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Abstract: This study attempts to investigate the impacts of soil data input on hydrologic model performance 
in simulating streamflow and soil moisture. Two different soil datasets available in Australia were considered: 
the Digital Atlas of Australian Soil (AoAS) and Soil and Landscape Grid of Australia (SLGA). We quantified 
the impacts of these two soil databases on hydrologic simulations using Soil Water Assessment tool (SWAT) 
model. Two separate calibration schemes were set up with two soil databases while keeping other inputs the 
same. For both cases, SWAT was calibrated to the daily streamflow at the catchment outlet over 2006-2012 
(including wet and dry periods) and validated against the dataset over 2013-2015 (wet period), after 3 years 
warm up period (2003-2005). The soil moisture estimation from calibrated SWAT was then compared with the 
two radiometric satellite soil moisture products, the Soil Moisture Active Passive (SMAP)-Enhanced 9 km 
(L3SMP-E) and Soil Moisture and Ocean Salinity (SMOS) 25 km gridded (SMOS CATDS L3 SM 3-DAY) 
obtained during 2015. This study was conducted in Merriwa catchment, located in the upper part of the 
Goulburn River basin in Upper Hunter Region of NSW. The simulation results showed very little difference 
in streamflow prediction due to two different soil inputs. Both models showed very similar streamflow patterns 
(with similar NSE value of ~ 0.61 for calibration and ~ 0.45 for validation), but different soil moisture 
estimates. When catchment average near surface soil moisture estimates were compared with the satellite soil 
moisture products, SWAT calibrated with SLGA showed improved results (with R2 value of 0.52 and 0.66 
against SMAP-9 km and SMOS-25 km and RMSE of ~10 %) than that with AoAS (with R2 value of 0.35 and 
0.49 against SMAP-9 km and SMOS-25 km and RMSE of 18-22 %). The large differences in simulated soil 
moisture indicate importance of improved soil data input to capture soil moisture change patterns and 
significantly different water and energy partitioning for the catchment.  
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1. INTRODUCTION 

Prediction of hydrologic variables heavily relies on the accuracy of input dataset and its spatial representation. 
Several studies investigated the impacts of the spatial resolution of input soil data and hydrologic parameters 
on hydrologic prediction (Anderson et al., 2006; Daggupati et al., 2018; Di Luzio et al., 2009; Geza & McCray, 
2008; Levick et al., 2004; Li et al., 2012; Moriasi & Starks, 2010; Robinson et al., 1995; Singh et al., 2011). 
Some studies reported improved prediction with soil database with higher spatial resolution (Anderson et al., 
2006; Di Luzio et al., 2009), while other argued that high resolution soil data has limited or no effect on 
streamflow prediction at the catchment outlet with carefully calibrated simulation models (Cotter et al., 2003; 
Moriasi & Starks, 2010). For example, Moriasi and Starks (2010) showed insignificant difference in daily 
streamflow simulation (either at the sub-catchment or 
catchment scale) based on two different soil databases 
available in the US (i.e., Soil Survey Geographic 
database-SSURGO with spatial scale of 1:250,000 and 
State Soil Geographic-STATSGO with spatial scale range 
between 1:15,850 to 1:31,680). Similarly, Wang and 
Melesse (2006) showed detailed information on soil 
characteristics may not improve streamflow prediction at 
the catchment outlet, though it may improve estimates of 
soil moisture in upland areas. It is because the streamflow 
observed at the catchment outlet is more likely influenced 
by surface runoff from its immediate upstream areas and 
channel routing processes.  

Recently, the Soil and Landscape Grid of Australia 
(SLGA ~90 × 90 m) was released to provide improved 
information on physical and chemical characteristics of 
soils at the continental scale in Australia. This study aims 
to quantify the impacts of improved soil data input on 
streamflow and soil moisture prediction. This research 
was undertaken in the Merriwa catchment, located in the 
northern portion of Goulburn River Basin in the Upper 
Hunter Region of NSW, Australia. Soil and Water 
Assessment Tool (SWAT) was used to simulate the 
catchment hydrological processes across different spatial 
scales (William et al., 2012).   

