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Abstract: Recent computational advances in environmental modelling have enabled modellers to predict 
the impacts of spatially distributed management practices on environmental quality throughout agricultural, 
forested, urban, and mixed-use watersheds. In addition, real and hypothetical incentive policies – as well as the 
interactions between policymakers and policy followers – have been simulated using agent-based modelling 
techniques as well as optimisation and multi-criteria decision-making methods.  

In this paper, we use bilevel optimisation as a solution method for solving an agri-environmental principal-
agent problem—that is, to create spatially targeted environmental incentive policies to improve water quality. 
In constructing the problem and solution framework, we draw parallels between agent-based and bilevel 
approaches as means to simultaneously consider both the objectives of the policymakers and policy followers. 
Our case study investigates the Tully catchment, which is dominated by sugar cane farming and a major 
contributor of nutrient runoff from northeastern Australia to the Great Barrier Reef Lagoon. We compare 
uniform and spatially targeted policies that offer payments for agricultural producers to implement discrete 
reductions in fertilizer application rates, and the resulting policy solutions highlight the optimal trade-offs 
between policy cost and nutrient reductions. In addition, we show that targeting policy incentives based on soil 
type achieves greater efficiencies (i.e., less policy cost, and less nutrient runoff) than simply offering different 
incentives for each fertilizer reduction. By leveraging knowledge of the spatial distribution of soil type 
throughout the catchment, our results suggest that policymakers can construct more efficient policies that will 
ensure adoption and achieve considerable nutrient load reductions at feasible costs. This framework for 
optimizing incentive policies could be extended to include more complicated and realistic policy options, and 
it could also be applied in other watersheds dominated by agricultural, forested, urban, and mixed land uses. 
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1. INTRODUCTION 

The presence of excessive nutrients in aquatic systems can be detrimental to water quality and ecosystem health 
(Guignard et al. 2017). Agricultural production, which depends on the use of nitrogen and phosphorus 
agrochemical fertilizers, is a leading source of nutrients to many aquatic systems, primarily through leaching 
and surface runoff (Guignard et al. 2017; Tilman et al. 2002). In the Great Barrier Reef Lagoon off the coast 
of northeastern Australia, nitrogen runoff from sugar cane farmland serves as a key water quality threat (van 
Grieken et al. 2019; Webster et al. 2012). Therefore, a long-held objective remains to optimise agricultural 
management in such a way that simultaneously preserves both yields and environmental quality (van Grieken 
et al. 2019; Raffensperger, Prabodanie, and Kostel 2017; Smart et al. 2016).   

Numerous studies have leveraged computational advances in environmental modelling to simulate impacts of 
spatially distributed management practices on environmental quality throughout a watershed (Wellen, Kamran-
Disfani, and Arhonditsis 2015). By using multi-objective optimisation algorithms along with cost estimates for 
implementing various management practices, studies have demonstrated that optimally efficient policies – that 
is, those that minimize cost and maximize water quality – are achievable by spatially targeting particular 
management practices (Xu et al. 2018; Yang and Best 2015). The reasons for these results vary, but they can 
often be attributed to spatially heterogeneous environmental and landscape properties that vary throughout a 
watershed, including soil quality, temperature and rainfall, and elevation and/or slope changes, which 
ultimately impact local management costs and environmental benefits.  

In addition to the advances in environmental modelling in the context of agri-environmental systems, advances 
in agent-based modelling have provided the ability to simulate the interactions of individuals and groups within 
socio-environmental systems (Filatova et al. 2013). Principal-agent models are particularly relevant for 
formulating and evaluating agri-environmental incentive policies, where there is an asymmetric information 
structure between the principal (i.e., policymaker) and the agents (i.e., landowners, stakeholders). Numerous 
studies have utilized principal-agent frameworks along with integrated models to simulate the effects of 
alternative agri-environment policies. For example, Cho and Blandford (2018) highlight a case study in 
Norway where they examine a peatland retirement program to reduce agricultural greenhouse gas emissions 
using a principal-agent framework. In addition, Gómez‐Limón, Gutiérrez‐Martín, and Villanueva (2019) use a 
principal-agent model to design optimal schemes for improving farmland biodiversity through incentives.  

