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Abstract: Flash floods are amongst the most complex and destructive phenomena. An abundance of 
process-based and data-driven models was proposed to serve as decision support tools for flood management 
authorities. While various observed hydrological and meteorological characteristics were usually used as an 
input for flash flood modelling, it was also found that integrating rainfall forecasts could considerably enhance 
the models’ predictive ability. This study focuses on finding reliable and efficient data-driven rainfall 
nowcasting models (0-2h lead time). These models could then be integrated into a short-term flash flood 
prediction framework to investigate the framework performance including the effect of the precipitation 
nowcasts on the reliability of the modelling results. It is important to note that only data from rain gauges 
located on the same watershed are used to predict future precipitation. Rainfall data obtained from two rain 
gauges installed in the Spring Creek watershed, Ontario, Canada were used in this study. The investigated 
watershed is highly urbanized and prone to flash floods. Investigated data spanned four years from 2013 to 
2016. We tackled this data-driven modelling problem from two perspectives: (1) an algorithmic and (2) a data-
centric. From the algorithmic perspective, a comparative study of three data-driven models was performed. 
These models included the status quo persistence model, the statistical AutoRegressive Integrated Moving 
Average (ARIMA) model and the deep learning Long Short-Term Memory (LSTM) model. These models 
were applied to each time series to predict rainfall in the respective rain gauge location (univariate modelling).  
Following the data-centric approach, data from both sensors were combined into one dataset to predict rainfall 
in each sensor location (multivariate modelling). Lagged rainfall values from the sensor at the target location 
and the adjacent sensor were fed into an LSTM model to predict rainfall at the target location. Models were 
created for each investigated year for lead times ranging from 15 minutes to 60 minutes (corresponding to the 
time scale of the investigated rainfall events). Data for each year were chronologically split into training and 
testing with a 70%:30% split ratio. Root Mean Square Error (RMSE) and Maximum Residual Error (MRE) 
were used as evaluation metrics. Obtained results 
showed that overall, according to the estimated 
RMSE, LSTM demonstrated a better 
performance for all years except the year 2015. 
Figure 1 depicts models’ performance for 2013 at 
the Hart Lake location using single sensor data. 
Further analysis revealed that the year 2015 had 
major hydrological pattern difference between 
the training and testing sets. MRE did not indicate 
major variations between the years; it was found 
that all the models performed approximately at 
the same level as the persistence model. The 
models failed to predict extreme values 
accurately. The data-centric approach, however, 
showed different results.  According to the 
RMSE and MRE metrics, LSTM models trained 
using data from both sensors demonstrated major 
improvement on data from years 2014 and 2015 
for both target areas. Evaluation of the model performance on data from years 2013 and 2016 gave inconsistent 
results. Further investigation showed that the improvement in the model predictive ability coincided with the 
sensors’ location and the dominating wind direction in the modeled years. In general, combining data from 
multiple sensors when used with the LSTM model showed promising results. Further extension of input 
variables including meteorological data collected on the investigated watershed will be the next step of the 
presented study. 
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Figure 1. Models performance in terms of RMSE on 
Heart Lake location 2013 data. 

24th International Congress on Modelling and Simulation, Sydney, NSW, Australia, 5 to 10 December 2021 
mssanz.org.au/modsim2021

295

https://orcid.org/0000-0003-3498-678X
https://orcid.org/0000-0002-7027-7190


Mhedhbi and Erechtchoukova, Data-driven modelling approaches for rainfall nowcasting 

1. INTRODUCTION 

This study stems from a framework for short-term prediction of hydrological events using the machine learning 
(ML) approach. The framework requires only data generated by hydrological monitoring networks and are 
readily available almost in real time. Foundational work conducted by Erechtchoukova et al. (2016) proved the 
effectiveness of this framework as a warning tool for flash flood events. The proposed framework generates a 
trained model, which takes past observed rainfall and stage measurements as input to predict the occurrence of 
flood events. In practice, flood management teams usually receive a meteorological forecast including rainfall 
nowcasting from Environmental Agencies and submit the forecast as a part of input data to a process-based 
model predicting hydrological conditions on a watershed. Therefore, modification of the framework to include 
rainfall predictions into a set of independent variables is strongly desirable.   

This idea finds its support in the research community. Tao et al. (2015) reported that introducing Ensemble 
Precipitation Forecast products in a hydrological model remarkably enhanced water discharge prediction. Song 
et al. (2019) showed that, with the use of future rainfall values, regression models successfully predicted flood 
events. Brendel et al. (2020) proved the effectiveness of integrating quantitative precipitation forecasts in an 
urban flooding hydrology model. In a similar study, Ko et al. (2020) worked on enhancing short-term intensive 
rainfall forecasts to improve a hydrologic model’s predictive ability.  

