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Abstract: Rainfall-runoff models have a high degree of uncertainty and stochasticity, and the relationship 
between them is non-linear. Conventional hydrology streamflow prediction models are mostly built for specific 
watersheds and specific prediction scales, which are poorly promoted and applied. Therefore, in some 
scenarios, data-driven machine learning predictive models are replacing traditional physical models. Long 
short-term memory (LSTM) network is a machine learning algorithm for predicting time series and has been 
applied in the field of streamflow prediction. Temporal convolutional network (TCN) is another machine 
learning algorithm that is gaining popularity in the field of time series forecasting. LSTM and TCN were 
implemented in this study to analyse the hourly streamflow prediction for the Nerang River at the Numinbah 
gauging site, and the predictive accuracy of the models on the test dataset was calculated based on the historical 
data of the study area. According to the results of the analysis, the TCN model achieved better performance 
for the hourly streamflow prediction with a coefficient of determination (𝑅𝑅2) of 0.9837 and Nash–Sutcliffe 
efficiency (𝑁𝑁𝑁𝑁𝑁𝑁) of 0.9829 in the best scenario and the lag time for hourly streamflow generation is about three 
hours in the study area. Additionally, the maximum predicted lead time is six hours in the study area on the 
TCN model.  

In summary, the accuracy of hourly streamflow prediction using the TCN algorithm is of a good level. 
Moreover, streamflow can be predicted for up to six hours. Finally, this study demonstrates that the novel TCN 
algorithm has enormous potential for solving streamflow prediction problems in comparison to the LSTM 
algorithm. 
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1. INTRODUCTION 

The Nerang River is the largest and most significant river system on the Gold Coast in the SEQ region, 
Australia. It provides multiple essential services to the public, and it has significant economic potential and the 
ability for flood mitigation. Hinze Dam is located in the middle of the Nerang River and is the primary source 
of water supply for the Gold Coast region, supplying an average volume of 169 𝑀𝑀𝑀𝑀 water per day (Gold Coast 
City Council, 2005). The Gold Coast is a world-renowned tourist destination and also being one of the fastest-
growing urban regions in Australia, placing heavy demands on water supplies. Historically, six flooding events 
have occurred since 1920 in the Nerang River (Bureau of Meteorology, 2019). However, there is a lack of 
research into the possible flash floods caused by short-duration rainfall in this area. Our study area is the 
Numinbah catchment (Figure 1), which is a sub-catchment of the Nerang River catchment with a covering area 
of around 70 km2. 

 
Figure 1. The headwaters catchment of the Nerang River. 

This project is hospitable for both society and the economy. The significance of predicting short-term 
streamflow is to help water managers to make optimal decisions issues, such as drought mitigation, flood 
control, economic planning and keeping minimum streamflow (Maity et al., 2011; Sun et al., 2019). 
Additionally, the prediction model can help the Hinze Dam manage input discharge and flood migration. 

The conventional hydrology rainfall-runoff model process is complex and wastes many human resources. For 
these reasons, data-driven models are being widely used for predicting streamflow, which is known as 
streamflow hydrology estimate using machine learning (SHEM) (Petty et al., 2018). When the historical data 
is adequate, using machine learning is much more streamlined than hydrological models. In this study, several 
machine learning algorithms were implemented to develop streamflow prediction models and then, which will 
be used to predict the hourly streamflow of the Nerang River. The streamflow series is a stochastic 
phenomenon, and it is affected by multi-variance, such as rainfall intensity, temperature, solid condition, and 
evapotranspiration. Artificial intelligence (AI) is a good option to solve this none-liner multivariate problem. 
Machine learning can solve non-linear multivariate problems, and deep learning models of machine learning, 
such as long short-memory (LSTM) neural networks, are widely used for time series prediction in various 
industries. Most recently, a temporal convolutional network (TCN) has been used in different fields for time 
series prediction. Many studies suggest that TCN perform better in time series prediction compared with 
LSTM. However, TCN has not yet been used in streamflow prediction tasks; therefore, this study will fill this 
gap.  