While optimisation solution methods and multi-criteria decision making have been widely applied to agri-
environmental systems for designing optimal policies (Kaim, Cord, and Volk 2018), few of these methods 
directly account for the interactions between policymakers and policy followers as with agent-based models. 
One approach that does explicitly model group interactions is the relatively new bilevel optimisation, which 
describes two nested optimisation problems, where each is dependent on the solution of the other (Sinha, Malo, 
and Deb 2017b, 2017a). A few studies have applied bilevel optimisation to targeting agri-environmental policy 
and explicitly model optimized decision-making of policymakers and policy followers. In particular, Whittaker 
et al. (2017) implement a bilevel optimisation framework using a hybrid genetic algorithm in order to produce 
optimally targeted incentive policies to improve water quality. Barnhart et al. (2017) implement a similar 
bilevel optimisation framework and compare implementations using three different evolutionary optimisation 
algorithms.  

In this paper, we leverage the recent advances in bilevel optimisation to simulate interactions between multiple 
landowners and a single policymaker and draw parallels to terminology used in agri-environmental principal-
agent models. We first introduce the framework and then test the approach using data from the Tully catchment 
in northeastern Australia, which is dominated by sugar cane production. By optimizing the spatial distribution 
of incentive policies to reduce fertilizer application rates, the bilevel optimisation solution method is able to 
achieve optimal solutions that meet both the objectives of the policy maker and the landowners. In addition, 
we show that targeting policy incentives based on soil type achieves greater efficiencies (i.e., less policy cost, 
and less nutrient runoff) than simply offering different incentives for each management decision. By leveraging 
knowledge of the spatial distribution of soil quality throughout a watershed, policymakers can construct 
optimal policies that will ensure adoption and limit environmental impacts at feasible costs. Specific 
implementation details using a genetic algorithm are discussed, as well as suggestions for further research, 
which include extending the framework to more complicated and realistic policy options and applying the 
methodology in other watersheds.  
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2. METHODOLOGY 

2.1. Bilevel optimisation solution method 

The bilevel optimisation framework, which describes two nested optimisation problems that characterize the 
decision-making process of two individuals or groups and are interdependent, lends well to principal-agent 
problems that are characterized by multiple, misaligned objectives. It has been compared to the widely known 
Stackelberg game (Sinha, Malo, and Deb 2017b, 2017a), in which two players seek to optimize their strategy, 
yet their outcomes are dependent on the previous player’s decision (Sinha, Malo, and Deb 2017b). This section 
will briefly describe a bilevel optimisation framework in an agri-environmental context, and principal-agent 
concepts will be incorporated to highlight the closeness of the methods. For more technical detail on the 
application of bilevel optimization to principle-agent problems, refer to Cecchini et al. (2013). 

In an agri-environmental context, the principal (e.g., a policymaker) represents one level of optimization. This 
principal seeks to determine a set of decisions that will achieve some set of objectives. As an example, a policy 
maker distributes incentive payments with the intent to minimize the total policy cost while maximizing 
environmental improvement. Meanwhile, the agents (e.g., landowners) are presented with a set of policy 
options and must decide how to respond – whether to accept or reject the policy – given their own individual 
optimization objectives. For example, the individuals could be offered individual payments to implement a 
particular management practice. These individuals will consider their own objectives (e.g., resource efficiency, 
local environmental benefit, profit maximization) and decide whether or not to accept the payment. Bilevel 
optimization then links these two optimization processes, and therefore solutions to the bilevel optimization 
problem offer optimal policy alternatives that match the objectives of both the principal and the agents.  

For this study, we will focus on the specific example of allocating payments to reduce fertilizer usage in sugar 
cane production in the Tully catchment, which will be described in detail in section 2.2. The bilevel multi-
objective problem can be formulated as follows:  

 𝑚𝑚𝑚𝑚𝑚𝑚
𝑐𝑐𝑖𝑖(𝑥𝑥𝑗𝑗)

�𝐶𝐶�𝑐𝑐𝑖𝑖(𝑥𝑥𝑗𝑗)�,𝑁𝑁�𝑛𝑛𝑖𝑖(𝑥𝑥𝑗𝑗)�� 

         s.t. 𝑥𝑥𝑗𝑗 ∈ 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑐𝑐𝑖𝑖(𝑥𝑥𝑗𝑗)
�𝐺𝐺𝐺𝐺𝑖𝑖�𝑥𝑥𝑗𝑗� + 𝑐𝑐𝑖𝑖�𝑥𝑥𝑗𝑗�� 

(1) 

