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Abstract: Impulse response functions have been used extensively in studies of CO2 (carbon dioxide), the
carbon cycle and its interactions with the climate system. The response functions have been presented as
compact descriptions of model behaviour as well as being used computationally, including as representations
of subsystems in models.

Response functions for emissions of greenhouse gases have also been important because of being used to
define the Global Warming Potential which is used to compare the importance of different greenhouse gases.

The Laplace transform formalism is convenient for analysing aspects of response functions because convolu-
tions transform into products of transforms. The Laplace transform has been used in various ways to illustrate
connections within the carbon-climate system, but generally has not been used for quantitative calculations.

This paper explores the use of Laplace transforms as a computational tool for investigating CO2 and climate.
The Padé-Laplace approach consist of taking a Maclaurin series or Taylor series expansion of the Laplace
transform of a response function and fitting the leading terms to a ratio of polynomials. Such approximations
are known as Padé approximants.

Approximants of appropriate order can be expressed as sums of partial fractions. Therefore such approxima-
tions can be used to give low-order expressions as sums of exponentials in the time domain.

Results presented here illustrate a number of important cases:
(i) the impulse response for CO2 is transformed to give an expression for what is called the concentration
feedback – the extent to which increases in atmospheric CO2 cause uptake of carbon into land and ocean
systems. The low-order approximants give a better representation than the common practice of expressing this
feedback as a constant known as the beta-factor.
(ii) The feedback around the loop of the coupled carbon-climate system is expressed as a gain operator whose
response is derived by combining model estimates of CO2 response with and without feedback. Low-order
approximants provide a way of estimating the gain, when combining ice-core CO2 data with paleo-temperature
data to estimate the climate-to-carbon influence – a quantity that is commonly approximated as a constant
termed gamma.

Most calculations presented here use Padé approximants to Maclaurin series of response functions in the
transform domain. Consequently, they most accurately capture the long-term behaviour in the time domain
relevant for stabilising climate forcing. Applying the Padé-Laplace method using Taylor series expansions
gives the potential for investigations of decadal to century scale global change. Such studies are in progress.
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1 INTRODUCTION

Representing dynamical systems using impulse response functions gives the maximum degree of generality
for causal linear systems. Such representations have been used in studies of carbon dioxide and climate, both
as descriptions of behaviour and as components of numerical models (e.g. Meinshausen et al. 2011). Impulse
response functions that relate emissions to concentrations also underlie metrics such as the global warming
potentials that characterise the relative importance of emissions of different greenhouse gases. An extensive
intercomparison of the response function for CO2 was reported by Joos et al. (2013).

The Laplace transform formalism is particularly useful in representing impulse response relations because
convolution integrals transform into products of transforms. A number of studies have used the Laplace
transform to define structural relations between different aspects of the carbon cycle (Enting & Mansbridge
1987, Enting 1990, Enting et al. 1994) and its relation to climate (Enting 2010). However, these studies have
explored qualitative relations and have not involved quantitative calculations in the transform domain.

The Padé-Laplace analysis is based on expressing the Laplace transform as a Maclaurin series or Taylor series
in the transform variable, and then fitting a Padé approximant (i.e. a ratio of two polynomials) to that series.
This can be done with different orders of approximation and provides a way of exploring simpler approxima-
tions to complicated expressions for combinations of transforms. The Padé-Laplace technique derives from the
study by Yeramian & Claverie (1987) and its extension by Claverie et al. (1989). The technique has been used
in the analysis of integrated circuits (e.g. Feldman & Freund 1995). Enting & Clisby (2021) used low-order
representations in the transform domain to compare metrics for comparing greenhouse gases.

Section 2 below summarises the Padé-Laplace formalism. The following sections apply this quantitative analy-
sis to specific cases that have been considered in previous qualitative analyses: CO2 responses and the analysis
of CO2 response as a concentration feedback in Section 3, deconvolution calculations in Section 4, and the
climate-carbon feedback loop in Section 5. Section 6 reviews the estimation of the climate-to-carbon link in
the feedback loop. The concluding section notes some of the directions for on-going research after which a
table of notation is given.

2 THE PADE LAPLACE FORMALISM

A generic response function relation can be written as

Q(t) = M(t)−M(0) =

∫ t

0

R(t− t′)S(t′) dt′ (1)

When applied to the carbon cycle, M(t) represents the CO2 content of the atmosphere, typically in units of Gt
C (i.e. Pg C), S(t) is the emission rate (e.g. in Gt C/year) and R(t) gives the proportion of an initial emission
remaining in the atmosphere after time t. The time origin of the integration represents a notional pre-industrial
equilibrium. Various modifications of this generic form are used in the examples below.