506



Liu et al., Temporal Convolutional Network Algorithm for Streamflow Predictions in a Subtropical River 

2. METHODOLOGY 

2.1. Model Concept and Implementation 

Recurrent neural networks (RNNs) are more suitable for time series prediction than classical neural networks 
(Mhammedi et al., 2016). Input vectors of RNN are updated recurrently through the same operation cell, which 
means that the data retains previous information. However, as the gap between information grows, the 
conventional RNN model cannot connect them perfectly (Thapa et al., 2020). RNN is only able to inspect the 
relationship between inputs and outputs in a short input series. However, when the input series is longer, the 
drawback of RNN is appeared because of its simple recurrent network structure (Hu et al., 2020). Therefore, 
to avoid long-term dependencies, the LSTM neural network was designed. The other main advantage of LSTM 
compared to RNN is to avoid the exploding and vanishing gradient problems. 

The entire LSTM cell includes input 𝑖𝑖𝑡𝑡, output 𝑜𝑜𝑡𝑡, and forget 𝑓𝑓𝑡𝑡 gates. The four learnable gates encode the input 
groups of vectors and ensure they maintain the hidden information once they cross those cells. The operation 
process can be defined as: 

 𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑡𝑡 ∙ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑡𝑡), (1) 

 
𝑓𝑓𝑡𝑡 = 𝜎𝜎�𝑊𝑊𝑓𝑓 ∙ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓�, (2) 

 𝑜𝑜𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑜𝑜 ∙ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜), (3) 

 
 �̃�𝐶 = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑊𝑊𝐶𝐶 ∙ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝐶𝐶), (4) 

 
𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ⊙ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ∗ 𝐶𝐶𝑡𝑡� , (5) 

 ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ⊙ 𝑡𝑡anh(𝐶𝐶𝑡𝑡). (6) 

Equations (1) – (6) are the fundamentals of the LSTM model operation. The forget layer converts the ℎ𝑡𝑡−1 and 
𝑥𝑥𝑡𝑡 into 0 to 1 utilising the sigmoid function, where 0 is data that should be omitted and 1 is data that should be 
reserved. The combination of ℎ𝑡𝑡−1 and 𝑥𝑥𝑡𝑡 is updated to 𝑖𝑖𝑡𝑡 and �̃�𝐶 by passing across the sigmoid and tanh layers, 
and the new candidate values are achieved by 𝑖𝑖𝑡𝑡 ∗ �̃�𝐶. Then, the new cell state 𝐶𝐶𝑡𝑡 is generated by equation (6). 
Finally, the next hidden state ℎ𝑡𝑡 is calculated by the equation (3) and (6). The sigmoid layers ensure the output 
only retains the parts that the model decides to keep because the data will be deleted if the result is 0 after 
passing the sigmoid layer. These steps guarantee that LSTM can avoid long-term dependency. 

The TCN network is based on a causal convolution network, a one-to-one structure with a strict causal 
relationship between each layer. The traditional convolutional operation is to convolute the sequence and 
encode the information as a new cell, which is named as pooling process. However, one of the main faults of 
the traditional convolutional networks is that the sequential information could be lost in the pooling process 
(He et al., 2016). The dilated convolutions are defined as: 

 

F(𝑠𝑠) = (𝑥𝑥 ∗ 𝑑𝑑𝑓𝑓)(𝑠𝑠) = � f(i) ∙ xs−d∙i,
𝑘𝑘−1

i=0

 (7) 

where 𝑑𝑑𝑓𝑓 is the dilation factor, k is the filter size and 𝑠𝑠 − 𝑑𝑑 ∙ 𝑖𝑖 accounts for the direction in the past. Compared 
with LSTM, the TCN network can control the memory size by adjusting the dilation factor and the kernel size. 
The receptive field can be defined as: 

 
𝑡𝑡𝑜𝑜𝑜𝑜𝑡𝑡 = �

𝑡𝑡𝑖𝑖𝑖𝑖 + 2𝑝𝑝 − 𝑘𝑘
𝑠𝑠

� + 1, (8) 

where 𝑡𝑡𝑜𝑜𝑜𝑜𝑡𝑡 is the size of the output and 𝑡𝑡𝑖𝑖𝑖𝑖 is the size of the input. For 𝑡𝑡𝑜𝑜𝑜𝑜𝑡𝑡 = 𝑡𝑡𝑖𝑖𝑖𝑖, add padding 𝑝𝑝. 𝑘𝑘 is the 
kernel size, and 𝑠𝑠 is the stride step, which equals the dilation factor in each hidden layer. 