Here, the first line, which is referred to as the upper level, represents the principal (i.e., policymaker) who 
offers a series of payments ci(xj) to each agent i (i.e., agricultural producers) for adopting particular 
management practices xj (in this case, the reduction of fertilizer applications by some fixed amount). From the 
perspective of the policymaker, an optimal policy is one that both minimizes the total policy cost 𝐶𝐶�𝑐𝑐𝑖𝑖(𝑥𝑥𝑗𝑗)� =
∑𝑐𝑐𝑖𝑖(𝑥𝑥𝑗𝑗) and the total nutrient runoff from the catchment 𝑁𝑁�𝑛𝑛𝑖𝑖(𝑥𝑥𝑗𝑗)� = ∑𝑛𝑛𝑖𝑖(𝑥𝑥𝑗𝑗), where the lowercase ci(xj) and 
ni(xj) represent each agent’s individual contributions to the total policy cost and nutrient runoff for a given 
management practice xj, respectively.  

Meanwhile, the second line, which is referred to as the lower level, represents the response of the agents to a 
proposed policy. After being offered a payment ci(xj) to adopt a particular management practice xj (in this case, 
to reduce fertilizer usage by some fixed amount), each agent i determines which practice to adopt in order to 
maximize their own profits, defined as the sum of the gross margin achieved from a given practice and the 
payment received from the policy: 𝐺𝐺𝐺𝐺𝑖𝑖�𝑥𝑥𝑗𝑗� + 𝑐𝑐𝑖𝑖�𝑥𝑥𝑗𝑗�. The resulting choices of xj for each agent contributes to 
the calculation of the upper level objectives C(x) and N(x).  

Detailed implementation of the bilevel optimisation framework using a genetic algorithm is discussed in 
section 2.3. Note that in this problem, the upper level has two objectives, and the lower level has one objective 
(for each agent). Therefore, at the lower level, there are no trade-offs between multiple objectives. This greatly 
simplifies implementation, since the lower level sends only a single solution from each agent back up to the 
upper level. If each agent had more than one objective, and thus produced a frontier of optimal solutions due 
to conflicting objectives, then the upper level would need to construct optimistic and pessimistic frontiers by 
anticipating the “best” and “worst” agent choices to essentially bound feasible choices of the agents. Further 
information on how bilevel optimisation can handle asymmetric information exchange is covered in Sinha, 
Malo, and Deb (2017b). 
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2.2. Description of the Tully 
catchment 

The optimisation framework above will 
be implemented for the Tully catchment 
(approximately 18 °S 146 °N) in 
northeastern Australia. The sugar cane 
production region of the catchment was 
broken into 4,020 cells, each 250 m x 250 
m, as shown in Figure 1. This particular 
catchment is in the Wet Tropics 
bioregion and is characterised by high 
annual average rainfall (4100 mm) (van 
Grieken et al. 2019). There is a general 
consensus that the nitrogen fertilizer 
application rate is the most important 
determinant of nitrogen pollution in this 
region (Webster et al. 2012) and that nitrogen surface runoff from sugarcane farms reach the coast and the 
Great Barrier Reef Lagoon quickly, with little opportunity of nitrogen removal through in-soil or in-stream 
processes  (van Grieken et al. 2019).  

In the present study, the relationships between nitrogen application rate (kg N/ha) and average annual dissolved 
inorganic nitrogen losses (kg DIN/ha), and between nitrogen application rate and estimated annuity gross 
margins (AU $/ha) were obtained from Roebeling et al. (2007) (Figures 4 and 6) for four fertilizer application 
rates: 210, 180, 120, and 60 kg N/ha over four soil classes in the Tully catchment. Using these relationships, 
cell-specific data on DIN losses and gross margins were calculated for each fertilizer application rate, knowing 
sugar cane area and soil class composition for each cell (Smart et al. 2016). These data were stored as a comma-
separated value look-up table to be used during the optimisation implementation, which will be described in 
subsequent sections.   

2.3. Optimisation implementation for 
two policy scenarios 

As described in the previous section, the Tully 
catchment was divided into 4,020 cells, each 
250 m x 250 m. Each cell is treated as an agent 
(i.e., landowner), and the principal (i.e., 
policymaker) will construct alternative policy 
scenarios that are offered to each agent. This 
is clearly a simplification of reality that can be 
further refined with future work—in 
particular, by more appropriately defining 
agents as controlling portions of land based on 
ownership boundaries.  

For this application, both uniform and soil-
type targeted policies were optimized. A 
graphical depiction of the algorithm 
implementing the uniform policy is depicted 
in Figure 2. 

