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Abstract: In rice (Oryza Sativa) production, appropriate nitrogen (N) management needs to consider the 
relationship between the rate of N fertiliser application, time of application and crop yield for different soil 
types. N demand is a crop-specific factor, while N supply is related to soil characteristics and crop management 
practices such as N fertilisation. Balancing N supply against demand makes N use more efficient by avoiding 
N losses from the system, which impacts farming profit and the environment. A coupled, biological and 
economic modelling approach was adopted to identify the economic optimum rate of N (EORN) for rice 
cultivation in three soil types in Sri Lanka (Figure 1). The three soil types are Low Humic Gley (LHG) poorly 
drained soil, Reddish Brown Earth (RBE) well imperfectly and well-drained soil.  

The APSIM-Oryza model was parameterised for the conditions of the study area. Model validation confirmed 
that there was good agreement between actual and simulated rice yield. The validated APSIM-Oryza model 
was used to evaluate the rates of N application between 0 and 300 kg N/ha/season for the last 20 years of 
weather. Rice yield response to N varied between soils, and yield variability over the years was also observed 
due to weather. The highest potential yield at the median and lowest yield variability across years was observed 
in LHG poorly drained soil which is highly suitable for rice cultivation. RBE well-drained soil showed poor 
response for applied N with lowest yield potential while RBE imperfectly drained soil varied between 
responses of other soil types.  

The simulated rice yields for each N application 
was considered as the inputs to an economic 
evaluation of the N decisions. A modified 
Mitscherlich-Baule yield response function was 
used to fit the relationship between N rate and grain 
yield for each soil type since the visual pattern of 
APSIM-Oryza simulated yield best matched with 
the functional form. Profit maximising conditions 
applied to the yield responses developed EORN of 
228, 156, and 118 kg N/ha in LHG poorly drained 
soil, RBE imperfectly drained soil and RBE well-
drained soil, respectively. Rice yields at the 
economic optimum were 6.1, 4.0 and 2.8 t/ha, 
respectively. The economic optimum was highly 
price-sensitive; hence the quantitative values could 
be varied with changing rice selling price and N 
fertiliser price. However, the results indicated that 
investment in N fertiliser needs to consider the type 
of soil due to differences of yield responses in soil 
types; hence blanket application of N fertiliser over 
soil types caused to deviate from a maximum profit 
of rice cultivation in given soil types. 

Figure 1. Soil map of study location 
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1. INTRODUCTION 

The implications for crop management, such as the effect of water and nutrient management, are generally 
estimated by using crop system simulation models (McCown et al., 1996).  With demonstrated accuracy and 
reliability, simulation models allow investigation of short and long-term agricultural practices at low cost and 
time requirements when experimental data are limited and expensive to gather (Ma et al., 2007; Malone et al., 
2018). Further, crop simulation models have been shown to provide an excellent approach to explore genotype-
environment management interactions and adaptation research for agriculture (Tao et al., 2018). Results from 
crop simulation models are widely used to answer the research questions for crop management and policy 
formulation. The results can assist interactions between disciplines and allow the integration of data from the 
soil, plant, and atmospheric systems into agricultural management decisions. This enables the simulation of a 
wide range of cropping systems over a broad range of environmental and crop management practices (Mailhol 
et al., 2001).  

However, practical applications of crop simulation models require sets of weather, soil, and management data, 
together with other information including time-series data of crop development, yield and components of yield, 
soil moisture and soil nutrients (Holzworth et al., 2014; Keating et al., 2003). Evaluation of a crop simulation 
model involves establishing confidence in its capability to predict outcomes experienced in the real world 
(Woodward et al., 2008). Models which simulate nutrient release patterns according to the resource quality 
(Shaviv & Mikkelsen, 1993), soil conditions (Timilsena et al., 2015), and climate can be used to make nutrient 
recommendations to optimise the use of different resources, depending upon their availability. The Agriculture 
Production Simulator (APSIM) is a widely used crop model which includes N dynamics in soil, mostly under 
tropical and subtropical climatic conditions. SoilWat within the APSIM suite is used for analysing the N 
dynamics (Huth et al., 2012). SoilWat is a cascading layer model. In SoilWat, simulations include a mixing 
algorithm and assume that all water and solutes entering into soil layers are thoroughly mixed. Then, by 
considering an efficiency factor, SoilWat calculates the amount of solute leaving each layer 

