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Abstract: Markov Decision Processes (MDPs) are convenient mathematical models used to solve sequential
decision-making problems when the state of the system is completely observable and actions have an uncertain
outcome. In human operated systems such as conservation of biodiversity and environmental management,
solutions that cannot be understood or explained to human experts are unlikely to be accepted and applied in
real world problems. To tackle this issue, domain experts must find a clever way of visualising and understand-
ing solutions, for example, plotting graphs and performing scenario analysis. Previous work proposed to solve
K-MDPs, i.e, given an original MDP and a parameter K, generate a reduced state space MDP with at most K
states. State abstractions proved to reduce the complexity and increase the interpretability of MDP solutions
and models. However, states aggregated according to algorithms that minimize the loss of performance may
not have a meaning for human experts. To bridge the gap between artificial intelligence (AI)-designed state
space and human experts, we address the challenge of including human preferences in the state aggregation
process. Building on previous work, we define the problem of solving constrainedK-MDPs, i.e, generate a re-
duced state space MDP with at mostK states aggregated according to a set of constraints C specified by a user.
We present a new algorithm and assess its performance on two computational sustainability case studies from
the literature with one and two state variables respectively. Our results show that we can achieve a substantial
reduction on the size of MDP solutions at a small cost of performance, by aggregating states according to user
preferences. We have reduced the size of the state space of our case studies up to a 99.75%, with a small loss
of performance. Our reduced constrained K-MDP models and solutions are compact and more interpretable.
We hope our approach helps reducing the gap between artificial intelligence (AI) systems and human decision
makers and increases the uptake of MDPs by improving interpretability and including users in the decision
process.
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1 INTRODUCTION

Markov Decision Processes (MDPs) have been used to tackle sequential decision making problems with full
state observability and uncertainty on the action’s outcome. Stochastic dynamic programming (SDP) and
MDPs have been largely used to solve conservation decision problems (Memarzadeh et al. 2019), natural
resource management (Pozzi et al. 2017) and behavioural ecology (Venner et al. 2006, Mangel et al. 1988).
One of the identified barriers preventing a greater uptake of artificial intelligence (AI) tools in conservation
decision domains is the complexity of understating MDP models and solutions (Tulloch et al. 2015). MDP
models and policies with thousands of states and transitions are in practice difficult to understand for decision
makers. This is especially critical in human operated systems, where experts decide whether or not to follow
the recommendations of a system. For most of the decision making, people generally do not attempt to find or
apply optimal solutions, but apply simple and well understood decision-making strategies (Reeson & Dunstall
2009). To address this issue, it is essential that models and solutions can be easily explained and interpreted
to guide decision-making and increase trust in artificial intelligence systems. Better interpretability can be
achieved by facilitating visualization of models and solutions (Chades et al. 2012), in form of graphs, matrices
and look-up tables. The policy graph is one common representation of an MDP policy. A policy graph is a
visual representation of a policy where nodes represent states and edges represent the optimal action to apply
at each state and its probability of transitioning to any other or same state. Nevertheless, MDPs with |S| states
require |S| nodes with at most 2|S| edges. Large state and action space MDPs are complex to represent using
policy graphs or look-up tables.