In this policy, the policymaker offers a fixed 
payment to each landowner in exchange for implementing a fertilizer application rate (i.e., c210, c180, c120, c60). 
The naming convention used for the payments refers to the kg N/ha of fertilizer applied to each cell. The 
policymaker offers different payment amounts for implementing each fertilizer application rate, but the same 
payments are offered to all cells in the catchment. Note that c210 is set to zero because the policy maker does 
not offer a payment for adopting the highest fertilizer application rate.  

The green box in Figure 2 describes how each agent (i.e., cell) receives the payment offers from the principal 
(i.e., policymaker) and decides to implement the practice that maximizes the sum of the gross margin and 
payment. Note that whether each cell accepts one of the payments depends entirely on the local conditions in 
that particular cell. The decisions made within the green box in Figure 2 then determines the gross margin, 

Figure 1. Overview of the Tully catchment on the coast of 
northeastern Australia. 

Figure 2. Optimization flowchart depicting the upper level 
(policymaker) objectives and the lower level (landowner) 

objectives. This particular example shows a uniform policy with 
four alternative management practices. 
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incremental cost of the policy, and the resulting nitrogen loss from that cell. The information from all of the 
cells is then passed to the upper level (i.e., principal, policy maker) to calculate the policy outcomes.  

The policymaker objectives are to minimize the total policy cost, which is calculated by adding up all the 
payments made to all of the cells, and to minimize the total nitrogen runoff, which is calculated by adding up 
the nitrogen runoff from all of the cells.  

This first policy optimisation explored is a uniform policy in which the policymaker offers the same payments 
to all cells in the catchment. In addition, a second policy was generated that offered different payments 
depending on the soil type of each cell. There were four different soil types throughout the catchment, so the 
soil-type-targeted policy offered 16 possible payments to each of the cells (i.e., [(c210, 1, c210, 2, c210, 3, c210, 4), 
(c180, 1, c180, 2, c180, 3, c180, 4), (c120, 1, c120, 2, c120, 3, c120, 4), (c60, 1, c60, 2, c60, 3, c60, 4)], where the second subscript 
denotes the soil type. Note that the four payments for the highest fertilizer application rate (c210, 1, c210, 2, c210, 3, 
c210, 4) were set to 0, since the policymaker does not offer a payment to incentivize adoption of the highest 
fertilizer rate.  

To implement the bilevel optimisation framework described in equation (1) and Figure 2, a genetic algorithm 
(GA) was used. GAs are widely used iterative algorithms that find solutions to optimisation problems with one 
or more objectives. In particular, GAs represent sets of input parameters as individuals within a population. By 
evaluating the performance of each individual, the algorithm determines each individual’s fitness with respect 
to meeting the objectives. Selection and mating are then performed, and mutations are introduced into the 
individuals with some probability of occurrence, then the algorithm again evaluates the new solutions. After 
many iterations, convergence occurs, and the resulting solutions typically represent a set of optimal solutions 
that exhibit trade-offs between the different optimisation objectives.  

The bilevel optimisation problem described above was implemented using a genetic algorithm from the 
inspyred package (Garrett 2012) in Python 3.4. Inspyred implements a variety of different optimisation solution 
methods, but the widely used nondominated sorting genetic algorithm [NSGA-II; (Deb et al. 2002)] was chosen 
for this study. NSGA-II is typically used for multi-objective optimisation problems that have 1-3 objectives, 
so the method is considered to be sufficient for this study. It utilizes Pareto ranking (or nondomination) as well 
as crowding distance to sort and select solutions that span the entire objective space (Deb et al. 2002). A 
population of 96 individuals evolved for 1,000 generations. We used the simple binary crossover (SBX) with 
a SBX distribution of 10 and a crossover rate of 0.75. The probability of mutation (mutp) was set to 1/N where 
N is the number of decision variables. No specific convergence metric was set for this implementation, yet 
convergence was confirmed through visual inspection of the solutions, since they did not vary after 
approximately 200 generations.  

The two policies described above have 4 and 16 decision variables, respectively, since there are 4 possible 
management practices and 4 soil types. However, the highest fertilizer application rate was not incentivized, 
so the actual numbers of decision variables are 3 and 12. The algorithm was run on a computer with Windows 
10 an Intel Core i7-8700 central processing unit (CPU) @ 3.2 Ghz with 64 Gb of random-access memory 
(RAM).  