This study investigates data-driven regression models for rainfall forecasting using data available on a 
watershed. The goal is to find a suitable model to generate short-term precipitation predictions in an efficient 
way. These predictions will be integrated into the short-term flash flood prediction framework to investigate 
the extended framework performance including the effect of the precipitation nowcasts on the reliability of the 
modelling results. It is important to note that only data from rain gauges located on the same watershed are 
used to predict future precipitation.  

 

2. METHODOLOGY 

2.1. Background  

Modern approaches to rainfall nowcasting heavily rely on available data sources and mathematical and 
computational techniques.  These approaches include Numerical Weather Prediction (NWP) using simulation 
models describing physical atmospheric and oceanic processes, data assimilation which combines and adjusts 
the results of simulations with newly obtained observation data, radar nowcasting modelling which is based on 
relatively simple extrapolation of radar data. Given the large volumes of accumulated data and the growing 
availability of open-source data analytics software, data-driven approaches attract the attention of researches 
and practitioners. 

A plethora of data-driven prediction models was proposed for rainfall nowcasting in the literature. Statistical 
and machine learning models represent two main subcategories. AutoRegressive Integrated Moving Average 
(ARIMA) models are considered among the most widely used statistical model. With the growing popularity 
of machine learning, a large number of learners was proposed.  These learners range from relatively simple 
linear regression algorithms to more sophisticated ones such as Artificial Neural Networks (ANNs) 
(RanjanNayak et al.  (2013)). 

 Depending on the characteristics and the scale of the modeled rainfall phenomenon, different models were 
found suitable. Toth et al. (2000) compared the performance of several data-driven models. The investigated 
models included  AutoRegressive Moving Average (ARMA), ARIMA, ANN and, K-Nearest Neighbor models 
(KNN). The rainfall prediction lead time spanned from one to six hours. The authors reported that ANN 
delivered the best predictive performance and improved rainfall-runoff modelling. Nasseri et al. (2008) 
integrated ANN with the multi-sensor data from rain gauges for short-term rainfall prediction. Genetic 
Algorithm (GA) was used to select informative subset of rain gauges. The prediction lead time ranged from 
one to 150 minutes. The authors applied sensitivity analysis to determine the best lag times for input variables 
and the best surrounding stations. It was found that ANN coupled with GA for network optimization 
consistently outperformed the ANN. Using a simpler machine learning model, Nikam and Gupta (2014) trained 
a Support Vector Machine (SVM) based model for very short-term intensive rainfall forecasting with lead 
times varying from five to 20 minutes. A rainfall event was considered intensive if the intensity exceeded 50 
mm/h. The authors found that their model gave satisfactory results when different models were trained for 
different rainfall ranges. However, it was also found that the proposed model underestimated peak values.  
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Recently, a lot of attention was shifted toward the application of deep learning algorithms in meteorological 
modelling. Particularly, Long Short-Term Memory (LSTM) models demonstrated superior performance in 
many studies. Shi et al. (2015) applied a Convolutional LSTM (ConvLSTM) sequence-to-sequence model for 
rainfall prediction based on radar maps. The forecasting window spanned up to six hours. The proposed model 
was compared with the Fully Connected-LSTM (FC-LSTM) model and a radar extrapolation technique called 
Rover. It was found that ConvLSTM significantly outperformed both models thanks to its ability to capture 
spatio-temporal variations. Based on the LSTM model architecture, Sato et al. (2018), also proposed a model 
for rainfall forecasting called PredNet. The model takes as input maps of rainfall amounts and outputs frames 
for the next 10 timesteps with five minutes resolution. The proposed model was compared with the Gated 
Recurrent Unit (GRU) network model for both classification and regression tasks and was found to outperform 
the compared model. It was also reported that the model performed better at the classification task than the 
regression task.  

Overall, a wide variety of data-driven models was proposed for rainfall modelling. However, modelling for 
rainfall nowcasting was not investigated extensively. More specifically, very short-term rainfall prediction 
based on limited input variables (e.g., only rainfall gauges measurements) was not fully addressed.  