Using a tilde to denote Laplace transforms, equation (1) transforms to

Q̃(p) = R̃(p) S̃(p) (2)

Response functions such as R(t) are often approximated as sums of decaying exponentials. Thus R̃(p) be-
comes a sum of terms bj/(p+cj). Although this is sometimes misunderstood, the decay rates cj will generally
not have any physical significance. This is to be expected since the process of fitting sums of exponentials is
often ill-conditioned, as illustrated in the classical example from (Lanczos 1956, Ch. 4, Sec. 23) where a sum
of 3 exponentials, f3(t) = 0.0951e−t + 0.8607e−3t + 1.5576e−5t is closely fitted by a sum of two expo-
nentials, f2(t) = 2.202e−4.45t + 0.305e−1.58t. The functions are so similar that the difference only becomes
apparent when the difference is plotted on an expanded scale as in the solid line in Figure 1.

The Padé-Laplace technique provides a systematic way of providing approximations that may:
(i) avoid the redundancy of high-order representations; and
(ii) lead to simple closed form expressions in the time domain.
The procedure constructs approximations in the transform domain, by making the approximation fit the full
expression by matching the leading coefficients of the Maclaurin series in p. The particular approximations
are ratios of low-order polynomials. When constructed in this way, such approximations are termed Padé
approximants. The approximants are characterised by the degrees N , M of the numerator and denominator
where the [M,N ] approximant fits the first M + N + 1 terms in the series and the constant term in the
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denominator is normalised to 1. The [M,M + 1] approximants can be expressed as sums of partial fractions,
giving a sum of exponentials in the time domain.

Using Padé approximants to construct estimates as a sum of exponentials in this way can include cases (e.g.
Enting 1990) where the Maclaurin series did not originally come from a sum of exponentials.

Cases that go beyond scope of this paper can be defined by constructing lower-order approximations that
agree in the leading terms of a Taylor series about some chosen p0. This form was proposed by Yeramian &
Claverie (1987) where the Taylor series terms were obtained by numerical integration of observational data.
For example, the [1, 2] approximant fitted to the Taylor series for f̃3(p) at p0 = 1 approximates f3(t) as
f [1,2] = 2.2182e−t/4.4754 + 0.2943e−t/1.5796. The difference from f3(t) is shown as the dotted line in Figure
1.
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Figure 1. Solid line is difference between the two sums, f3(t) and f2(t) compared by (Lanczos 1956, Ch. 4,
Sec. 23). Dashed line is the difference between f3(t) and the sum of two exponentials derived from the [1, 2]
approximant to f̃3(p) fitted around p0 = 1.

3 CARBON DIOXIDE RESPONSE AS CONCENTRATION FEEDBACK

Oeschger et al. (1980) studied the response of linear carbon cycle models to CO2 emissions that grew exponen-
tially with growth rate α. They characterised the partitioning of carbon between atmosphere, land reservoirs
and ocean reservoirs as being in the ratio (1 : βL,α : βO,α). For exponentially growing emissions, the cumula-
tive and instantaneous partition ratios are equal. With Qα, βL,α, βO,α, Sα as amplitudes of a common exp(αt)
growth, this corresponds to

Q̃α =
Sα/α

1 + βL,α + βO,α
(3)

This relation can be generalised to a Laplace transform relation

Q̃(p) =
S̃(0) /p

1 + B̃L(p) + B̃O(p)
= S̃(0) /p− [B̃L(p) + B̃O(p)] Q̃(p) (4)

for which the Oeschger et al. result becomes a special case.

In these terms, B̃L(p) and B̃O(p) describe a negative feedback on the increase of atmospheric CO2, pro-
portional to the CO2 increase, Q(t). The multiplication by B̃L(p) and B̃O(p) represents convolutions with
responses characterising concentration feedback. The β factors are sometimes treated as constants (e.g. equa-
tion (14) below from Friedlingstein et al. 2003).

The connection between this concentration feedback and the CO2 response functions seems to be little appre-
ciated. For example, Gregory et al. (2009) state that “The concentration to carbon feedback is negative; it has
generally received less attention in the literature” [i.e. less than the temperature to carbon feedback]. However,
comparison of equations (2) and (4) shows that

p R̃(p) =
1

1 + B̃L(p) + B̃O(p)
(5)
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which relates the concentration feedback to the widely studied response function via their respective expres-
sions for the airborne fraction.