 

3. RESULTS 

The solutions to the upper level objectives for the two policies are shown in Figure 3. The left panel shows the 
total policy cost vs. the total loss of nitrogen for the catchment. The no-policy total loss of nitrogen is 
approximately 750 tonnes; the right panel shows the nitrogen loss as a percentage reduction from that baseline.  

Note that the maximum nitrogen runoff reductions achievable by both policies were approximately 70% from 
the baseline, and the total cost for achieving these reductions was approximately $9 million AUS. This is due 
to the fact that only four fertilizer application rates were included in our setup, and these solutions require that 
all cells adopt the lowest level of fertilizer application rate possible. In practice, sugar cane farmers will have 
a spectrum of fertilizer application rates to choose from; however, our data limited us to only consider four 
alternatives. In addition, both sets of solutions show discontinuities within their frontiers. This is also likely 
caused by the discrete policy choices.  

Another key result is that the soil type-targeted policy was more efficient than the uniform policy. As shown 
in Figure 3, the soil-specific targeted policy points (blue) provided lower total policy costs for equivalent 
nitrogen losses, and likewise, for a given total policy cost, the targeted policy achieved lower N loss, or, 
equivalently, greater reductions in N loss.  
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4. DISCUSSION AND CONCLUSION 

This paper introduced bilevel optimisation as a solution method for principle-agent problems and specifically 
described how the method can be used to determine optimal targeting of agri-environmental incentive policies 
while taking into account the objectives of the policymaker and the landowners.  

We provided an example implementation of this methodology using the Tully catchment in northeastern 
Australia, which is dominated by sugar cane production. By using data on the relationships between nitrogen 
fertilizer application, gross margin from cane yields, and nitrogen loss, we constructed two incentive policies 
that offered incentive payments to persuade landowners to reduce their fertilizer application and subsequently 
reduce the total nitrogen loss from the catchment. Both a uniform policy, in which a fixed payment was 
provided for switching to alternative fertilizer applications, and a soil-specific policy, in which fixed payments 
were offered but varied depending on the soil type of the location, were optimized in a bilevel optimisation 
framework using a genetic algorithm.  

The results showed that targeting policy payments based on soil type provided more efficient results (i.e., lower 
total policy cost and lower nitrogen loss) than the uniform policy. These results match findings from previous 
studies. For example, Bostian et al. (2015) found variation amongst the trade-offs between maximum profit 
and nitrogen loading from individual farms subject to a fertilizer tax policy in Oregon’s Willamette Valley 
(USA). Also, Whittaker et al. (2017) targeted multiple agri-environmental policies at the catchment, zip code 
(i.e., sub-catchment), and individual farm levels and found similar policy efficiency improvements. All of these 
approaches suggest that utilizing targeted payments offers more flexibility and does not suffer from 
overpayment issues that occur with uniform policy.   

Further research should be conducted to explore the spatial distribution of the policy solutions shown in Figure 
3, as well as their environmental impacts. In addition, the present approach could be expanded to include more 
policy alternatives to enhance the realism of the policies. For example, the upper level environmental objective 
was to minimize the sum of all nitrogen losses from of all cells. However, this edge-of-field approach to 
measuring nitrogen loss may be insufficient to fully characterize the impacts of excessive nutrients that deposit 
in the Great Barrier Reef Lagoon. Therefore, simple transfer coefficients or full water quality and watershed 
models could be used to better characterize the transport of excess nitrogen through water bodies and ultimately 
to the Reef. In addition, only four fertilizer application rates were used for the case study. Data on additional 
fertilizer application rates are available and should be incorporated to produce more realistic policy alternatives. 
Policy realism could also be improved by offering a sub-scale at which the policy is offered. That is, we only 
investigated a uniform policy and a soil-type-specific policy. Further work could divide the catchment into 
sub-catchments based on geography, or perhaps land ownership, to provide more easily implementable policy 
alternatives. Finally, only a few studies have applied bilevel optimisation to solve agri-environmental policy 
targeting problems in general. Therefore, further work should apply this framework to other watersheds in 
pursuit of other environmental outcomes – including various metrics of water quality, air quality, and carbon 
sequestration, to name a few – in order to broaden its applicability.  

Figure 3. Final resulting trade-offs between upper level objectives (i.e., total policy cost and total N loss) 
plotted for two specific policies: a uniform payment to adopt different management practices (black) and a 

policy that offers payments that vary depending on the soil type of a given cell (blue). The red circles 
indicate the outcomes achieved under the no-payment scenario.   
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