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Abstract: Fully homomorphic encryption (FHE) schemes are regularly referred to as solutions for both privacy 
and security aspects in cloud computing. They allow a user’s data to be encrypted in such a way that the cloud 
provider can still blindly manipulate the encrypted data on the user’s behalf, i.e. by running some computations 
(called “circuit”) on the encrypted data. Since its discovery a decade ago, FHE has become an active field of 
research with many encryption schemes proposed. When compared to non-FHE cryptographic functions, most 
of the FHE schemes require much larger memory space and longer execution time for their basic operations 
such as encrypt, decrypt and recrypt. This makes designing and experimenting with FHE circuits that have 
more than a few basic operations a very challenging task.

We present in this paper an implementation of Gentry’s lattice-based FHE scheme as a plugin in Workspace. 
Workspace is a world-leading workflow software that allows to implement computational functions as operations 
then to reuse and rearrange them in a workflow to achieve larger and more complex functions. The operations’ 
input and output data can be easily “wired” between the operations and Workspace automatically takes care of 
referencing the data, thus avoiding unnecessarily copying it between functions. The operations themselves are 
executed on a need-to-run basis, i.e. only when their outputs are required by some other executing operations 
and their inputs have been changed since their last execution. This can lead to a significant improvement 
in terms of both execution time and memory space required if the transitional data is large as in many FHE 
schemes. We experiment with this implementation in Workspace by creating a few basic circuits such as the 
obfuscated if . . . then . . . else . . . statement and the MIN(a, b) and MAX(a, b) functions on encrypted data.
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1 INTRODUCTION

A fully homomorphic encryption (FHE) scheme is one that allows to perform arbitrary computations on
the encrypted data (ciphertext) without compromising the confidentiality of the data or the validity of the
computations. FHE has many potential applications as it solves the problem of trust computing. The owner of
the data can encrypt it and safely delegates the data processing task to a potentially untrustworthy third-party to
run on the encrypted data. The third-party can process the data without being able to comprehend it. Only the
rightful owner of the data who has the private key can decrypt the result of the processing task. Healthcare data
processing and cloud computing are two immediate examples of FHE applications.

The concept of homomorphic encryption was introduced shortly after RSA was invented. It was noted that
RSA is multiplicatively homomorphic: since the ciphertext is the cleartext raised to a fixed exponent (the public
key), multiplying two ciphertexts together is the same as multiplying the two cleartexts and raised the product
to the same exponent. Over the coming years, a number of cryptosystems are known to be either additively
homomorphic (e.g. Paillier) or multiplicatively homomorphic (e.g. ElGamal) but not both. Many candidates to
a fully-homomorphic encryption scheme have been shown to be insecure.

Three decades after the concept was introduced, Gentry published in his thesis Gentry [2009] in 2009 the
first provably secure FHE scheme. The breakthrough of Gentry’s scheme is in making a “weaker” somewhat
homomorphic scheme able to homomorphically compute its own decryption function.

In 2011 Gentry and Halevi published a paper on an implementation of Gentry’s FHE scheme based on ideal
lattices Gentry and Halevi [2011]. The idea of using ideal lattices as ciphertext spaces is similar to one in
an implementation by Smart and Vercauteren published in 2010 Smart and Vercauteren [2010]. Smart and
Vercauteren’s implementation was not able to support large enough parameters to become fully homomorphic.
Gentry and Halevi’s implementation introduced many optimisations and innovating techniques that made
it capable of homomorphically evaluate its own decryption function. Hence it is considered the first fully-
homomorphic encryption implementation.

There have been many successful implementations of FHE schemes over the years: NTRU-based, GSW, CKKS
schemes. They bring various optimisations to, or either replace or eliminate some procedures of Gentry and
Halevi’s original implementation.

Our implementation presented in this paper follows Gentry and Halevi’s original implementation in Gentry and
Halevi [2011] as it allows for a comprehensive understanding of the challenges and optimisation techniques
relevant to the early FHE schemes.