2. MATERIALS AND METHODS 

2.1. Study area 

The Merriwa catchment with areal size of ~ 651 km2 is located in the northern part of the Goulburn River basin 
(Figure 1). The study site, as a semi-arid to temperate catchment, has experienced extreme climate variability 
over the last two decades (Rüdiger et al., 2007). The site is  covered by a range of soil textures, from sandy 
soils in the downstream to clay soils in the upstream (Rüdiger et al., 2007). Elevations within the basin range 
from nearly 200 m above the sea level at the catchment outlet (southern part of the region) to 1100 m across 
the northern ridge. The spatial precipitation patterns follow the topographic gradient. The low lying south 
region receives relatively low precipitation (from 241 mm in 2008 to 760 mm in 2007 with annual average of 
515 mm during 2006-2015), while the northern ridge received the highest precipitation amount (from 464 mm 
in 2006 to 1231 mm in 2010 with annual average of 812 mm during 2006-2015). The land was mostly used for 
grazing and pasture with a very small part used for cropping. 

2.2. Catchment Model 

SWAT is a semi-distributed, physically-based, continuous model that simulates the hydrologic processes at 
hydrologic response unit (HRU) level. Hydrological response unit (HRU) is specified by the unique 
combination of soil, land use type, and slope. Daily soil water balance is simulated at HRU level, as follow: 

SWt=SW0+� (PRCPt-SURQt-AETt-W t-PERCt)
n

t=1

 Eq. 1 

 
Figure 1. The Study area, the Merriwa 

catchment located in the Goulburn River 
basin. 
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where SWt and SW0 are the amount of soil water at time t and the initial time step (mm/d), PRCPt is 
precipitation (mm/d), SURQt is surface runoff (mm/d), AETt is actual evapotranspiration (mm/d), GWt is the 
groundwater flow (mm/d), and PERCt is the amount of water percolation from the soil profile (mm/d) to deep 
soils.  

The SURQt and storage terms (S) are estimated based on the curve number (CN) method (William et al., 2012):  

SURQt=
[PRCPt-0.2St]2

[PRCPt+0.8St]
 , PRCPt>0.2St and SURQt=0 , PRCPt<0.2St Eq. 2 

St=254×[
100
CNt

-1] Eq. 3 

where St is the retention parameter (mm/d). 

The surface runoffs simulated at HRU level are aggregated at the sub-catchment scale, and then routed to the 
catchment outlet following the stream network. SWAT estimates the amount of water entering the soil profile 
as difference between rainfall and surface runoff. The vertical water flow throughout the soil profile is 
estimated based on the storage routing technique in each soil layer (up to 10 layers), considering the difference 
between available water content and field capacity (FC) at each soil layer. Water percolates downward to the 
next layer if it is unsaturated and then redistribution occurs until the water content throughout the entire profile 
reaches equilibrium. The variable storage method is used to simulate streamflow for each of the reach segment 
based on the continuity equation (Williams et al., 2012).  

SWAT Model Setup  

The ArcSWAT-GIS (the SWAT model extension, http://swat.tamu.edu/software/arcswa) was used for 
preparing input dataset listed in table (1). SWAT requires detailed information on topography, soil, land use 
distribution, and climate data. Daily stream flow and soil moisture from radiometric satellite data products 
were used to assess the model performance on stream flow and soil moisture prediction.   

Table 1. Data sources for the SWAT model 

Soil Database: Two soil datasets available in Australia were considered. AoAS was compiled by the 
Commonwealth Scientific and Industrial Research Organisation (CSIRO) in the 1960's to provide consistent 
national description of Australia's soils (McKenzie and Hook, 1992). The scale of the published maps is 
1:2,000,000, but the original compilation was at scales from 1:250,000 to 1:500,000. AoAS represents the soil 
information using mapped units (shown with large polygons) (Figure 2a). AoAS includes information on 
hydrologic parameters compiled from McKenzie and Hook (1992), such as soil hydrologic properties (i.e., soil 
bulk density, soil saturation hydraulic conductivity, soil water capacity, etc.) and the soil texture (clay, silt and 
sand) using the factual key soil classification system across Australia (Northcote, 1979). The produced 
digitized map has been widely used for water resource management, sediment yield and water quality studies.  

