ≥ 0 for all s. Conditional on design point i

belonging to latent class s, the output wi has conditional probability density/mass function f (s)i (w;βs), which
belongs to the exponential family of distributions. Here, βs = (β0,s, β1,s, . . . , βL,s)

> are the regression
parameters for latent class s. The conditional mean µ(s)

i = E[wi|xi, ui,s] is related to the linear predictor via
g(µ

(s)
i ) = x>i βs, where g is an appropriate link function. Let β = (β>1 , . . . ,β

>
S ) be the collection of all

regression parameters across all latent classes. The conditional probability density/mass function of wi given
ui is therefore fi(w|ui;β) =

∏S
s=1[f

(s)
i (w;βs)]

ui,s . The joint probability density function of wi and ui is
p(wi,ui;α,β) = fi(wi|ui;β)p(ui;α), so the complete log-likelihood function is given by

Lc(α,β) = ln
n∏
i=1

p(wi,ui;α,β) =
n∑
i=1

S∑
s=1

ui,s ln f
(s)
i (wi;βs) +

n∑
i=1

S∑
s=1

ui,s lnαs. (2)

Since the likelihood (2) involves unobserved data ui, the maximum likelihood estimation of the parameters is
carried out using the EM algorithm (Dempster et al., 1977; Wedel and DeSarbo, 1995).

The number of classes S must also be estimated from the data. In this analysis, we estimate a finite mixture
model for each value of S in a pre-specified set of values and choose the S which maximizes the log-likelihood
or minimizes the AIC or the BIC. The estimation of finite mixture models in this analysis is implemented using
the flexmix package in R (Leisch, 2004).
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Figure 1. Visual summaries of the output metrics: number of red infantry defeated (RID), mission success
(MS), and number of red vehicles damaged (RVD)

2.3 Heteroskedastic Binary Regression via Latent Variables

We first consider the heteroskedastic probit model. Suppose we observe a binary outcome wi, which we
assume is given by wi = 1(y∗i > 0), where 1(·) is the indicator function and y∗i is a latent variable of the form
y∗i = x>i β + εi. Let pi = Pr(wi = 1|xi) = E[wi|xi]. Instead of assuming that the εi’s are i.i.d. N(0, 1), we
assume εi ∼ N(0, σ2

i ), reflecting heteroskedasticity in the latent error term. The heteroskedastic probit model
is specified as

Φ−1(pi) =
x>i β

σi
, h(σi) = h(1) + z>i γ, (3)

where h(σi) = h(1) + z>i γ is the scale model, with h a link function (usually the log, square root, or identity
function), z>i a vector of regressors (not necessarily equal to xi), and γ a vector of unknown coefficients in the
scale model. Aside from the probit link function g(p) = Φ−1(p), one can also use the usual logit link function
g(p) = ln(p/(1 − p)) in (3) (see Koenker and Yoon (2009) for other appropriate link functions). The glmx
package in R (Zeileis et al., 2015) provides a suite of functions for fitting heteroskedastic binary regression
models.

3 ILLUSTRATION WITH COMBAT SIMULATOR DATA

In this section, we illustrate the implementation of the aforementioned statistical methods to the meta-
modelling of a combat simulator. In all regression runs, we only consider the main effects, i.e. an intercept
term and linear terms. Nonetheless, the analysis can easily be extended to include higher-order terms such as
quadratic or interaction terms. We assume a 5% level of significance for all hypothesis tests and confidence in-
tervals. Variables marked with * are statistically significant at α = 5%. All statistical analyses were performed
using established utilities or packages in R, so the computational time for all runs is negligible.

In the supplied data set, there are three output variables, namely mission success (binary), number of red
infantry defeated (count), and number of red vehicles damaged (count). The simulation inputs consist of four
discrete variables, namely Option (“A”, “B”, “C”, or “D”), F1 (“Direct” or “Indirect”), F2 (“25” or “75”), and
F3 (“Low”, “Medium”, or “High”). There are n = 48 distinct input combinations, each of which corresponds
to m = 200 replicated measurements of each of the output variables. The combat simulator used to generate
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Table 1. OLS, EGLS, and finite mixture Gaussian regression estimates for number of red infantry defeated.

OLS EGLS FM Gaussian Regression
(HC se) Est. 95% Jackknifed CI Class 1 Class 2 Class 3

Intercept 23.340 * 23.454 * 23.039 24.489 22.981 * 22.405 * 23.234 *
Option B -1.029 * -1.255 * -2.338 -0.789 -2.607 * 0.385 * -0.952 *
Option C -0.105 -0.035 -0.795 0.278 0.177 * -0.069 1.140 *
Option D -1.119 * -1.193 * -2.263 -0.744 -1.833 * -0.194 * -1.066 *
F1 Indirect -2.839 * -2.933 * -3.808 -2.426 -1.779 * -1.891 * -2.789 *
F2 75 0.009 0.007 -0.001 0.070 -0.064 * 0.007 -0.228 *
F3 Low -0.816 * -0.647 * -1.044 -0.166 -1.408 * -0.191 * -1.158 *
F3 Medium -0.280 * -0.309 * -0.820 -0.071 -0.349 * 0.075 * -0.738 *
Log-Lik -30433.70 54.68
AIC 60885.41 -51.37
BIC 60949.94 2.89

the data set takes between 25 to 345 minutes (with an average run time of 185 minutes) to produce the output
metrics for a single repetition for each unique input combination. For illustrative purposes we consider the
number of red infantry defeated a continuous output rather than a count output since, as shown in Figure 1a, it
has a relatively high average value, good dispersion, and an approximately symmetric distribution.