A potential solution is to reduce the size of the state space in order to produce simpler and easier to interpret
models and solutions. State abstractions reduce the size of the state space by aggregating those states that are
equal or similar giving a metric or a state abstraction function. State space reduction for MDPs have been
explored in the past to solve large state space MDPs by grouping those states whose transition probabilities
and rewards are similar (Dean & Givan 1997). This approach is known as model similarity. Later on, Li et al.
(2006) presented a unified theory of state abstraction for MDPs and introduced different abstraction schemes.
Abel et al. (2016) built on Litman’s work and presented approximate state abstractions with performance
guarantees. They introduced a collection of metrics also known as state abstraction functions. Those state
abstraction functions allow an aggregation between two states if a given condition is satisfied and with a
minimum loss of performance. Abel et al. (2018) presented transitive state abstractions, allowing a reduction
in the computation time of state abstractions. However, in these approaches, the human operator does not
decide how much the state space is reduced. Previous work showed how to solve K-MDPs (Ferrer-Mestres
et al. 2020), i.e. given an MDP and a parameter K representing a constraint in the number of states, generate
a reduced state MDP, called K-MDP, with at most K states. The authors presented a family of algorithms,
based on binary search on a precision parameter and state abstraction functions. However, while the resulting
K-MDP model and policies proved to reduce the complexity and increase the intepretability of solutions,
the state aggregations are computed with the human operator not playing an active role on deciding how
the aggregated states look. The K-MDP is computed according to an algorithm that minimizes the loss of
performance between the optimal original MDP policy and the optimal reduced K-MDP policy.

We tackle the challenge of including a human operator in the loop, and we propose to solve constrained K-
MDPs, i.e. Given an MDP M , a parameter K defining the maximum number of states and a set of constraints
C defining the states that must be aggregated together, generate a reduced MDP called constrained K-MDP
with at mostK states that have been aggregated according user preferences. The aim of this work is to increase
interpretability and explainability in MDP models and solutions in human operator domains by including the
manager or expert feedback in the loop. While we lose performance guarantees, we modify the K-MDP
according to what makes more sense for the user. The paper is organized as follows: Section 2 reviews
MDPs and K-MDPs; Section 3 defines the problem of solving constrained K-MDPs and Section 4 presents
an algorithm for solving constrained K-MDPs: (Enforced φ̄a∗dK-MDP). Finally, we evaluate our approach in
two conservation decision problems and we discuss results and future research.

2 MDPS AND K-MDPS

Markov Decision Processes (MDPs) are fully observable, probabilistic state transition models where the
decision-maker has complete information of the state of the system but is uncertain about the actions out-
come (Puterman 2014). More formally, we define a finite MDP M as a tuple 〈S,A, T, r,H, γ〉, where: S is
the fully observable state space; A is the set of actions the manager can choose to apply in a given state at
each time step; T is the transition probability function describing the stochastic dynamics of the system; r is
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the reward function describing the benefits and cost of performing an action a at a particular state s; H is the
planning horizon, and γ ∈ [0, 1] is a discount factor relating future rewards and costs. A discount factor lower
than one expresses that immediate rewards are more valuable than later ones.

The solution to an MDP is a function π : S → A, called policy, that maps states into actions and maximises an
optimisation objective. We can evaluate and rank the performance of different policies based on their expected
values given an optimisation criterion. V π(s) is the expected value of executing policy π starting in state s.
We denote π∗ an optimal policy and V ∗ the optimal value function. Formally, we define the value of a policy,
i.e. the value function as V π(s) = Eπ[

∑∞
t γtr(st, at)|s0 = s] (Bellman 1957). The optimal policy π∗

maximises this expected sum in any state: π∗ = argmaxπ E[
∑∞
t γtr(st, π(st))|s0 = s]. Solving an MDP is

polynomial in time (Papadimitriou & Tsitsiklis 1987).

2.1 K-MDPs

The problem of solving K-MDPs was introduced by Ferrer-Mestres et al. (2020).

Definition 1. Given an MDP M = 〈S,A, T, r, γ〉, Let us define a K-MDP as a tuple MK =
〈SK , A, TK , rK , γ, φ〉, where: SK the abstract state space with |SK | ≤ K; A is the same set of manage-
ment actions as in the original MDP model; TK : SK ×A× SK → [0, 1] is the abstract K-MDP probability
transition function; rK : SK × A→ [0, Rmax] the abstract reward function describing the benefits and costs
of the reduced state space system; φ a function that maps a state s in the original MDP to a state sK in the
abstract K-MDP; γ is the discount factor as in the original MDP.

An optimal solution for a K-MDP is a policy π∗K : SK → A that maximizes the expected sum of discounted
rewards and can be calculated using exact MDP solvers.