Recently a team at Google led by Shruthi Gorantala has developed a FHE transpiler Gorantala et al. [2021];
Google [2021]. It can convert a program written in C++ into a program in FHE-C++ that runs on encrypted
inputs. The transpiler works independently of the underlying FHE scheme implementation. This separation
is also reflected in our choice of implementing FHE in two separate components: a backend component that
performs the basic cryptographic functions based on Gentry’s ideal lattices and a frontend component that offers
a user-friendly GUI to create homomorphic circuits on encrypted data.

We implement the frontend component as a CSIRO Workspace plugin. Workspace CSIRO [2021] is a powerful
scientific workflow framework that lets users implement their own functions as Workspace operations. The
users can then drag and drop those operations onto a canvas and connect their inputs and outputs to create
a more complex workflow. Workspace optimises the execution of workflows by running or re-running the
operations on a need-to-run basis, i.e. only when their outputs are required by some other executing operations
and their inputs have been changed since their last execution. Workspace automatically references data so to
avoid unnecessary copying large data between operations.

The rest of this paper is organised as follows. The details of our implementation is presented in Section 2 where
we present the backend component and discuss various domain parameters. We also present our implementation
of the frontend component and give some examples of homomophic circuits in Workspace. We conclude the
paper in Section 3.

2 IMPLEMENTATION

We implement Gentry’s fully-homomorphic encryption scheme as it is described in Gentry and Halevi [2011].
We add some extra functionalities such as homomorphic addition, substraction and multiplication of whole
bytes. We also implement a homomorphic equivalence of the if . . .then . . .else . . . statement and the
MIN(a, b) and MAX(a, b) functions where a, b are bytes.
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Figure 1. A circuit encrypting two bits, homomorphically xor’ing the ciphertexts then decrypting the result

Figure 2. Communications between frontend and backend processes

The implementation uses C++. It is divided into two parts: the backend and the frontend. The backend is a 
collection of basic functions such as key generations, encrypt and decrypt bits, logical gates on bits, etc. The 
backend is open-source, released under LGPL v2.1 and available at Nguyen [2021].

The frontend is developed as a plugin for the CSIRO Workspace software. It aims at providing a user-friendly 
interface to create customised homomorphic circuits on encrypted data. The users can therefore use Workspace 
with this plugin to drag and drop operations representing the basic functions of the backend component onto the 
Workspace canvas, to connect the operations and form a complete homomorphic circuit. Figure 1 shows such a 
circuit that:

1. encrypts two bits a, b,

2. homomorphically XOR the encrypted data,

3. decrypt the ciphertext so the users can check the resulting bit is the equal a⊕ b.

The collection of operations in Figure 1 is called a workflow in Workspace. The users can tell Workspace to
execute a workflow which will then run the homomorphic circuit contained in it.

Behind the scene, what actually happens is that the frontend and the backend are two separate processes. The
frontend gives the order to the backend to run the corresponding basic functions and receives the result when
they finish. The communication is done via some asynchronous inter-process communication APIs and is
illustrated in Figure 2.

2.1 FHE backend

Our FHE backend component is implemented as a standalone application. It uses Shoup’s NTL library Shoup
[2021] to perform modular arithmetic on large numbers and high degree polynomials. The backend source code
is available at Nguyen [2021] under the LGPL v2.1 license.
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Figure 3. Paralleled calculation of vectors y, z using OpenMPI

The backend component lets the users set all domain parameters as described in Gentry and Halevi [2011]. In 
particular, we ran tests with lattices of dimensions n = 512, 1024, 2048 and with fn(x) = xn + 1. The vector 
coefficients are 380-bit integers. That is, every vector is an array of n numbers, each number is N  = 380 bits.

Based on existing works of attacking the BDD problem, Gentry estimates that setting n = 2048 would offer 
a security guarantee of at least equivalent to that of RSA-1024, i.e. with a scheme complexity of 280 on the 
lattice.