The advantage of the dilated convolution network is that it abandons the pooling process and uses a series of 
dilated convolutions, which helps each output consist of adequate information for long-term tracking (Bai et 
al., 2018).  
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These models were implemented using TensorFlow in the Python platform. The basic parameters of the models 
are shown in Table 1. 

Table 1. Details of hourly and daily streamflow prediction. 
Model Type LSTM TCN 

Regularisation Robust Min-Max 

Loss function mean squared error (MSE) mean absolute error (MAE) 

Learning rate 0.0001 0.0001 

Epochs 500 500 

Neurons 32 64 

Batch size 32 32 

Dilation factor (TCN) -- [1, 2, 4, 8, 16, 32] 

Hourly rainfall and streamflow data are observed at Numinbah gauging site during the period from 2015 to 
2018, which was split into the training dataset (2015, 2016 and 2017) and the testing dataset (2018). Figure 2 
shows the dataset which was obtained from the water monitoring information portal (WMIP). 

 
Figure 2. Hourly rainfall and streamflow at the Numinbah gauge (time range is from midnight on 1 January 

2015 to midnight on 1 January 2019). 

For the one-step perdition task, input parameters only consist of gauge rainfall (P) and discharge (D). The 
output is the streamflow discharge (D) in the target hour. Table 2 shows the input parameters of different 
models. 

Table 2. Input parameters and output in each model. 
Model Input Output 

MH1 Pt-1, Dt-1 Dt 

MH2 Pt-1, Pt-2, Dt-1, Dt-2 Dt 

MH3 Pt-1, Pt-2, Pt-3, Dt-1, Dt-2, Dt-3 Dt 

MH4 Pt-1, ..., Pt-4, Dt-1, ..., Dt-4 Dt 

MH5 Pt-1, ..., Pt-5, Dt-1, ..., Dt-5 Dt 

MH6 Pt-1, ..., Pt-6, Dt-1, ..., Dt-6 Dt 

After finishing the one-step prediction, the optimal time-step of models was chosen to predict the multistep 
streamflow. In the multistep streamflow prediction, the lead time was extended to test the ability of the models 
to predict the future streamflow. 
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2.2. Evaluation Metrics 

To evaluate the performance of the prediction results, there are two metrics: coefficient of determination (𝑅𝑅2) 
and Nash-Sutcliffe Efficiency index (𝑁𝑁𝑁𝑁𝑁𝑁). 

Table 3 is used to evaluate the rating of the predicted results. 

Table 3. Performance rating for streamflow prediction used in this study (Van Liew, 2018). 
Performance rating 𝑁𝑁𝑁𝑁𝑁𝑁 

Very good 0.75<NSE<1.0 

Good 0.65<NSE<0.75 

Satisfactory 0.50<NSE<0.65 

Unsatisfactory NSE<0.50 

3. RESULTS AND DISCUSSIONS 

3.1. Hourly Streamflow Prediction Results 

Table 4 shows that the TCN models can achieve the best prediction level as the input time steps are three hours. 
Fewer time-steps not only improve the model training efficiency but also reduce the predicted input dataset 
costs. For instance, to predict the next hourly streamflow, the previous three-hour rainfall must be known for 
the TCN model to get the best results.  

Table 4. The results of each model. 

Model 
NSE R2 

LSTM TCN LSTM TCN 

MH1 0.8159 0.9724 0.9465 0.9730 

MH2 0.9068 0.9738 0.9546 0.9776 

MH3 0.9442 0.9829 0.9477 0.9837 

MH4 0.9618 0.9829 0.9624 0.9829 

MH5 0.9650 0.9803 0.9728 0.9818 

MH6 0.9619 0.9820 0.9626 0.9822 

Reference to Table 4, the TCN model has a smaller time-step compared with the LSTM model. TCN can 
achieve the best level as the time steps are three hours, but the best time steps are five hours for the LSTM 
network. Fewer time-steps not only improve the model training efficiency but also reduce the predicted input 
dataset costs. For instance, to predict the next hourly streamflow, the previous three-hour rainfall must be 
known for the TCN model to get the best results, but the LSTM needs the previous five-hour 
rainfall data. Furthermore, the predictive accuracy of the LSTM and TCN models for multistep predictions is 
shown in Table 5. 

