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Abstract: Application of machine learning models in network intrusion detection systems has been the subject 
of extensive investigation and testing. Modern day networks produce data in quantities that put more emphasis 
on the accuracy and precision of the intrusion detection systems. This produces the drive for more accurate 
and time-efficient i ntrusion d etection s ystems, a nd m achine l earning w as i nvestigated a s a  v iable solution. 
Research into machine learning models in other fields has yielded several different algorithms and approaches, 
highly specialised to those particular data types. Testing for intrusion detection has found that the models 
that process the network data best tend to yield higher accuracy and lower false-positive rates, whereas those 
models that perform best on their original data have struggled. One such model that under performed in 
intrusion detection when compared to the original field i s convolution neural n etwork. This paper a ims to 
investigate preprocessing methods for network data to increase the effectiveness of using a convolution neural 
network model as part of a network intrusion detection system. Specifically, the paper will analyse the use 
of the DeepInsight architecture,using a modified t-distributed stochastic neighbour embedding technique, the 
positioning of features in isolation and a control class of simple reshaping data from vector to matrix form.
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1 INTRODUCTION

A Network Intrusion Detection System (NIDS) monitors the activity of an entire protected network as a whole,
analysing packet metadata and other communications. Originally, Rules-based methods Denning (1987) were
used to identify malicious activity, with a later shift to anomaly detection methods as those became more
feasible Axelsson (2000), which were focused on statistical learning processes Manikopoulos & Papavassiliou
(2002) as well as early unsupervised machine learning models such as ZANERO Zanero & Savaresi (2004).
Contemporary NIDS utilise a misuse detection approach, categorising abnormal activity first and treating
uncategorised data as normal operational behaviour. Misuse detection is not a novel technique, as it was
formally introduced in 1998 as an alternative to the rules-based IDS at the time Cannady (1998).

Misuse detection utilises information of normal traffic as well as hostile attacks to classify traffic, which typi-
cally results in a low false alarm rate when compared to its anomaly detection analogues. Supervised Learning
is the dominant model used within misuse detection systems, with an extensive amount of research in the past
being placed on shallow supervised learning models Chauhan et al. (2019), with Support Vector Machine Kim
& Park (2003) and Decision tree Boukhris et al. (2017) systems being investigated amongst others. Recently
the focus has shifted to deep supervised learning models. These algorithms tend to perform better when tested
against new or unseen data, and when compared to previous, more shallow methods. The issue is that current
development of deep learning research has been targeted towards image and text processing, but work is being
done to integrate more deep learning methods into IDS Diro & Chilamkurti (2018). Convolution Neural Net-
work (CNN) is one such deep learning approach that was developed as one of the most effective algorithms
for image classification. Otherwise known as space invariant artificial neural networks, and have been demon-
strated to be one of the most efficient and accurate classifiers in that domain Chauhan et al. (2019). Work
has begun on integrating this algorithm into IDS Zheng (2020), but the issue of adapting this architecture to
network data processing has been a consistent issue in getting the desired performance of this algorithm when
compared to other alternatives, such as SVM or Decision Trees Maseer et al. (2021).

The main findings of the current research indicate that CNN models are less accurate and efficient when com-
pared to more generalised models in IDS. However, the area of data preprocessing is lacking when compared
to research into models. A tremendous amount of research has been put in to comparing the effectiveness
of different models and algorithms in an IDS, with current benchmark being set by the other deep learning
models Maseer et al. (2021). However, this puts the provably more effective models like the CNN at a dis-
advantage because these models are tailored for a different environment. The effectiveness of these models
would hypothetically rise if the data they are input is in a similar format to what they are designed for, such
as the CNN being fed image-based data. A novel transformation method DeepInsight Sharma et al. (2019)
uses dimension reduction techniques such as t-SNE Van der Maaten & Hinton (2008) and kPCA Schölkopf
et al. (1998) to transform non-image data into optimal image format. This method was tested on 5 datasets
comprising of 5 different data types - gene expression dataset, speech dataset, text dataset and two artificial
datasets. This method has not been tried on network data, which is what this paper aims to explore.