3 SOLVING CONSTRAINED K-MDPS

Reducing the size of the state space increases the interpretability of both MDP models and solutions. K-MDPs
are solved using a family of algorithms (Ferrer-Mestres et al. (2020)), but the resulting aggregated states are
computed as a “ black ” box, without any feedback from the user. We now propose to include the human in the
loop when aggregating states. Our approach requires an initial MDP, a parameter K defining the maximum
number of states and a set of constraints C defining what states must be aggregated together. Formally,

Definition 2. Given an MDP M = 〈S,A, T, r,H, γ〉, a constrained K-MDP is defined as a tuple M̄K =
〈SK , A, TK , rK , γ, φ̄, C〉 where:

• SK = {φ̄(s)|s ∈ S} the abstract state space with |SK | ≤ K and φ̄ a function that maps a state s in the
original MDP to a state sK in the abstract K-MDP. The inverse of function φ̄−1(sK) maps an abstract
state sK ∈ SK to its constituent states in the original MDP.

• A is the same set of management actions as in the original MDP model.

• TK : SK × A × SK → [0, 1] is the abstract K-MDP probability transition function providing the
probability of being in state s′K at time t + 1 given action a was implemented in state sK at time t,
TK(sK , a, s

′
K) =

∑
s∈φ̄−1(sK)

∑
s′∈φ̄−1(s′K) T (s, a, s′)ω(s), where the weights ω(s) represent a prob-

ability distribution over the original states that aggregate to an abstract state sK (Abel et al. 2016):

∀sK ∈ SK ,

( ∑
s∈φ̄−1(sK)

ω(s)

)
= 1, ω(s) ∈ [0, 1].

• rK : SK × A → [0, Rmax] the abstract reward function defined as a weighted sum over the original
states rK(sK , a) =

∑
s∈φ̄−1(sK) r(s, a)ω(s).

• C is a set of constraint with each constraint defining a a set of states that are forced to be aggregated
together. i.e. C = {c1, c2, . . . , cn} where ci = {s1, s2, . . . , sj}.

The optimal solution for a constrained K-MDP is a constrained policy π̄∗K : SK → A that maximizes the
expected sum of discounted rewards. The optimal policy can be applied to the original MDP using the mapping
function φ̄, with the associated value function V π̄

∗
K

φ̄
(s) = E[

∑t=H
t=0 γtr(st, π̄

∗
K(φ̄(st)))|s0 = s].
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Essentially, V π̄
∗
K

φ̄
represents the performance of the constrained K-MDP policy π̄∗K when applied to the

original MDP problem. In other words, we evaluate the performance of the reduced policy on the origi-
nal MDP model. We formulate the problem of finding the best reduced state space SK as a gap minimiza-
tion problem between the original MDP value function and the abstract constrained K-MDP value function
gap∗ = minSK∈P(S), |SK |≤K maxs∈S [V π

∗
(s) − V π̄

∗
K

φ̄
(s)]. The optimal gap gap∗ is the difference between

the optimal MDP value function V ∗ and the optimal associated constrained K-MDP value function V π̄
∗
K

φ̄
. Our

algorithms will aim to define constrained K-MDPs that minimise this gap (i.e. error). To do this, we first
define a state abstraction function, i.e. rule to group states together. This is a challenging procedure, because
the quality of the state grouping rules will influence the performance of the reduced MDP. Fundamentally,
the constrained K-MDPs definition adds a set of constraints on the states that forces them to be aggregated
together, to the definition of a K-MDP provided by Ferrer-Mestres et al. (2020).