Another type of attack is the birthday attack (collision attack) on the coefficients of the noise vector r . It is 
known that if r has l bits of entropy then the birthday attack can recover the noise in 2l/2 time. Since we 
would like to keep the noise vector small on a new ciphertext, this leads to r eoff on choosing the number

p of nonzero coefficients for r. Therefore with a noise vector having p log
(
n
p

)
bits of entropy it is unlikely

that a collision occurs in time less than 280 (equivalent to RSA-1024 security guarantee) if p ≥ 15. In our
implementation we choose random noise vectors having between 15 and 20 nonzero coefficients, in line with
Gentry’s recommendation.

We also implement Gentry’s polynomial inverting algorithm that runs in time O(N) compared to O(nN) by
FFT. This algorithm works because of the special form of the divisor fn(x) = xn + 1.

The procedures to compute public-private key pairs, encryption and decryption are relatively fast. They are
done in under a few milliseconds on a single 2.5GHz CPU. The recryption Gentry and Halevi [2011] is by far
the most time-consuming procedure. Recryption is done in two steps:

1. Computes two helper vectors y, z as described in the Squashing the Decryption Procedure in Gentry and
Halevi [2011].

2. Evaluate homomorphically the decryption procedure using the pre-computed vectors y, z.

When running on a single 2.5GHz CPU core, a recryption of just one bit can take up to 36 minutes with a
512-dimensional lattice. About 80% of the time is spent in step 1. Step 2 takes only 20% of that time.

Fortunately, the computations of each coefficient of y, z are independent of each other. So we implement them
in parallel with the OpenMPI library. This allows to significantly shorten the run time for both step 1 and
2. With this implementation being run on a 4-core 2.5GHz CPU with 8 hyperthreads, the recryption time is
brought down to less than 10 seconds. We do not use any GPU acceleration capabilities, all modular arithmetic
algorithms are implemented with software capabilities. Figure 3 shows the paralleled calculation of vectors y, z
using OpenMPI.

The following basic cryptographic functions are implemented in the backend components:

• Public-private key generation.

• Encrypt, decrypt and recrypt one bit.

• Homomorphic AND, XOR two bits and FLIP one bit.

• Homomorphic CHOOSE one bit out of two bits.

• Encrypt and decrypt one byte.
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Figure 4. A homomorphic logical NAND gate

• Homomorphic ADD, SUBstract and MULTiply two bytes.

• Homomorphic MIN and MAX of two bytes.

The CHOOSE function is a homomorphic equivalence of the if . . .then . . .else . . . statement. Specifically,
given three booleans a, b, c, the statement

if c then return a else return b

can be rewritten as

(c and a) or ((not c) and b)

So if ψa, ψb, ψc are the ciphertexts of a, b, c then the above statement can be written homomophically as

CHOOSE(ψc, ψa, ψb) = (ψc AND ψa) XOR ((FLIP ψc) AND ψb)

The homomorphic function CHOOSE illustrates an elementary branching in a homomorphic program. Its result
is a new ciphertext that is decrypted to either a or b depending on the value of c but remains a secret to whomever
is tasked with running that program.

The homomorphic MIN (or similarly MAX) function proceeds by homomorphically SUBstracting the two
ciphertexts that represent the two bytes in cleartext. The function then CHOOSE the corresponding ciphertext
depending on the (ciphertext of the) carrier bit resulting from the SUB function.

2.2 FHE frontend

We develop the frontend component to offer a user-friendly GUI to experiment with the basic cryptographic
functions of the backend. In the GUI those functions are represented by operations that a user can drag and
drop onto a canvas, then connect them together to form another homomorphic circuit. For example, the output
of operation AND can be connected to the input of operation FLIP to form a homomorphic equivalence of the
logical gate NAND as shown in Figure 4.

The frontend is implemented as a plugin in the CSIRO Workspace software.

CSIRO Workspace . Workspace CSIRO [2021] is a world-leading scientific workflow framework that allows
to implement computational functions as operations then to reuse and rearrange them in a workflow to achieve
more complex functions. The operations’ input and output data can be easily “wired” between the operations
and Workspace automatically takes care of referencing the data, thus avoiding unnecessarily copying it between
functions. The operations themselves are executed on a need-to-run basis, i.e. only when their outputs are
required by some other executing operations and their inputs have been changed since their last execution.
This can lead to a significant improvement in terms of both execution time and memory space required if the
transitional data is large as in many FHE schemes.