The CICIDS2017 dataset consists of network data for a system resembling modern network systems over
five days. This network simulated typical activity for the industry, implementing different systems and proto-
cols to resemble actual traffic. The dataset represents typical background traffic within a network, as well as
several attack techniques such as DoS, DDoS, Brute Force, Heartbleed, Web Attack, Infiltration and Botnet
Sharafaldin et al. (2018). The dataset includes typical data features seen in network data such as time of pack-
age, destination port, source port, protocol and so on. The dataset comes in two forms: the raw values and the
processed version, where the non-integer values were converted to integer form. The dataset contains mostly
benign attacks, and has fewer scenarios when compared to some other datasets such as the ICS cyberattack
dataset Elmrabit et al. (2020).

A recent study comparing the effectiveness of different machine learning algorithms on the UNSW-NB15,
CICIDS-2017 and ICS cyber-attack IDS datasets Elmrabit et al. (2020) identified the Random Forest algorithm
as the most effective, reaching accuracy values between 0.97 and 1 and precision, recall and f1-score values
of similar quality for multi-classification. Within the same paper, CNN still achieved comparable rates, which
demonstrates its potential.

2 EXPERIMENT

Convolution neural networks are designed to process image data, typically in the form of a 2D matrix repre-
senting a monochrome image or a three-dimensional matrix representing three colour channels of images. It
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processes this form of data by utilising a kernel-based convolution, thus there is an intrinsic statistical element
placed on the positioning of data points relative to its neighbours. This is accounted for in real world image
data, where the data represented in pixels is an abstraction of real-world positioning. This statistical relation-
ship is not typically accounted for in non-image data, and the placement of data within a matrix is arbitrary.
The impact of this statistical relationship on machine learning is investigated further.

In order to increase effectiveness of machine learning methods, it is standard practice to pre-process the data.
This practice typically involves such concepts as handling null values, standardisation, categorical variables,
one-hot encoding, multicollinearity and normalisation among others. Beyond these procedures, in order to
increase effectiveness of learning methods, statistically redundant data is also typically removed by the dimen-
sionality reduction techniques mentioned above.

Basic preprocessing is done to expedite the learning algorithms, and takes the form of null value handling
(converting null values to the average value of each class, inf to maximum and negative to minimum positive
value) and normalisation (converting every value to a range between 0 and 1). To expedite processing, random
sample of 1% of the dataset is used for both the control group, positioning group and the feature mapping
groups.

2.1 Model

Description of PC Specs
System Windows
Version 10.0.19041
System Type 64-bit operating system, x64-based processor
Machine AMD64
Processor Intel64 Family 6 Model 158 Stepping 10, Genuine Intel
Processor Information Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz 3.70 GHz
Installed Ram 16.0 GB

The model used to test the effectiveness of the preprocessing methods is a CNN model, that follows this
structure:

• 2D Convolution Layer / 120 nodes / padding = same

• 2D Convolution Layer / 60 nodes / padding = same

• 2D Convolution Layer / 30 nodes / padding = same

• Flatten and Softmax / 15 nodes

Convolution Layer. A convolution layer is the basic component of a CNN. The basic operation of a convo-
lution layer is that it takes the input image and uses a kernel-based operation on it to extract features. Typically,
this operation would reduce the dimensions of the data, as the function of the kernel is to abstract a subgroup
of inputs into one output, however, with the ”same” padding setting in the convolution layers, the dimensions
of the input are preserved by adding ”padding” - an outer axis of zeroes for the kernel to process.

Flatten and Softmax. The flatten and softmax layer is the classifier for the model. It takes all the nodes that
are created as part of the model, and compresses them down to 15 output nodes - 15 representing the 15 classes
that are within the CICIDS17 dataset. The softmax function is applied to ensure that the probabilities of each
class add up to 1 - demonstrating that all the options are accounted for and there are no missing probabilities.

2.2 Control Group

A control group is used to compare the effectiveness of the feature mapping method. It uses a simple reshape,
as it is efficient since it takes the least amount of time to convert data into a trainable form. It is also efficient
in the amount of space it occupies - the smallest square matrix is created that could house all the features of
the data.

The original data has 78 features, which need to be converted from a (78, 1) vector into a (9, 9, 1) matrix.
This is performed by a simple reshaping of the vector, filling the 3 null values created as result with zeroes as
padding.