3.1 Number of Red Infantry Defeated

Table 1 shows the OLS, EGLS, and finite mixture Gaussian regression estimates, as well as the 95% jackknifed
confidence interval corresponding to the EGLS estimates. Inferences for the OLS model are performed using
heteroskedasticity-consistent standard errors since the Breusch-Pagan test shows that there is heteroskedas-
ticity in the data (p-value < 2.2e−16). Figure 1b shows that RID measurements are highly correlated across
“adjacent” design points. The estimated covariance matrix also shows strong heterogeneity in the output vari-
ance across design points. These imply that EGLS is a more appropriate method for constructing a linear
regression model. Inferences on the EGLS coefficients are based on the jackkniffed confidence intervals and
conclusions on direction of effect and statistical significance similar to those from the OLS model are obtained
for the EGLS model. However, the OLS model returns an adjusted R2 of 6.654%, indicating a severe lack of
fit to the data. Rao’s lack-of-fit F -test (Kleijnen, 1992) applied to the EGLS model also points to a lack of fit
to the data (test statistic: 1.69, p-value: 0.0041).

We fit a finite mixture of Gaussian models (OLS) to the RID data for S = 1, . . . , 10 latent classes and found
that S = 3 yields the highest likelihood and lowest AIC and BIC. Using a finite mixture model results in a
drastic improvement in the log-likelihood, AIC, and BIC compared to the OLS model. We note further that
there are input variables whose effect on RID changes across clusters. For example, the magnitude and sign
of Option B’s effect changes across clusters.

3.2 Mission Success

Figure 1c shows that simulated missions are overwhelmingly successful, which may produce bias towards suc-
cessful missions if the entire data set is used to estimate the binary regression regression models. Therefore, all
models in this subsection are estimated using a balanced data set consisting of 600 successful and 600 failed
missions. The sampling strategy ensures that all design points and replications are adequately represented. Ac-
curacy (AR) and balanced accuracy ratios (Bal. AR) are calculated using the full data set to assess the models’
classification performance. In Table 2, we show the estimates of the homoskedastic and heteroskedastic probit
and logit binary regression and the finite mixture logistic regression. For the heteroskedastic binary regression,
we used the same regressors in the scale model as in the mean model, i.e. we set xi = zi in (3). Only the mean
model of the heteroskedastic probit and logit models are presented, since none of the regressors are significant
in the scale model.

We note the identical classification performance of the homoskedastic probit and logistic regression, as well as
identical conclusions about the sign and significance of the main effects. When including a model for the scale
parameter, some variables lose statistical significance in the mean model. Furthermore, the likelihood ratio test
(LRT) comparing the homoskedastic and heteroskedastic models indicate a significant improvement in the fit
when the heteroskedastic model is used. More importantly, there seems to be mixed results regarding the clas-
sification performance of the heteroskedastic models. Both heteroskedastic models yield a balanced accuracy
of 50%, while the reported accuracy ratio is 90% since the heteroskedastic models classified all observations
in the full data set as successful missions. Thus, while there may be evidence for heteroskedasticity in the
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Table 2. Homoskedastic and heteroskedastic binary regression (with probit and logit link functions) and finite
mixture logistic regression results for mission success.

Homoskedastic Heteroskedastic FM Logistic Regression
Probit Logit Probit Logit Class 1 Class 2

Intercept 1.2041 * 2.0124 * 0.8818 * 1.4441 * 0.8785 * 1.0220 *
Option B -0.8926 * -1.4877 * -0.4215 -0.7117 -0.2800 * -0.4215 *
Option C -0.1523 -0.2569 -0.0361 -0.0623 0.0320 -0.3944 *
Option D -0.7843 * -1.3804 * -0.2456 -0.4194 -0.2879 * -0.2895
F1 Indirect -0.8402 * -1.3954 * -0.7586 * -1.2322 * -0.2872 * -0.3758 *
F2 75 -0.0772 -0.1370 -0.0441 -0.0787 -0.0199 -0.0321
F3 Low -0.2634 * -0.4357 * -0.0961 -0.1632 -0.0934 * 0.0280
F3 Medium 0.0352 0.0616 0.0038 0.0054 0.0010 0.0877
Log-Lik -713.01 -712.38 -703.60 -703.60 -744.37
AIC 1442.00 1440.80 1437.30 1437.27 1526.75
BIC 1482.73 1481.47 1513.65 1513.62 1623.46
LR Test p-val. 0.0091 0.0145
AR 0.7114 0.7114 0.9024 0.9024
Bal. AR 0.6716 0.6716 0.5000 0.5000

mission success, using these models may result in inaccurate predictions about mission outcomes. The finite
mixture model provides some evidence of heterogeneity in the main effects (see e.g. Option C and Option D),
but yields a worse log-likelihood and AIC/BIC compared to the homoskedastic and heteroskedastic logistic
regression models.