The feedbacks can be combined in various ways to give a range of different response functions. For example,
the introduction of response functions in carbon cycle studies by Oeschger & Heimann (1983) used ocean-
only response, R̃O(p) = 1/(1 + B̃O(p)). Expressions for combining various different types of carbon cycle
response functions were given by Enting et al. (1994) and Enting (2007).

Relation (5) gives

B̃(p) = B̃L(p) + B̃O(p) = −1 + 1/(p R̃(p)) (6)

and representations of the feedback operator can be obtained from approximants to B̃(p). Figure 2 shows B̃(p)
calculated using the response RIinit(t) from Enting et al. (1994) and several low-order approximants to the
expansion of B̃(p). Using Maclaurin series means that long-timescale responses dominate the approximants.
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Figure 2. Solid line: B̃(p) as specified by equation (6) using the response RIinit from Enting et al. (1994).
Other lines: low-order ([0.1], [1,2], [2,3]) approximants as indicated.

4 DECONVOLUTION

In carbon cycle modelling, deconvolution refers to inverting the convolution relation (1) to deduce S(t) given
a knowledge ofR(t) andQ(t). Such calculations became possible once ice-core data provided a record of past
CO2 concentrations. Enting & Mansbridge (1987) gave a Laplace transform analysis of the inversion. They
obtained an inversion relation which, in the present notation is

S̃(p) = p Q̃(p)[1 + B̃(p)] = ˜̇Q(p)[1 + B̃(p)] (7)

where ˜̇Q(p) denotes the Laplace transform of the rate of change of Q(t) with time. This calculation requires
numerical differentiation of ice-core data – an inherently ill-conditioned process, but one that is inherent in the
inversion. However Enting & Mansbridge (1987) showed that the need for the derivative could be restricted to
the time of the source estimate, using a second inversion relation

S̃(p) = p Q̃(p) + Q̃(p)[p B̃(p)] = ˜̇Q(p) + Q̃(p)B(t = 0) + Q̃(p) ˜̇B(p) (8)

In principle, the factor B(t = 0) can be obtained from approximants as the p → ∞ limit of B̃(p), given
by the ratio of the highest order coefficients in numerator and denominator of [M,N ] approximants. For
approximants based on the expansion about p = 0 such estimates are likely to be poor.

The deconvolution operation enters implicitly in the study of greenhouse gas metrics by Enting & Clisby
(2021). They considered the problem of finding the CO2-equivalent of methane emissions, SCH4. They based
their analysis on radiative forcing as an equivalent influence on climate (Wigley 1998) which requires

aCH4 R̃CH4(p) S̃CH4(p) = aCO2 R̃CO2(p) S̃equiv(p) (9)
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with aCO2 and aCH4 as the radiative forcing per unit mass. Equivalence is specified by

S̃equiv(p) =
aCH4

aCO2
Ψ(p)S̃CH4(p) ≈ aCH4

aCO2

R̃CH4(p)

R̃CO2(p)
S̃CH4(p) =

aCH4

aCO2

p R̃CH4(p)

p R̃CO2(p)
S̃CH4(p) (10)

where Ψ operates on SCH4 to generate an index that defines equivalence. Comparing the rightmost expression
above to equaton (5) shows that Ψ(p) can be regarded as an approximation to the ratio of airborne fractions
of CH4 and CO2. The Global Warming Potential approximates Ψ as a constant. Other approaches use Ψ as a
derivative operator (Smith et al. 2012, Lauder et al. 2013, and later work). Enting & Clisby (2021) analysed
these and more recent metrics as Laplace transforms and considered Ψ(p) as a low-order approximation to
R̃CH4(p)/R̃CO2(p).

Response functions can also be used in deconvolution calculations either directly in a mass-balance form
(Wigley 1991) or as statistical estimation via the Kalman filter (Trudinger et al. 2002).