801



G. Glukhov and T. Lynar, Data preprocessing for Non-image data...

Fundamentally, this is the most basic and efficient preprocessing method. This representation retains all origi-
nal features, and adds minimal redundant information to enable the square matrix.

[
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]
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g h i


(a) Feature vector to matrix conversion for Control Group.

[[
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i e h


(b) Feature vector to matrix conversion for Sequence Group.

Figure 1. Vector to Matrix Conversions

2.3 Feature Sequencing

Adequately representing the relationship that neighbouring pixels have within a real-world image is difficult
within the framework of non-image data, since ideally each feature of the data will carry as much information
as possible while having the smallest correlation with other features. The DeepInsight framework Sharma et al.
(2019) provides a novel way to achieve this by using t-SNE. Rather than reducing the dimensions of each data
entry, this framework converts the range of values a given feature takes into a Cartesian plane representation.
This enables similar features to be grouped closer together, and dissimilar features to be further apart.

The basic data undergoes the same process as the control group initially. Once the data is standardised, t-SNE
is used to determine the feature mapping positions for each feature within the dataset. Rather than reducing the
dimensionality of each data entry in the dataset, t-SNE is used to reduce the dimensionality of each feature,
where the dimension being reduced is the value each particular feature takes over the whole dataset. This
procedure results in a two-dimensional representation of each feature, which can be used to map said feature
on a Cartesian plane. This mapping process typically leaves a considerable amount of empty space around the
mapping, which is removed by finding the minimum bounding rectangle for the features and transforming the
points to fit that rectangle.

To investigate the effectiveness of feature mapping, the dataset will undergo an intermediary step. Instead of
performing the DeepInsight process of mapping features into their positions, the features are sorted based on
their mapping coordinates and reshaped into a matrix of 9 x 9 x 1 dimensions, to compare more generally
between the control group and the reduced mapping group. This is referred to as sequencing as the positions
of the features are not accurate, only the relative sequence in which they appear.

2.4 Feature Mapping

Once a feature map is created, each data entry is mapped using it, where every feature of the data entry is
placed in the location that it occupies on the Cartesian plane. The coordinates are then converted into a matrix
representation - if two or more features occupy the same matrix position, the average is taken. This matrix is
then used as input for the model. The mapping is done in two varieties: the full and the reduced. The reduced
has the dimensions of the control and sequence groups, while the full is more spaced out in order to negate the
large overlap that occurs at low pixel rates. The matrix dimensions for the full mapping are set to 50 x 50 x 1
for this experiment, but can be modified.

The goal of this technique is not to reduce the amount of data that is being processed by the machine. In
fact, the dimensionality typically increases as result of feature mapping. However, to account for it, a reduced
Feature Mapping Matrix is also used which shares the dimensions of the control and positioning groups.

3 RESULTS

Fundamentally, since the model and dataset is the same across both trials, any discrepancy between the results
is a consequence of the difference in preprocessing methods. Thus, an inspection of the results reveals that
the accuracy fell when the larger, spatial data representation was used, while also severely affecting machine
performance and increasing processing time. To measure the effectiveness of machine learning models, a
confusion matrix methodology is used. Within confusion matrix calculations, a ”true” result refers to when
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(a) The features mapped on a Carte-
sian plane, minimum bounding rect-
angle to minimise noise

(b) Reduced Feature Mapping Ma-
trix (c) Full Feature Mapping Matrix

Figure 2. Feature Mapping Visuals

the classifier identified the data correctly and ”false” incorrectly, while ”Positive” refers to the attribute the
model is trying to classify.

TP = TruePositive
TN = TrueNegative
FP = FalsePositive
FN = FalseNegative

(1)
Accuracy =

TP + TN

TP + FP + TN + FN
(2)

Within a confusion matrix, accuracy is determined by the amount of correctly classified data entries over the
whole dataset. This is most frequently used metric to determine the effectiveness of a dataset, however, it fails
to account for the difference between a true positive and a true negative, so while the model might be very
accurate at identifying the majority of classes, it could fail to identify a certain minority class.