This study focuses on the N fertiliser applications for rice production in the Thirappane Tank Cascade of Sri 
Lanka, where eutrophication in water was observed. The current N fertiliser decisions at the Cascade are similar 
for all three soil types. Possible soil specific fertiliser management options can contribute to reducing wastage 
of fertiliser and maximizing farmers profit. The main objective of this paper is to develop and adopt a bio-
economic modelling framework using predicted effects of N rate applications on rice crop yields on three soil 
types and identify soil type based EORN. This will be achieved using a parameterised and validated crop model 
coupled with a production economics framework to identify the soil specific N rates to ensure maximum farm 
profits. 

2. METHOD OF ANALYSIS 

2.1. Description of the study area 

Data for model parameterisation and calibration were collected from the Thirappane Tank Cascade, located in 
the Dry Zone of Sri Lanka. The Cascade comprises six tanks. The distance between a most upper tank1 to lower 
tank2 is 8 km, while the Cascade is 2 km wide. The total cultivation area is 207 ha. Three soil types were 
studied; namely, LHG poorly drained soil, RBE imperfectly drained and well-drained soil. The distribution of 
soils in the study location is given in Figure 1. RBE well-drained soil is the most common soil type within the 
study location (around 75% of total land area), but LHG poorly drained soil is prominent in rice cultivation 
areas (around 80% of the rice cultivation area). 

2.2. Biological model: Model parameterisation and validation 

APSIM crop simulation model 
The Agricultural Production Simulator (APSIM) version 7.10 was parameterised and validated for rice yield 
at the study locations for the primary rice cultivation season (Maha) in 2018. The validated APSIM-Oryza 
model was used to develop simulations using historical climate data from 1997 to 2019.  

Crop phenology 
The main rice variety, “Bg 359”, a 3.5-month growing period rice variety, is cultivated during the main 
cultivation season. The phenological parameters used were obtained from Amarasingha et al. (2015) and 
included (i) the development rate in juvenile phase-DVRJ (◦Cd−1), (ii) the development rate in photoperiod-

 
1 Coordinates of upper tank : 8.156604469144911 N, 80.52444518529929 E 
2 Coordinates of lower tank: 8.218808726954416 N , 80.51946332221384 E 
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sensitive phase -DVRI (◦Cd−1), (iii) the development rate in panicle development phase-DVRP (◦Cd−1), and (iv) 
the development rate in reproductive phase-DVRR ◦Cd−1). 

Weather data 
Daily weather data (maximum and minimum temperature, rainfall, and sunshine hours) from January 1976 to 
March 2019 for Mahaillupallama3 were obtained from the Mahaillupallama Meteorological Station. Daily 
incoming radiation (MJm-2d-1) was calculated using sunshine hours, latitude and longitude and angstrom 
coefficient (a=0.29, and b=0.39) (Samuel, 1991). 

Soil data 
Soil characteristics of the study site were obtained from  Mapa and Pathmarajah (1995) and Mapa et al. (2010), 
allowing available layer-wise data to be incorporated in the model. 

Crop Management data 
The crop management practices data were obtained from a household survey conducted within the study 
location in 2019. The crop management data was collected for the main crop production season in 2018. The 
model was configured for soil being puddled and levelled before planting. Inorganic fertiliser application is 
generalised according to the farmer practice at the Cascade. N fertiliser (Urea) applications (three times) were 
included as normal farmer practice. Direct seeding was conducted with 90 plants/m2 density. A seven-day 
sowing window was used in the simulation. In the absence of rainfall, irrigation was applied until two weeks 
after flowering to maintain a ponding depth of 7 cm.  
 
Model validation  
Actual field and simulated data can be compared graphically and analysed statistically (Loague & Green, 
1991). Experimental data was not available for the validation of the model. The model was parameterised with 
soil, weather and phenological data. The N rate was adapted from district averages for the last 20 years, and 
then simulated rice yield was compared with the district average of rice yield.  The model performance was 
evaluated via the root mean square error (RMSE) (Pham, 2019). In this process, mean differences were 
compared between the values simulated by the model and actual values. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) = �∑ (Pi−Oi)2i=n
i=1  

n
               (1) 

Where, Pi is the simulated value for ith observation, Oi is the actual value ith observation, and n is the number 
of observations. For best model performance, values of RMSE should be close to 0; high values of RMSE 
indicate poor model performance. The unit of the RMSE is the same as the variable being evaluated. The 
minimum value of RMSE is zero, and there is no maximum. 