4 PROPOSED ALGORITHMS TO SOLVE CONSTRAINED K-MDPS

We now propose an algorithm that take a set of constraints C defined by the manager and return a constrained
K-MDP, where, although the optimal constrained K-MDP policy does not minimize the loss of performance,
we gain on interpretability by including the manager in the loop. We first adapt the approximate transitive φa∗d
abstraction function and the φa∗dK-MDP algorithm. For clarity, we now call the state abstraction function,
φ̄a∗d , and the algorithm, φ̄a∗dK-MDP. For any pair of states s1 and s2, the approximate transitive abstraction
function φ̄a∗d satisfies

φ̄a∗d(s1) = φ̄a∗d(s2) =⇒ ās1 = ās2 &

⌈
V̄ ∗(s1)

d

⌉
=

⌈
V̄ ∗(s2)

d

⌉
, (1)

where d takes a value between 0 and VMAX, ās1 and ās2 are management actions, and V̄ ∗ is the con-
strained value function. According to Eq. 1, two states s1 and s2 can be aggregated if they belong to
the same bin and they have the same feasible actions. Our proposed Alg. 1 takes as input an MDP M ,
a constraint on the number of states K, a constrained value function V̄ ∗, a constrained policy π̄∗ and a
precision parameter ptarget. The algorithm performs a binary search on d and sorts the states into bins.

Algorithm 1 φ̄a∗dK-MDP

Require: M,K ≥ 1, V̄ ∗, π̄∗, ptarget, φ̄
1: d+ = VMAX

2: d− = 0
3: repeat
4: p = d+ − d−

5: d = d− + d+−d−

2

6: for s ∈ S do
7: bindings← [d V̄

∗(s)
d
e, π̄∗(s)]

8: end for
9: SK ← unique(bindings)

10: if |SK | ≤ K then d+ ← d
11: else d− ← d
12: until p < ptarget
13: M̄K ← BUILD-K-MDP(M,SK , φ)
14: return M̄K

Algorithm 2 Enforced φ̄a∗dK-MDP

Require: M,K, C, ptarget, φ̄
1: S̄ ← S
2: for c ∈ C do
3: s̄c = aggregate states(c)
4: S̄ = S̄ − {c}
5: S̄ = S̄

⋃
s̄c

6: end for
7: M̄ ← BUILD-K-MDP(M, S̄, φ̄)
8: π̄∗, V̄ ∗ ←SOLVE-MDP(M̄)
9: for s̄c ∈ S̄ do

10: π̄∗(s̄c)← āc
11: V̄ ∗(s̄c)← v̄c
12: end for
13: M̄K ← φ̄a∗

d
K-MDP(M,K, V̄ ∗, π̄∗, ptarget, φ̄)

14: return M̄K

4.1 Enforced φ̄a∗dK-MDP

Alg. 2 enforces the states specified in each constraint to be aggregated together in an independent bin, with any
other state not specified in the corresponding constraint. In other words, given a set of constraints C and ci ∈ C,
then ∀s ∈ ci, φ̄(s) = sKi and ∀s /∈ ci, φ̄(s) 6= sKi . Alg. 2 takes as input an MDP model M , a parameter
K denoting a maximum number of states for the constrained K-MDP, a set of constraints C, a precision value
ptarget and an approximate state abstraction function φ̄a∗d . The algorithm aggregates all states specified in
a given constraint c into an abstract constrained state s̄c (line 3) and it builds a state space of constrained
aggregated states S̄ (line 5). It then builds an MDP M̄ , with the set of constrained abstract states (line 7).
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Then, the procedure runs the φ̄a∗dK-MDP (line 13) but with some modifications to ensure that no other state is
aggregated to the abstract state defined by the constraint. To achieve this, the Enforced φ̄a∗dK-MDP algorithm
enforces each constrained abstract state s̄c to have a dummy optimal action āc (line 10) and a dummy value v̄c
(line 11). This will ensure that the constrained abstract state is not aggregated with any other state.

5 EXPERIMENTAL RESULTS

We report next the empirical results of our Enforced φ̄a∗dK-MDP algorithm when running on two different
computational case studies. All algorithms have been implemented with MATLAB R2020a and we solved the
MDPs and resulting constrained K-MDPs using the MDPtoolbox (Chadès et al. 2014). The discount factor
for all our problems is γ = 0.96 and the precision parameter has a value of ptarget = 0.0001.