SLGA is a recently released soil dataset as a part of the Australian Soil Resource Information System (ASRIS) 
to provide consistent, comprehensive, nation-wide data in an easily accessible format. SLGA is a part of Global 
Soil Map project which aims to provide soil chemical (e.g., EC, pH, etc) and textural (clay, sand, silt) 
information at a high spatial resolution. Special attention was paid to generate spatially consistent, and detailed 
soil map to inform hydrologic (i.e., soil water holding capacity, soil hydraulic conductivity and soil bulk  

Dataset Source Temporal 
Resolution 

Digital Elevation 
Model (DEM) SRTM-derived 1 Second Digital Elevation Models, Geoscience of Australia --- 

Soil 
(a) Atlas of Australian Soils from Australian Soil Resource Information System 
(ASRIS) 
(b) Soil Grids from Soil and Landscape Grid of Australia 

--- 

Land Use Australian Bureau of Agricultural and Resource Economics and Sciences (ABARES) for 
2010-2011. --- 

Climate 
Australian Government, Bureau of Meteorology and Scaling and Assimilation of Soil 
Moisture And Streamflow project (SASMAS), including climate data such as precipitation, 
temperature, wind speed and humidity for 2005-2015. 

Daily 

Streamflow  Department of Primary Industries-Office of Water Daily 

Soil Moisture 

European Space Agency led Soil Moisture and Ocean Salinity (SMOS) mission version 5.51 
(RE02) data set provided by the Centre Aval de Traitement des Données SMOS (CATDS, 
Level 3 product-lunched in 2009) & Soil Moisture Active Passive (SMAP) 9 km enhanced 
radiometric soil moisture products (L3SMP-E) 

Daily global 
composite 

(every three 
days) 
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density) soil properties across Australia (Grundy et al., 2012). 
This dataset contains soil attribute information at 6-depth (i.e., 0-
50mm, 50-150mm, 150-300mm, 300-600mm, 600-1000mm and 
1000-2000mm) throughout the profile up to 2 m for lower (5th 
percentile) and median (estimated value) upper (95th percentile) 
percentile. In this research, median values are used to describe 
soil properties (Figure 2b).  

Figure 2 and Table 2 summarise similarities and differences 
between two soil databases. Figure 2 shows that the northern part 

of the study site is predominantly covered by tertiary basalt soils with thick clay layers, while southern part 
generally by sandy soil type. The catchment average clay content was shown to be higher in AoAS (51.74%) 
than in SLGA (40.15%). Due to the inherent nature of the soil representation (i.e., in vector format), AoAS 
shows more uniform soil texture across upper part of the catchment, while SLGA (in raster format) shows more 
heterogeneous soil distribution for the same region (Fig 2c and 2d). This difference was most noticeable in the 
upper portion of the study site. However, soil texture pattern close to the catchment outlet is quite similar 
between two soil datasets. Both show higher sandy soils. Given 
similar soil texture pattern in downstream areas, it is most likely 
to obtain similar stream flow responses at the catchment outlet 
with two soil datasets. However, difference in spatial soil 
characteristics in upstream areas as shown by saturation 
hydraulic conductivity from the two soil databases may lead to 
different estimations of hydrologic components in upstream 
areas. Difference in saturated hydraulic conductivity was due to 
different soil texture and pedotransfer function applied in each 
dataset (Grundy et al., 2015). 

2.3. Model Setup and Evaluating Its Performance 

The Merriwa catchment is divided into 31 sub-catchments and 
further divided into 464 HRUs under SLGA and 339 HRUs 
using AoAS. The number of HRUs cannot be imposed to the 
same as the delineation of HRUs is inherently determined by 
unique combination of land use, soil, and slope maps (Moriasi and Starks, 2010). Therefore, the differences in 
soil dataset influenced the HRU delineations despite special efforts were made to generate similar HRU 
delineation for both set-ups. 