2.2. Data-driven rainfall prediction models  

The aim of this study was to find a data-driven regression model that has a satisfactory predictive ability to fit 
the short-term flood prediction framework. Due to data limitations, this model takes only ground-based rainfall 
measurements. To tackle this modelling problem, we considered two approaches. The first is an algorithm-
centric approach wherein we investigated the performance of several data-driven models using single sensor 
data. The second approach is data-centric. Based on the latter approach we combined data coming from 
neighboring sensors to predict the rainfall at the target location. 

In the context of the algorithm-centric approach, we investigated the performance of the persistence, 
AutoRegressive Integrated Moving Average (ARIMA), and LSTM models.  

The persistence model is a trivial model. It assumes that atmospheric conditions remain constant. The model 
predicts rainfall at the time (t + lead time) using rainfall value at time t. It is also called the naïve model. This 
model is used as a baseline for the comparative analysis.  

The ARIMA model is a popular statistical time series forecasting model. It consists of two components. The 
first component is a linear combination of observed values (deterministic). The second component is the sum 
of random errors (stochastic). Future values of the time series variable  𝑌𝑌𝑡𝑡 are predicted according to the formula 
presented in equation (1):  

                 𝑌𝑌𝑡𝑡 =  𝛽𝛽1 𝑌𝑌𝑡𝑡−1 +  𝛽𝛽2 𝑌𝑌𝑡𝑡−2 + . .  + 𝛽𝛽𝑝𝑝 𝑌𝑌𝑡𝑡−𝑝𝑝 + 𝜖𝜖𝑡𝑡 +  𝜑𝜑1𝜖𝜖𝑡𝑡−1 + 𝜑𝜑2𝜖𝜖𝑡𝑡−2+ . .  + 𝜑𝜑𝑞𝑞𝜖𝜖𝑡𝑡−𝑞𝑞,                         (1) 

where 𝜖𝜖𝑡𝑡 is the random error at time t,  𝛽𝛽𝑖𝑖   (𝑖𝑖 = 1 . . 𝑝𝑝) and 𝜑𝜑𝑖𝑖  (𝑖𝑖 = 1 . . 𝑞𝑞) represent the model parameters; p is 
the autoregressive component order and q is the moving average component order. It is important to note that 
depending on the degree of differencing d, the variable 𝑌𝑌𝑡𝑡 would be differenced d times before being modeled 
using equation (1).   

LSTM is a variant of the Recurrent Neural Network (RNN) architecture. The latter is a type of ANN 
architecture that models sequential data. Unlike traditional ANN, RNN models the dependencies between input 
data by adding links between inter-layer nodes. The RNN model was found to deliver good performance for 
time series modelling. Nonetheless, due to its recurrent architecture and when the number of layers increases, 
this architecture is prone to the vanishing gradient problem. That is, changes in later layers cannot be reflected 
in the preceding layers. This renders the RNN architecture unable of capturing long-term dependencies. LSTM 
was thus proposed to tackle this issue (Pascanu et al. (2012), Jozefowicz  et al. (2015)). LSTM architecture is 
mainly characterized by its memory cells. A memory cell helps to conserve information from one LSTM block 
to another which gives the model the ability to capture and represent long-term dependencies. LSTM networks 
are therefore capable of modelling both short-term and long-term dependencies, which makes them an 
attractive tool for time series modelling (Lipton et. al (2015)).  

The second approach we considered for rainfall modelling focused on the data used rather than the modelling 
algorithm. For each prediction location, lagged rainfall values from the target and neighboring locations were 
used as input. To determine the lag time of adjacent gauges, we conducted an analysis of the time difference 
between the beginning of rainfall events at the adjacent gauges and the target gauge. Based on the distribution 
of time differences, a suitable number of lags was used for each gauge.  
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2.3. Evaluation metrics 

Various evaluation metrics are used for rainfall modelling.  In this study, the Maximum Residual Error (MRE) 
and the Root Mean Squared Error (RMSE) were selected to assess the compared models’ performance. MRE 
was considered because it reveals the maximum error committed while RMSE penalizes large errors. These 
properties are of particular importance since we intend to integrate the forecasted values in the flash flood 
prediction framework. Equations (2) and (3) represent the formulae for MRE and RMSE respectively:   

                                                          𝑀𝑀𝑀𝑀𝑀𝑀 =  𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖��𝑌𝑌�𝑖𝑖 −  𝑌𝑌𝑖𝑖��,                                                                  (2) 

                                                            𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  �1
𝑁𝑁

 ∑ ( 𝑌𝑌�𝑖𝑖 − 𝑌𝑌𝑖𝑖)2,𝑁𝑁
𝑖𝑖=1                                                              (3)                                                      

where 𝑌𝑌𝑖𝑖 represent the observed value and 𝑌𝑌�𝑖𝑖 is the predicted value by the model. 