Scenario analysis 
The validated APSIM-Oryza model was used to simulate rice yield responses to rates of N application in the 
main rice cultivating season (Maha) from zero N to 300 kg N/ha/season for the three soil types. 

2.3. Economic framework 

A visual examination of the patterns of crop yield response (see below) indicated a response pattern of yield to 
N increasing at a decreasing rate up to a maximum, or asymptotic, level. Therefore a modified Mitscherlich-
Baule (Brorsen & Richter, 2012)  yield response function was used to fit the relationship between N rate (x) 
and grain yield (Y) for each soil type. EORN is determined at the profit maximisation point (assuming farmers 
aim for profit); the rate of N application where extra returns from the associated increased yield just cover 
expenditure on an extra unit of N fertiliser. This relationship is based on the assumption that fertiliser N was 
the only variable cost and that all other costs do not vary with the N rate (Anderson et al., 1977; Anderson & 
Dillon, 1992). The first partial derivative of the yield response function is set equal to the price ratio between 
fertiliser and rice. The yield response (or production) function with a modified Mitscherlich-Baule form is 
(Harmsen, 2000), 

𝑌𝑌 = 𝑎𝑎 + 𝑏𝑏(1 − 𝑒𝑒−𝑘𝑘𝑘𝑘).                                    (2) 

 
3 Mahailluppalama is the nearest weather station to the study location, which is 10 km from the study location. 

136



Kanthilanka et al., Economically optimum N fertiliser decisions for rice cultivation in Sri Lanka: Does soil 
type matter? 

In equation (2), x is the rate of N application (kg/ha), Y is rice yield (t/ha), a is the yield at zero fertiliser 
application (t/ha), b is the parameter above a where yield increases to the asymptote, and k is a coefficient of 
gain. The level of asymptotic yield is given by a + b. 

The first derivative of the response function with respect to x is calculated, and from the profit function, it is 
set equal to the price ratio to determine the level of EORN,  

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑘𝑘𝑘𝑘𝑒𝑒−𝑘𝑘𝑘𝑘 = 𝑃𝑃𝑥𝑥
𝑃𝑃𝑦𝑦

.                                   (3) 

In equation (3), Px is the price of N fertiliser (LKR/kg), and PY is the price of rice (LKR/kg). N fertiliser in Sri 
Lanka is provided under subsidy policy (maximum 188 kg N/ha at the rate of LKR 22/kg of N), and farmers 
can buy commercial fertiliser at the rate of LKR 109 /kg of  N (Weerahewa et al., 2010). The farm-gate price 
of rice used was 40 LKR/kg. A weighted average price for N fertiliser of LKR 84/ kg of N was used for this 
study. The survey results indicate that the maximum N application is 300 kg N/ha. 

Equation (3) is solved for x to find EORN: 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 (𝑥𝑥) = 1
−𝑘𝑘

 𝑙𝑙𝑙𝑙(
𝑃𝑃𝑥𝑥

𝑃𝑃𝑌𝑌�

𝑘𝑘𝑘𝑘
).                                                        (4) 

The economic framework can be adapted to account for risk aversion by the farmer. If farmers are risk-averse 
or cautious about using higher amounts of N because of uncertainty about crop outcomes and because they 
generally need to borrow money to buy fertiliser, then they may decide to apply less fertiliser (Hardaker, 2004; 
Jáuregui & Sain, 1992).  

Statistical analysis 
Data were analysed using RStudio software. The nlreg package was used to estimate the production function 
coefficients (equation 2). Graphics were designed in RStudio using the ggplot2 package. 