Loss within machine learning refers to a measure of an incorrect prediction of the model. A lower loss indicates
the prediction is closer to the actual result. For categorisation of a multi-class dataset such as CICIDS 2017
a sparse categorical cross entropy loss function is used, as seen in (3), where yi is the correct label, ŷi is the
estimated label, i is the index of the element in the dataset and N is the total number of elements.

SparseCategoricalCrossEntropy = − 1

N

N∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)] (3)

Precision is a measure of how correctly the model identifies the ”positive” data - in other words, how correct
is the model when it identifies data as belonging to a class.

Precision =
TP

TP + FP
(4) Recall =

TP

TP + FN
(5) F1−score = 2

1
Recall +

1
Precision

(6)

Recall refers to how well the model was able to identify all the ”positive” data - how many classes the model
failed to indentify compared to how many it did. F1-score can be interpreted as the aggregate of recall and
precision measurements, as it measures both the harmonic mean of the recall rate and the precision rate,
and while it represents the performance of the model very accurately, it is difficult to interpret due to the
combination of factors that contribute to it.
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(a) Control Group (b) Sequence Mapping
(c) Reduced Feature
Mapping Matrix (d) Full Mapping Matrix

Figure 3. Accuracy Performance

(a) Control Group (b) Sequence Mapping
(c) Reduced Feature
Mapping Matrix (d) Full Mapping Matrix

Figure 4. Loss Performance

Model Accuracy Loss Precision Recall f1- score

Control Group - Macro Average 0.69 0.74 0.71
- Weighted Average 0.9735 0.0879 0.98 0.97 0.97

Sequence Mapping - Macro Average 0.76 0.74 0.73
- Weighted Average 0.9573 0.1467 0.96 0.96 0.95

Reduced Mapping - Macro Average 0.78 0.75 0.76
- Weighted Average 0.9837 0.0521 0.98 0.98 0.98

Full Feature Mapping - Macro Average 0.80 0.71 0.73
- Weighted Average 0.9809 0.0589 0.98 0.98 0.98

Table 1. Experiment Confusion Matrix

The above results demonstrate an increase in performance of the trained model on most aspects of the con-
fusion matrix. Of particular interest is the heightened accuracy rate of the Feature mapping method. This
increase in the performance aligns with expectations, since while no new features are input into the data, it is
processed in a way that is most suitable for the CNN model.

The difference in the accuracy values between the control group and full mapping methods indicates feature
mapping assists the trained model to make accurate predictions. Lower macro average precision indicates
that even though nominally the weighted performance is similar, overall the mapping assisted in the model
making only accurate estimates of the data, reinforced by the lower loss. Recall and f1-score both maintain a
similar macro average, with the recall macro being the only variable where the control group performed better,
indicating a better ability to identify all the classes. Weighted average for both is comparable, but still higher,
thus indicating a marginal improvement once the model is trained.

The feature mapping method demonstrated an improved performance across most dimensions of measurement,
and it also demonstrated that sequencing of features had a negligible effect on the performance of the model.
This can be attributed to only representing a portion of information gained from mapping the features to a
Cartesian plane. The DeepInsight Sharma et al. (2019) methodology does not elaborate on how the different
pixel dimensions affect performance, which seems to be the case, as can be seen by the increased performance
in the reduced case. This indicates that contrary to expectations, while the positioning accuracy does impact
performance of the models, the minimisation of null values within the data seems to impact more when data
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is positioned accurately - explaining how despite the minor loss of position accuracy when certain features
had the same pixel value and thus were averaged, the reduced matrix performed better in all aspects except
the precision. This relationship could be investigated further to determine to what extent the ratio between
overlapping features and null values is the cause of the performance difference.

4 CONCLUSIONS

Fundamentally, the need for a better intrusion detection system arises from the increasing strain that contem-
porary attacks threaten to put on network systems. This need cannot be satisfied as long as hostile actors target
networks, as they will continue to invent novel attack techniques and vectors. As result, the need to innovate
the detection systems arises.

To further expand on material presented here, an interesting phenomenon of the the DeepInsight framework
for data mapping was revealed - there seems to be a link between the performance of the model, the degree
to which features overlap within the mapping, and the volume of null values. This relationship can be further
investigated to determine the ideal pixel dimensions for optimal performance.
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