Control of a population: Wolf Culling. Our first case study seeks to maximize the population of European
wolves while providing that the population remains between a maximum (Nmax) and a minimum (Nmin)
number of individuals (Marescot et al. 2013). There is one state variableXt denoting the number of individuals
at a given time t and a total number of |S| = 2000 states representing the population of wolves, with s1 = 0
individuals, s2 = 1 individual, . . . . Managers can choose between |A| = 11 actions designating the culling
rate from 0% to 100% with a discretization of 10%. Rewards increase with the abundance of individuals when
the current population is within Nmin and Nmax. The population persists between Nmin = 500 and Nmax =
1000 individuals. Running a plain φ̄a∗dK-MDP algorithm with K = 9, we obtain a gap of 0%, with a K-MDP
where states have been contiguously and linearly aggregated according to the population of individuals (Table
1). Table 1 shows the results of running the Enforced φ̄a∗dK-MDP algorithm. Each constraint is defined as an
interval of the population of individuals whose representative states must be aggregated together. For example,
constraint c = [0, 799] means that all the states s ∈ S, representing a number of individuals between 0 and
799, must be aggregated together in a single abstract state sK . In this example, this corresponds to states
from s0 to s800. For the first and second instances, we force the constrained K-MDPs to have K = 3 and
K = 4 constrained abstract states, producing policies with 20% and 33.4% of gap respectively. The optimal
constrained policy shows the optimal harvest rate for each group of states. For the third instance, we define 5
constraints andK=5, and our Enforced φ̄a∗dK-MDP algorithm computes a constrainedK-MDP with 15.7% of
gap. The optimal constrained policy is to perform 0% culling when the number of individuals is less than 800,
40% culling when the number of individuals is between 800 and 1199, 50% when the population ranges from
1200 to 1599 individuals and 60% culling when the population is higher than 1600 individuals. We reduced the
original MDP from 2000 states, to first, K = 9 abstract states, with 0.0% gap, and then, to K = 3 states, and
according to user preferences, running the Enforced φ̄a∗dK-MDP algorithm. Fig. 1 shows the policy graphs
for each instance. Each node represents a range of individuals, according to each defined constraint, and edges
represent the optimal action and its probability of transitioning to other actions. The original optimal policy
would have required 3000 nodes with at most 23000 edges instead of 5 nodes with at most 25 edges for K = 5.

A B C

Figure 1. Constrained K-MDP policy graphs for the Wolf culling problem.

Recovering two endangered species: Sea Otter and Northern Abalone. Our second case study was de-
scribed by Chades et al. (2012). The objective is to maximize the abundance of two endangered species, the
sea otter (Enhydra lutris kenyoni) and the northern abalone (Haliotis kamtschatkana). Two state variables, Xt

and Yt, denote the abundance of sea otter and the density of northern abalone at a given time t. This problem
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Table 1. Performance of the Enforced φ̄a∗
d
K-MDP algorithm. First column presents the case study and the result of

running a plain φ̄a∗
d
K-MDP algorithm. Column 2 shows the constraints. Column 3 the value of K. Column 4 reports the

gap. The rightmost column shows the constrained optimal policy for each instance.
Case study Constraints K error (%) π̄∗

K Time (sec.)
c1 = [0, 799]
c2 = [800, 1499]
c3 = [1500, 1999]

3 20%
0% culling
40% culling
60% culling

1.92

Wolf culling
|S| = 2000, |A| = 11

K = 9
error= 0.0%

c1 = [0, 499]
c2 = [500, 999]
c3 = [1000, 1499]
c4 = [1500, 1999]

4 33.4%

0% culling
20% culling
50% culling
60% culling

1.74

c1 = [0, 399]
c2 = [400, 799]
c3 = [800, 1199]
c4 = [1200, 1599]
c5 = [1600, 1999]