3. RESULTS AND DISCUSSION 

3.1. APSIM-Oryza validation

There was good agreement of the field observed and model-simulated data for the Maha season (see Figure 2). 
RSME in Maha (Bg 359) was 0.9 t/ha (perfect match, RSME=0). This result indicates that the parameterised 
APSIM-Oryza could explain most of the yield variability. Further, actual irrigation (in m3/ha/season) at the 
field level was compared with simulated irrigation as a validation of the model. There was a good match 
between actual irrigation and modelled amount of irrigation in APSIM-Oryza. 

Figure 2. APSIM model validation (a: yield, b: irrigation) 
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3.2. Crop simulation results  

Simulated rice yields for increased N rates show general increases at a decreasing rate up to a plateau in all soil 
types. The highest yield response/potential for applied N was observed in LHG poorly drained soil, while the 
lowest was in RBE well-drained soil at the median (see Figure 3). As expected, there was variation in yield at 
each level of N input due to the stochastic nature of weather. In general, there was a lower variation in simulated 
rice yield in LHG than in other soils. The poor drainage condition (lower saturated hydraulic conductivity of 
soil) has limited the loss of water and N, hence making them available for plant growth. As a result, the variation 
of yield over the years is lower than other soils. Over the simulation period, the mean yield at zero fertiliser 
was 3.1, 2.2, and 1.6 t/ha for the median in LHG poorly drained soil, RBE imperfectly and well-drained soil, 
respectively. The rate of yield increases for N applications varied between soil types.  
 

 
 
Figure 3. Yield response for the rate of N application in (a) LHG poorly drained soil, (b)  RBE imperfectly 
drained soil and (c) RBE well-drained soil 

a 

b 

c 
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3.3. Economics of N fertiliser decisions 

The Mitscherlich-Baule model was used to fit the relationship between rice yield response and applied N, and 
the EORN was determined for three soil types. The regression coefficients, EORN and economic optimum rice 
yield are given in Table 1. The rate of N application has a significant effect on rice yield in both LHG poorly 
drained soil and RBE imperfectly drained soil at P < 0.05. The EORN calculated via modified Mitscherlich 
model varied among soil types. EORN was 228,156 and 118 kg N/ha for LHG poorly drained, RBE imperfectly 
drained and RBE well-drained, respectively. The economic optimum yields in the three soils were 6.1, 4.0 and 
2.8 t/ha at the median yield level. As indicated in equation 3, EORN is highly sensitive to the price ratio of rice 
and N fertiliser. Accordingly, the quantitative values of EORN are valid for given price levels. Change of price 
affects all three soil types simultaneously; hence the differences of EORN between soil types is certain. If the 
economic analysis includes the social cost of N fertiliser by having environmental damages, the rate of N 
application may be further reduced.  

Table 1. Estimated coefficients, EORN, and economic optimum yield predicted from the modified 
Mitscherlich model 

Soil type 
Coefficients for the model EORN  

(kg N/ha) 

Economic 
optimum yield 
(t/ha) 

a b k 

LHG poorly drained soil 3.05*** 3.12*** 0.014*** 228 6.1 

RBE Imperfectly drained soil  2.22*** 1.92*** 0.018** 156 4.0 

RBE well-drained soil 1.62*** 1.20*** 0.021 118 2.8 

Significant codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

It was evident that soil type-based N management practices, especially altering the rate of N based on the soil 
type, can reduce the cost of N via avoiding application beyond the economically optimum level. As shown in 
Figure 1, soils in the study location are presented in a specific pattern with clearly identified area boundaries 
(soil types are not mixed); hence practical use of the results at the field level is also easier. If the farm has 
multiple cultivation fields at different soil types, then farming income can be maximised by adopting 
heterogeneous N rates for fields with various soil types. 

4. CONCLUSIONS 

The results show that the best economic N rate varies with soil type. Potential yield is higher in LHG soil, and 
yield variability appears to be lower. Poor drainage conditions explained the higher yield potential of rice. The 
EORN varied from 138 to 261 kg N /ha. This study shows that the recommended N fertiliser rates can be 
adjusted for soil type and drainage status, and blanket N recommendations need to be avoided.  

5. LIMITATION AND FUTURE STUDY 

The study has considered only the most commonly grown rice variety, and more varieties can be included with 
actual field experiments for other decisions. Further price volatility of rice and fertiliser is not considered here. 
Environmental impacts are not included in these N decisions. Further study can combine all these aspects to 
develop better N management policy decisions.  
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