5 FEEDBACK

Studies of global change have increasingly focused on the extent to which the influence of climate change on
the carbon cycle can create a feedback loop that amplifies the greenhouse effect. Enting (2010) described the
linearised behaviour for warming, W (t), in terms of Laplace transforms, as

W̃ (p) = aCO2 Ũ(p) Q̃(p) (11)

with U(t) describing the temperature response to radiative forcing, and

Q̃(p) = R̃(p)[S̃(p) + H̃(p) W̃ (p)] =
S̃(p) /p

1 + B̃L(p) + B̃O(p)
+

H̃(p) W̃ (p)

1 + B̃L(p) + B̃O(p)
(12)

leading to relations for the loop gain, G̃(p):

Q̃(p) =
R̃(p)

1− aCO2 Ũ(p) H̃(p) R̃(p)
S̃(p) =

R̃(p)

1− G̃(p)
S̃P = R̃FB(p) S̃(p) (13)

The feedback also amplifies the warming response, Ũ(p), by a factor 1/(1− G̃(p)) (Enting 2010).
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Figure 3. Solid line is Laplace transform, G̃(p), of feedback loop gain, calculated as 1− R̃no feedbackR̃feedback
using estimates from Joos et al. (2013) (supplementary information). Other lines are Padé approximants. The
negative gain at very long timescales is an artifact of the original fits only using 1000 years of model output.

Enting (2011) noted that when response functions, or the models from which they are derived, are calibrated
against 20th century data, they will be implicitly including the effects of climate-to-carbon feedback and so
will give estimates of RFB rather than R. Joos et al. (2013) gave an example where the feedback had been
explicitly excluded. This makes it possible to combine estimates of R̃no feedback and R̃feedback to give an estimate
of the loop gain, G̃(p). This is shown in Figure 3, along with Padé approximants. The negative gain at very
long timescales is an artifact of the original fits only using 1000 years of model output. Nevertheless, the [1,2]
and [2,3] approximants can follow the function from an unphysical starting point and give reasonable fits over
the more relevant decadal to century timescales.
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6 GAMMA

A widely cited paper, (Friedlingstein et al. 2003), expressed the atmospheric carbon content as

Q(t) =

∫
S(t)

1 + βL + βO
+

[γL + γO]∆T

1 + βL + βO
(14)

influencing numerous studies that have attempted to estimate γ (see citations by Enting & Clisby 2019).
Comparison with (12) reveals that (14) ignores timescale dependence and replaces functions of p by constants.
From (12) there is not expected to be a single γ, applicable on all timescales. and the β factors also have a
timescale dependence as shown in Figure 2. In addition, if the factor 1/(1 + βL + βO) is replaced by p R̃(p),
the available estimates of the CO2 response are usually estimates of RFB either explicitly or implicitly if
calibrated against 20th century data.

Rubino et al. (2016) analysed pre-industrial data using a regression analysis based on the time-domain form
of (12). They parameterised H(t) as θγH∗(t) where H∗(t) was a unit pulse followed by a relaxation with a
100-year timescale. The regression fitted

∫ ∫
R(t− t′)H∗(t′ − t′′)W (t′′) dt′′ dt′ to M(t) from ice-core data

using various paleo-temperature data sets forW (t). For the 20th century, Enting & Clisby (2019) added a term
θs

∫
R(t − t′)S(t′) dt′ to be fitted, where θs was an ad hoc correction to account for the use of RFB in place

of R. The gain estimate shown in Figure 3 should provide a better correction than ad hoc use of a constant.

7 CONCLUSIONS

This paper illustrates Padé-Laplace analysis in the study of CO2 and climate. Padé approximants as approx-
imations to Laplace transforms of response functions, and combinations thereof, give expressions which are
less subject to ill-conditioning in the specification and give simple closed-form expressions in the time domain.
Most of the examples here fit Maclaurin series in the transform variable p, making them only applicable to
long timescale aspects. Approximants based on Taylor series provide scope for more general analyses.

NOTATION

Laplace transforms are denoted by the tilde notation, e.g. R̃(p) as the Laplace transform of R(t).

aX Radiative forcing per unit mass of constituent X .

B(t) Operator specifying the feedback from concentration changes.

G(t) Response function giving gain in carbon-climate feedback loop.

H(t) Function describing CO2 flux as response to temperature change.

M(t) Atmospheric content of carbon (as CO2). Perturbation is Q(t) = ∆M(t).

p Argument of Laplace transform. Equivalent to e-folding rate for exponentially growing emissions.

RCH4(t) Atmospheric response function for emissions of methane.

R(t) Atmospheric response function for CO2. Various special cases are RFB(t), RO(t).

S(t) Anthropogenic emission of CO2.

t Time.

U(t) Response function giving warming as response to radiative forcing.

W (t) Warming from greenhouse effect; also other temperature changes.

α e-folding rate of exponentially growing emissions.

β, βL, βO Factor specifying feedback from change in CO2 concentration, land and ocean components.

γ, γL, γO Factor specifying feedback from change in global temperature, land and ocean components.

Ψ̃(p) Laplace transform of an operator giving an index, derived from CH4 emissions, giving CO2 equivalence.
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