 

3. DATASET AND ITS SOURCES 
 

Computational experiments were conducted on data collected by the Toronto and Region Conservation 
Authority (TRCA) monitoring network.  
The studied area covers the Spring Creek 
watershed and is situated in the southern 
part of the Peel Region, Ontario, Canada. 
The rainfall time series are recorded by rain 
gauges installed on the studied area. The 
rain gauges were placed in Heart Lake (HL) 
and Mississauga Works Yard (M) locations 
(Figure 2).  Observed values span the warm 
period (April-December) of four years from 
2013 to 2016. It is also important to mention 
that rain gauges generate data with five 
minutes temporal resolution. To have a 
better understanding of the considered 
dataset, Table 1 presents summary statistics 
of the measured rainfall amounts at the HL 
observation site during the considered years. 
Table 1 shows that the studied years have 
distinct hydrological characteristics. With an accumulated rainfall amount of 780.2 mm during the warm 
period, the year 2013 was considered wet. The remaining years were considered dry. 

 

4. DATA PREPROCESSING AND EXPERIMENTAL SETTINGS 

Before the modelling phase, the collected data needs to go through data pre-processing which includes data 
cleansing and transformation. Missing and erroneous values were first identified. Data analysis revealed that 

such values corresponded to a dry period. The faulty records 
were therefore imputed with zero values. Further, the used 
time series were characterized by a fine granularity (five 
minutes). Thus, upscaling was performed to transform the 
temporal resolution from five minutes to 15 minutes. 

The experiments were conducted using Python programming 
language version 3.7. This software tool offers a wide variety 
of packages for time series processing and modelling, it is 
characterized by its ease of use and significant community 
support. Overall, three sets of experiments were performed. 
These sets correspond to the application of the persistence, 
ARIMA, LSTM and multi-sensor approach to each of the 

studied years. Models for lead times ranging from 15 min to 60 min were created. Further, data corresponding 

Table 1. Summary statistics of rainfall at 
Hart Lake observation site 

Year Accumulated 
rainfall (mm) 

Maximum 
observed 
rainfall (mm) 

* 
2013 780.2 17.6 
2014 529.2 13.2 
2015 527.8 12.6 
2016 289.4 11.2 

* Maximum observed rainfall values with 15 min 
granularity. 

Figure 2. Rain sensors installed at Spring Creek watershed 
(TRCA real-time gauging). 
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to each year were chronologically split to train and test sets. 70% of the data were used for models’ training 
and 30% for models’ error estimation.  

The persistence model was directly applied to the test set, as it does not involve any model training. To create 
the ARIMA estimator, a modelling procedure was adopted. First, data were checked for stationarity. Auto 
Correlation Function (ACF) and Partial Auto Correlation Function (PACF) plots were produced and examined 
to get insights about the maximum values of the moving average and the autoregressive parameters, q and p 
respectively. The models were then created for different combinations of q and p while taking into account 
their maximum values. The best performing model was selected according to the Akaike information criterion, 
which is a statistical measure of the goodness of fit of an estimator.  Selected model performance is assessed 
on the holdout test sample. The Python package ‘statsmodels’ was used to automate this procedure.  

To develop LSTM models several steps were performed. The time series values were first normalized using 
the MinMax scaler. Obtained data were then transformed into a  format of input-output variables, wherein the 
input variables represented lagged measurements of rainfall prior and up to time t and the output variable 
represented a precipitation magnitude at the prediction time (t + number of prediction time steps). To determine 
the suitable number of the lagged measurements, insights from ACF and PACF plots were taken into account. 
A trial-and-error procedure was then applied to pick the number of steps appropriate for each dataset. 
Furthermore, the ADAM optimizer was used for model training. The architecture consisted of a number of 
stacked LSTM hidden layers and a fully connected dense layer. Various hyperparameters were considered. We 
ranged the number of layers and the number of units in each layer. We also considered several values for the 
learning rate, batch size and the number of epochs. RELU, SIGMOIND and TANH functions were also tested 
out for the transfer function. A randomized hyperparameters search was applied for the hyperparameter tuning 
process. This is a combination of hyperparameters  selected randomly from a set of all possible combinations. 
LSTM models were created based on TensorFlow 2.5 deep learning package and Keras 2.5 library. The latter 
uses TensorFlow as an engine and offers abstraction to facilitate modelling process. Automated hyperparameter 
tuning was performed using Keras tuner framework for each developed model. 