As there was limited data availability for different water balance components, soil moisture estimation from 
calibrated SWAT was compared against the satellite products: Soil Moisture Active Passive (SMAP)-
Enhanced 9 km (L3SMP-E) and Soil Moisture and Ocean Salinity (SMOS) 25 km gridded (SMOS CATDS L3 
SM 3-DAY) radiometric products obtained during 2015 (Figure 3).  These two satellite products aim to provide 
global estimate of surficial soil moisture (~5cm) with frequently ∼3-day revisit period at an expected accuracy 
of 0.04 v/v (Entekhabi et al., 2010a; Karthikeyan et al., 2017b; Senanyake et al., 2019). Both SMAP and SMOS 
products were used for the catchment level analysis while SMAP 9-km product was applied at sub-catchment 
level at the pixel X (Figure 3). As the satellite products only show soil moisture information at a shallow soil 
depth (~5 cm), SWAT was revised to extract soil water stored at the corresponding soil depth at the HRU level. 

Table 2. Descriptive soil characteristics of the first soil layer 
of AoAs (15cm) and SLGA (5cm) at catchment scale. 

Soil information SLGA AoAS 

Clay (%) 40.15 51.74 

Silt (%) 8.96 11.78 

Sand (%) 56.08 36.48 

Saturated Hydraulic 
Conductivity (mm/hr) 9.3 20.48 

Soil water capacity 
(fraction) 0.15 0.14 

Bulk density (Mg/m3) 1.43 1.23 

 

 
Figure 3. Remotely sensed soil moisture 

products across the study catchment. 

 

Figure 2. Comparison of two soil datasets and 
spatial representation  : (a) Atlas of Australian 

Soil; (b) Soil Grid and Inset Map of (c) Atlas of 
Australian Soil; (b) Soil Grid. 

1157



Binesh et al., Effects of soil data input on catchment streamflow and soil moisture prediction 

The extracted soil moisture at the HRU level was then aggregated to sub-catchment level and to catchment 
based on weighted area average approach. Note that the default SWAT model provides estimation for profile 
soil water content only.  

Two SWAT setups (with different soil data inputs) were calibrated separately against daily stream flow 
obtained from 2006-2012 and validated for 2013-2015 after 3-years warm up (2003-2005) period. The 
objective function for model calibration was based on the agreement between simulated and observed variables 
as measured by Nash-Sutcliff efficiency (NSE). In addition, root mean square error (RMSE), correlation of 
determination (R2), bias were calculated to evaluate the goodness of fit between the observation and simulation. 

NSE=1- 
∑ (Oi-Si)2n

i=1

∑ (Oi-O�)2n
i=1

 Eq. 4 RMSE=
�∑ (Oi-Si)2n

i=1

n
       Eq. 5 

R2= �
�∑ �Si-S��n

i=1 ×�Oi-O���
2

∑ �Si-S��2n
i=1 ×∑ �Oi-O��2n

i=1

�      Eq. 6 Bias= �
∑ (Si-Oi)n

i=1

∑ (Oi)n
i=1

� Eq. 7 

where S and O represent simulated and observed variables respectively . O� and S� are also the mean of observed 
and simulated variables respectively. i is the daily time step (i=1..n) and n is the total number of observations.   
In total,  21 parameters (related to the rainfall-runoff processes, sub-surface water storage, and channel routing) 
have been calibrated using the Sequential Uncertainty Fitting ver.2 (SUFI-2) from SWAT-CUP package 
(Abbaspour, 2015) . 

3. RESULTS AND DISCUSSIONS 

3.1. Model calibration and validation 

The streamflow simulation with two soil datasets showed good and satisfactory performance for both 
calibration and validation periods (Table 3). However, the set up with AoAS showed slightly better 
performance for both calibration (NSE = 0.66) and validation (NSE = 0.46) compared to that with SG (NSE 
value of 0.61 and 0.43, respectively for calibration and validation). SWAT with SLGA predicted streamflow 
with lower bias (~0) than AoAS (0.14) during calibration. However, during the validation, the simulation with 
AoAS showed lower bias (-0.29) than that with SLGA (-0.53). Overall, the results showed that introducing 
high spatial resolution soil dataset does not necessarily guarantee better streamflow prediction (Moriasi and 
Starks, 2010). As the streamflow generation is most likely influenced by downstream runoff processes and 
channel hydraulic properties in SWAT, spatial difference in soil physical characteristics between the datasets 
tend to show insignificant impacts on streamflow prediction. Note that downstream soil characteristics in the 
study site were shown very similar between the two datasets; hence, it was most likely to have similar 
downstream responses leading to the streamflow generation.   