Workspace itself is developed in C++ on the Qt framework. It offers many complex and useful builtin capabilities
such as running Python scripts within a workflow, executing operations in parallel, profiling the run time of
operations or blocks of code individually. It also lets the users generate complete GUI applications based on
any workflow. CSIRO [2021] contains a page listing some applications built on Workspace by teams from both
inside and outside CSIRO.

Workspace FHE plugin . We develop the Workspace FHE plugin as a collection of Workspace operations.
Each operation runs a basic cryptographic function of the backend component with the operation inputs mapped
to the function inputs and the function outputs are mapped back to the operation outputs.
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Figure 5. A homomorphic CHOOSE function of the if . . . then . . . else . . . statement

Figure 6. A homomorphic ADD function adding two bytes homomorphically

When Workspace executes an operation in the FHE plugin, the operation sends a command to the backend 
component via inter-process communication to request the execution of the corresponding function. When 
the backend function finishes its execution, its status and results are sent back to the frontend operation on the 
same communication channel. This communication is therefore asynchronous. The executing operation does 
not block Workspace while the backend function is being run. Subject to CPU resource availability, multiple 
operations can then be executed in parallel. Note that we did not use this high-level parallelisation to implement 
the parallel computations described in the backend, where the low-level implementation using OpenMPI is 
more suitable.

Figures 5, 6 and 7 illustrate three workflows using these operations.

The workflow in Figure 5  first encrypts three bi ts, their ciphertexts are given as  inputs to  the Choose Bit 
operation that will run the corresponding CHOOSE function in the backend. The resulting bit is then given as 
input to the Decrypt Bit operation. The final result is the output bit of that Decrypt Bit operation which is 
equal to second bit (from the top of the leftmost three bits in input) if the first bit is 1, or equal to the third bit if 
the first bit is 0.

Figure 6 shows a workflow that encrypts two bytes, homomorphically adds them up and then decrypts the result 
so that the user can check the validity of the operations. This time we note that the operation Add Byte has 
two outputs: the ciphertext sum and the ciphertext carrier bit because adding two bytes can result in a sum that 
exceeds 8 bits.

Figure 7 shows a workflow t hat encrypts two b ytes, homomorphically sorts t hem i n decreasing order by 
outputing the bigger byte to the top output and the smaller byte to the bottom output. The workflow then

Figure 7. A homomorphic MAX MIN function sorting two bytes homomorphically

209



D. Nguyen et al., Implementing a Fully Homomophic Encrypted Circuit in Workspace

decrypts the outputs so the user can check the results.

3 CONCLUSION

We present in this paper our implementation of Gentry’s fully homomorphic encryption scheme based on ideal
lattices. The implementation is composed of a backend that performs the basic cryptographic functions and of
a GUI frontend that offers a user-friendly interface developed on the CSIRO Workspace scientific workflow
framework. Our implementation incorporates all optimisations suggested by Gentry and take advantage of
multicore CPUs to significantly speed up the recryption procedure.

This implementation aims at providing some tools for experimenting with fully homomorphic encryption
schemes. The users can drag and drop operations onto a canvas and connect them up to form different
homomorphic circuits, check their validity and measure run time. The basic cryptographic functions in the
backend can be reimplemented with another scheme without affecting the frontend logics.

In future works we may explore the possibility of implementing fully-homomorphic encryption on Edwards-
Bernstein curves Bernstein and Lange [2007]. Since non-singular elliptic curves are not rational (see Perrin
[2001]) we cannot apply the nice point-wise addition formulas for Edwards-Bernstein curves on the param-
eterisations as we would otherwise for unicursal curves. However we would like to know if it is possible to
take a curve C that has some singular points (possibly at infinity, note that on Edwards-Bernstein curves those
points are all finite Nguyen [2017]) so that its genus g(C) = 0, making it unicursal, then check if the point-wise
addition formula can be made into a homomorphism wherever it is defined on C.
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