5 15.7%

0% culling
0% culling
40% culling
50% culling
60% culling

1.75

c1 = {so :< 200}
c2 = {so : [200, 4000]} 2 9.46%

Introduction
Anti poaching

0.13

Sea Otter and
Northern Abalone
|S| = 819, |A| = 4

K = 5
error = 1%

c1 = {so :< 200}
c2 = {so : [200, 3500]}
c3 = {so : [3500, 4000]}

3 1.65%
Introduction
Antipoaching
Half control

0.18

c1 = {na :< 0.2 AND so :< 500}
c2 = {na :< 0.2 AND so : [500, 3000]}
c3 = {na :< 0.2 AND so :> 3000}

5 25%

Introduction
Antipoaching
Control
Antipoaching
Antipoaching

0.24

has been modeled as an MDP with 819 states representing the population of both species, and 4 actions: Intro-
ducing otters (I), anti poaching (AP), control sea otters (C) and one half anti poaching and one half control sea
otters (H). We run our φ̄a∗dK-MDP algorithm and we reduce the state space up to K = 5 with a gap of only
1%. The second half of Table 1 shows the results of running our Enforced φ̄a∗dK-MDP algorithm. For the first
instance, we defineK =2 and two constraints on the abundance of sea otter; one denoting the abundance being
smaller than 200, and the other one denoting the abundance ranging between 200 and 4000, independently on
the density of northern abalone. The optimal constrained policy is to introduce sea otters when its abundance is
less than 200, and anti poaching measures in any other case. The constrainedK-MDP has a gap of only 9.46%.
For the second instance, we define K = 3 and 3 constraints defining those states where the abundance of sea
otter is i) less than 200, ii) between 200 and 3500 and iii) between 3500 and 4000. The optimal constrained
policy is to introduce sea otters when the abundance is small (less than 200), anti poaching measures when the
abundance is between 200 and 3500 and half control and half anti poaching when the abundance of sea otter is
higher than 3500. The resulting constrainedK-MDP has an gap of only 1.65%. For the last instance we define
3 constraints and a value of K = 5, letting the states that are not defined in the constraints to be aggregated
according to the algorithm. The first constraint enforces to group those states where the density of northern
abalone is lower than 0.2 and the abundance of sea otter is smaller than 500; in the second constraint, we group
states when the density of northern abalone is below 0.2 and the abundance of sea otter is between 500 and
3000; and, the last constraint arranges states with a density of northern abalone below 0.2 and an abundance
of sea otter greater than 3000. Interestingly, the resulting constrained K-MDP with K = 5 has a gap of 25%.
Fig. 2 shows the optimal constrained K-MDP policy graphs with 2, 3 and 5 states respectively. The original
policy would have required 819 nodes with at most 2819 edges instead of 2 nodes with at most 22 edges.

6 CONCLUSIONS

Motivated by the need to provide easier to interpret models and policies for MDPs, and to increase the uptake
of artificial intelligence in human operated domains, we proposed to include the human in the loop, and we
solve constrained K-MDPs. Our approach finds the best possible policy of size K while grouping together
those states defined in each constraint. We have shown how users can define constraints to reduce the size of
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A B C

Figure 2. Constrained K-MDP policy graphs for the sea otter and northern abalone problem.

MDP models and policies to a few meaningful states, while retaining most of its value. For the wolf culling
problem, we have reduced the size of the policy graph from 2000 states to 5 states with a gap of 15.7%.
For the sea otter and northern abalone problem we have reduced the size of the policy graph from 819 states
to 3 states with a gap of only 1.65%. This represents a considerable reduction of the state space at a small
performance cost. The resulting constrainedK-MDP policies are consistent with the original optimal policies.
Modelers can choose how much they want to reduce MDP models and how they want to group these states to
make models and policies more compact and interpretable. Future work will study how different choices of
constraints for a same value of K, affect the computation of the constrained K-MDP.
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