Table 5. The hourly multistep streamflow predictions of the LSTM (MH5) and TCN (MH3) model. 

Lead time (Hour) 
NSE R2 

LSTM TCN LSTM TCN 

1 0.9650 0.9829 0.9728 0.9837 

2 0.8903 0.9084 0.8904 0.9040 

3 0.6997 0.7912 0.8210 0.7984 

4 0.4988 0.6736 0.6702 0.7155 

5 0.5054 0.6925 0.6593 0.7267 

6 0.4437 0.6349 0.5538 0.6683 

The longest lead time for the LSTM hourly streamflow prediction model is three hours within a good level, but 
the TCN model can obtain a good level of prediction when the lead time extends to five hours. When the lead 
time exceeds a certain time, the accuracy is decreased dramatically. For instance, the NSE of the LSTM (MH5) 
model decreases a lot from a three-hour lead time to a four-hour lead time. That is, the LSTM can identify the 
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relationship between the future fourth streamflow and the previous five-hour rainfall information. Figure 3 
shows that the predictive accuracy changes as the lead time increases in the LSTM (MH5) model TCN (MH3) 
model, respectively. 

As the lead time increases, the errors between predicted and observed streamflow data also increases. Despite 
the predictive accuracy still being within a good level, when the lead time extends to five hours, the scatter 
plots reveal high errors. The reason is that some high streamflow events are caused by sudden rainfall, whose 
streamflow generation lag time is less than the lead time. Therefore, these uncertainties lead to relatively big 
errors.  

  
(a) (b) 

Figure 3. (a) Multistep prediction analysis of the LSTM model. (b) Multistep prediction analysis of the TCN 
model. 

As the lead time increases, the errors between predicted and observed streamflow data also increases. Despite 
the predictive accuracy still being within a good level, when the lead time extends to five hours, the scatter 
plots reveal high errors. The reason is that some high streamflow events are caused by sudden rainfall, whose 
streamflow generation lag time is less than the lead time. Therefore, these uncertainties lead to relatively big 
errors.  

Compared with the multistep prediction of the TCN model, the LSTM has worse predictive accuracy. LSTM 
is a sequential model, and the calculation of LSTM is also a forward process. This mechanism leads to 
incomplete historical information. On the contrary, the TCN model is a parallel calculation model, and it can 
avoid historical information loss fundamentally. Additionally, the TCN algorithm is based on the dilated 
convolutional network, which is allowed to adjust memory sizes by changing the dilation factor. Because of 
the unique architecture, TCN has a better performance in multistep prediction problems. 

Overall, using the TCN model to predict hourly streamflow can improve efficiency and decrease the cost. 
Despite the LSTM neuronal networks avoiding the effects of a long dependency on conventional RNN 
networks, the memory of LSTM is not eternal. The advantages of convolutional networks result in the TCN 
needing fewer time-steps to predict the streamflow and having better predictive accuracy in multistep 
prediction tasks. 
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4. CONCLUSION 

This study focused on hourly streamflow predictions on the Nerang River at the Numinbah gauge site using 
LSTM and TCN algorithms. The LSTM architecture is based on RNN, which transforms data by the same 
calculating cell recurrently, while the structure of the TCN model is based on the dilated convolutional network, 
which has parallel computing capabilities. Therefore, the TCN model operates more efficiently than the LSTM 
model. Additionally, the TCN model can be determined how many inputs can be related to outputs by adjusting 
the dilation factor, but the memory size for outputs of the LSTM model is uncontrollable. As the result, the 
TCN model outperformed the LSTM model in the hourly streamflow prediction task.  

Experimentally, lag time and input parameters for the hourly streamflow prediction were determined in this 
study area. The input parameter of the prediction model only includes rainfall information because the hourly 
streamflow has a quicker response. The result suggested that the optimal input size is three hours, which means 
the lag time of hourly streamflow generation is about three hours in this study area. Furthermore, the lead time 
of the hourly model can be extended to six hours.  

This case study demonstrates that the TCN model has great accuracy in hourly streamflow predictions, which 
can be used for water supply management, flood alerting, migration, and completing missing streamflow data 
for certain monitoring stations. This study was limited by the datasets, but there are still spaces for improvement 
in the further research. For instance, the datasets of the hourly model can add more hourly rainfall stations as 
inputs to test the predictive accuracy. 
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