Table 3. Descriptive statistics of streamflow in calibration (unshaded) and validation (shaded) considering different soil datasets. 

 

 

 

 

 

3.2. Surficial soil moisture estimation 

Table 4 showed the statistical comparison between the satellite soil moisture products and estimates of surficial 
soil moisture (top 5 cm) from April to December 2015. The SWAT output using SLGA provided very good 
correlation and performance, with R2 value of 0.52 and 0.66 against SMAP-9 km and SMOS-25 km 
respectively. However, the SWAT model with AoAS overestimated surficial soil moisture and did not capture 
its drying down process very well. This set up showed the RMSE value of 17.7% and 22.3% against SMAP-9 
km and SMOS-25 km respectively. The positive bias resulted from AoAS setup was attributed from the input 
soil characteristics in upland areas (i.e., clay soils with high soil water storage capacity). Considering simulated 
streamflow results (in comparison to the observed flow), SWAT with AoAS would result in higher soil water 
storage and leading to generate higher streamflow. This could explain overestimation of low flows (i.e., large 
BIAS) in comparison to the SWAT with SLGA (Table 3). 

Soil Dataset R2 BIAS NSE 

SLGA 0.61 0.68 ~0 -0.53 0.61 0.43 

AoAS 0.67 0.69 0.14 -0.29 0.66 0.46 
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Figure 4. Streamflow (SF) simulation with SLGA and AoAS during the study period (2006-2015) at daily time scale. 

 

Analysis of the soil moisture prediction at corresponding sub-catchment level against the pixel (X) showed 
very similar results, i.e. underestimation with SLGA but overestimation with AoAS (Figure 5). The SWAT 
with SLGA showed a good correlation (R2=0.62), while AoAS prediction was less powerful (R2=0.44) with 
higher RMSE at sub-catchment level. Further analysis with consideration of soil input uncertainty (e.g., using 
90 % CI of soil attributes) as shown by SLGA may help to resolve this model bias. 

  
Figure 5. Time series of the remotely sensed soil moisture datasets, near surface soil moisture estimates wth  

AoAS and SLGA at (a) catchment level and (b) the pixel (X). 
 

Table 4. Descriptive statistics of the surficial soil moisture and the model results using Soil Grids and Atlas 
of Australian Soil at catchment scale and in pixel (X). 

Soil Dataset 
R2 RMSE (%) 

SMAP_9km SMOS_25km SMAP_9km SMOS_25km 

SLGA-Catchment wise 0.52 0.66 10.6 8.9 
AoAS-Catchment wise 0.35 0.49 17.7 22.3 

SG-Pixel (X) 0.62 ---- 12.3 ---- 
AoAS-Pixel (X) 0.44 ---- 15.8 ---- 

4. CONCLUSION 

This study investigated the impacts of soil data input on prediction of hydrologic variables. Two soil datasets 
currently available in Australia were considered to simulate hydrological processes in a semi-arid catchment 
across spatial scales, using SWAT model. Due to the lack of observation for water balance components, the 
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daily streamflow at the catchment outlet and the satellite measured surface soil moisture from SMAP and 
SMOS were used to evaluate the impacts of soil dataset on the streamflow and near surface soil moisture 
prediction. Similar to previous studies, our results indicated the soil dataset with high resolution and improved 
information content may not lead to better streamflow prediction at the catchment outlet. However, higher 
resolution SLGA, compared to AoAS, enhanced the surficial soil moisture prediction at catchment as well as 
upland areas simultaneously. This can have important implication for ecosystem and land surface feedback to 
the atmosphere.  Further investigation will consider the uncertainty associated with soil attributes of SLGA on 
soil moisture estimation and streamflow prediction. 
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