3.3 Number of Red Vehicles Damaged

The distribution of RVD across design points as shown in Figure 1d points to a high degree of underdispersion
(the variance of RVD is significantly less than the mean) in the data and may suggest that the Poisson regres-
sion may not be appropriate As such, we also consider other count data models that accommodate under- or
overdispersion, such as the quasi-Poisson, the Conway-Maxwell-Poisson (CMP), the negative binomial, and
the Poisson-lognormal mixture models. For further details on these alternative count data regression methods,
see e.g. Cameron and Trivedi (2013, Chapter 4). Table 3 shows the estimates of the regression coefficients and
the dispersion parameter (for the Poisson, quasi-Poisson, and the CMP models). Attempts to fit a finite mixture
Poisson model on the RVD data yields S = 1 as the optimal number of clusters, therefore leading back to the
ordinary Poisson regression model. In this case, there does not seem to be any evidence of heterogeneity in
terms of the effects of the input variables on the mean Poisson rate of RVD.

A formal dispersion test indicates that the data is substantially underdispersed and is corroborated by the results
of the quasi-Poisson regression. Regression coefficient estimates for the quasi-Poisson model are similar to
those obtained in the ordinary Poisson regression, but the standard errors are substantially smaller, leading to
more variables becoming statistically significant. These inferences are also identical to those derived from the
CMP model. We observe that the signs of the regression coefficients are the same for all regressors across
the three methods. The results from the negative binomial regression, specifically the regression coefficient
estimates, individual tests of significance, and the log-likelihood, are identical to those from the usual Poisson
regression. This is expected since the negative binomial model, when fit to underdispersed data, converges to
the Poisson model. Similar conclusions about the main effects and individual tests of significance can also be
made regarding the Poisson-lognormal model.

4 CONCLUSIONS

This paper discusses various regression-based approaches for the meta-modelling of simulation experiments
with continuous, binary, and count output metrics. The methods discussed are able to handle heteroskedastic-
ity, correlation, and heterogeneity which arise from the usage of CRNs in the simulator. Our analysis using
finite mixture GLMs has shown that there is significant heterogeneity in the base and main effects to the mean
of the continuous and binary outputs. The results arising from the finite mixture GLMs, however, must be
appraised via a qualitative assessment of the design points that are clustered together in latent classes to deter-
mine why such a clustering was derived from the data. We also considered methods which specifically tackle
heteroskedasticity in binary data (via a latent variable approach) and dispersion in count data and showed
how accommodating these phenomena may change the conclusions when testing input variables for statistical
significance.
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Table 3. Results of the Poisson (P), quasi-Poisson (QP), Conway-Maxwell Poisson (CMP), negative binomial
(NB), and Poisson-lognormal mixture (PLN) regression for number of red vehicles damaged.

P QP CMP NB PLN
Intercept 1.3621 * 1.3621 * 15.8125 * 1.3621 * 1.3723 *
Option B 0.0023 0.0023 0.0219 0.0023 -0.0053
Option C 0.0084 0.0084 0.0813 0.0084 0.0081
Option D 0.0184 0.0184 * 0.1765 * 0.0184 0.0111
F1 Indirect -0.2186 * -0.2186 * -2.0633 * -0.2186 * -0.2228 *
F2 75 0.0007 0.0007 0.0064 0.0007 0.0003
F3 Low -0.0288 * -0.0288 * -0.2760 * -0.0288 * -0.0274 *
F3 Medium -0.0018 -0.0018 -0.0165 -0.0018 0.0005
Log-lik -15488.30 -8752.54 -15488.33 -15299.16
AIC 30993.00 17523.08 30995.00
BIC 31049.97 17587.60 31059.18 -15340.40
Dispersion 0.0874 0.0875 0.0932

As it is likely that there is some degree of under- or overdispersion in the output metrics, especially for count
data, simulation meta-modelling via a joint modelling of the mean and dispersion (see e.g. Smyth, 1989) may
be a useful alternative. In addition, for count data with a known upper limit (as is the case for most defence-
related applications), approaches related to truncated or censored count data regression may be considered (see
e.g. Cameron and Trivedi, 2013, Sections 4.3-4.4). Furthermore, additional work must be done to properly
characterize the extent to which CRNs induce “correlation” in binary and discrete output metrics. A well-
defined notion of “correlation” would then inform the selection of the appropriate statistical methodology for
simulation meta-modelling.
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