It is important to add that all algorithms were first compared using data coming from a single sensor, i.e. rainfall 
at each location was predicted based on historic data from the same location. In the data-centric approach, 
multi-sensor data were fed into the LSTM model. That is data from both HL and M were used to predict rainfall 
at HL and M locations.   

5. RESULTS AND DISCUSSION  

Figure 3 presents the predictive ability of the investigated models in terms of RMSE on HL location using 
solely HL data. Overall, the persistence model delivered the worst performance. The remaining compared 

models gave inconsistent 
results for different 
modelled years. While in 
2013, the LSTM model 
significantly outperformed 
the other models with a 
decrease in RMSE reaching 
roughly 30%, in the other 
years results were different. 
In 2014 and 2016, the 
LSTM model delivered 
comparable results to those 
of the ARIMA model. 
However, the LSTM model 
had the largest error on data 
for the year 2015. Further 
analysis of the hydrological 
characteristics of the 
precipitation in 2015 
showed salient 
discrepancies in rainfall 
distributions between the 
training and the testing sets 

periods. The model was thus unable to learn all the hydrological patterns due to the non-representativeness of 

Figure 3. Persistence, ARIMA, and LSTM models’ performance in terms of 
RMSE on the rainfall prediction task at HL location using data from HL sensor.  
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the training set. Overall, even though the LSTM model yielded superior performance in some years, its 
superiority cannot be generalized and largely depends on the patterns in hydrological conditions within a single 
year. Therefore, a greater focus should be placed on data representativeness rather than model sophistication.  

In addition to the RMSE, models were compared using MRE evaluation metric. It was found that all the models 
performed comparably similar to the naïve model (around 9 mm for 2013, 12 mm for 2014, 4 mm for 2015 
and 2016). Error analysis showed that the models erroneously predict extreme peak values that occurred at the 
beginning or end of the rainfall events. 

Figures 4 and 5 present the 
MRE obtained from the 
multi-sensors (or data-
centric) approach models. 
Figure 4 compares the 
rainfall prediction error at 
the HL location calculated 
taking as input only data 
from HL rain gauge with 
the ones calculated based 
on data from both M and 
HL observation sites. 
Figure 5 presents the 
results for rainfall 
prediction at the M 
location. Contracting the 
results obtained from the 
first set of experiments for 

algorithm-centric 
approach, and depending 
on the investigated year 
and location, the trained 
model showed major 
improvement in MRE 
estimated on the testing 
sets. Overall, the results 
demonstrated that 
combining results from 
both stations enhanced the 
models’ predictive ability 
in both locations for 2014 
and 2015. Nevertheless, 
while integrating 2013 
data from both gauges 
significantly increased the 
performance for location 
M, the model performance 
dropped for HL location. 
Combining 2016 data from 
both gauges failed to 
enhance the performance 
as well. This fact can be 
explained by dominating 
meteorological conditions 
on the watershed varying 
from year to year. 

Archived data obtained from the Environment Canada website showed that records for 2013 mostly represent 
winds blowing from north to south. Given that the HL is located in the northern part of the investigated 
watershed and M gauge is installed on the southern part, the improved prediction at the location M while data 
from both gauges are utilized can be easily justified.   

Figure 4.  LSTM rainfall prediction model performance at HL location using 
data solely from HL sensor and a combination of both datasets from HL and 
M 

Figure 5. LSTM rainfall prediction model performance at M location using data 
solely from M sensor and a combination of both datasets from HL and M 
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6. CONCLUSION 

In general, we found that for rainfall nowcasting using univariate data (data obtained from a single sensor), the 
LSTM model outperformed the ARIMA and naïve models with the exception of the year  2015, where major 
discrepancies in the rainfall distribution were observed. Nonetheless, all the models were unable to accurately 
predict extreme values and performed similarly to the naïve model. Computational experiments showed that 
integration of data from several sensors brought major improvement to models’ performance depending on the 
hydrological characteristics of the year and the location of sensors. More specifically, using lagged values from 
sensors that coincided with the dominating direction of the air flow enhanced models’ predictive ability 
considerably. 

 Obtained results revealed that the data-centric approach (combining multiple sensors) along with the LSTM 
model gave promising results. Thus, more focus should be placed on data representativeness and richness. On 
the next step of the study, the uncertainty analysis of predicted rainfall magnitudes will be performed.  Future 
work will be based on the application of the LSTM model to datasets from multiple sensors which selection 
will be done according to meteorological data analysis.  
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