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Abstract: We devise a new method for determining the effects of model forcing anomalies and climate 
shifts on seasonal predictions. The role of model bias, due to anomalous forcings, and climate shift on forecast 
skill is studied for coupled ocean-atmosphere general circulation models (CGCMs) during different phases of 
the El Niño Southern Oscillation (ENSO) cycle. Biases due to anomalies or errors in the model forcing 
functions in simulations produce changes in the attractor of the thermo-dynamical system and shifts in the 
consequent climate state. We examine how such biases and climate shifts affect seasonal predictions.  

We employ an efficient intermediate complexity model with established forecast skill in a standard 
configuration and analyse seasonal predictability during a 20-year period of intense El Niño and La Niña events 
starting in January 1980 and ending December 2000. Firstly, we use reanalysed data from the observations to 
perform seasonal forecasts using our intermediate model with the optimised forcings for the standard 
configuration.  Forecasts for one year are produced starting each month of the analysis period. The same initial 
conditions are then used by the intermediate complexity model, together with changed forcings that closely 
reproduce climates from selected complex CGCMs, to produce two additional control forecasts. We then 
determine the effects of the anomalous CGCM forcings, or model biases, and climate shifts, by comparing how 
well the forecasts with these configurations perform in situations of developing and large amplitude El Niños 
and La Niñas. We calculate the forecast error of the 50m ocean temperatures in the Pacific Ocean region and 
show the model’s variability in forecast error growth during the annual cycle. Larger amplitudes of error are 
seen during the development of El Niño events in all cases, with the seasonal predictions with CGCM 
determined forcings showing evidence of drift towards the shifted model climate with overall increased 
forecast error. 
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1. INTRODUCTION 

Forecast errors in seasonal predictions of the regional climate state are dominated by coupled ocean-
atmosphere model biases that lead to a systematic shift in the model climate state from the true climate state 
(Meehl et al., 2001; Kirtman and Pirani, 2008; Hermanson et al., 2018). Other significant sources of error are 
internal thermo-dynamical errors due to the chaotic nature of the coupled ocean-atmosphere system and to 
errors in the initial conditions for the forecasts (Frederiksen et al., 2010a, b; O’Kane et al., 2019). O’Kane et 
al. (2019) detail methods of data assimilation for the complex coupled system and they also provide a simple 
illustrative set of nine coupled equations – three for each of the atmospheric tropics and extratropics and the 
ocean – based on the Lorenz (1963) model of chaotic dynamics. Data assimilation reduces the sampling error 
in the initial conditions and the resulting analysis lies closer to the correct point on the attractor of the system 
ensuring a smoother integration without spurious oscillations that may otherwise occur. Internal thermo-
dynamical errors are due to the exponential growth of perturbations in chaotic systems that may be particularly 
large when the system state approaches a bifurcation point on the attractor. At such a point the system state, 
like a planet transiting between two suns, may be deflected into orbiting about one or the other by a small 
perturbation. For example, in the atmosphere, the onset of blocking from a largely zonal flow state, or the 
reverse transition, is often associated with limited predictability and large forecast errors (Frederiksen et al., 
2004 and references therein).  Similarly, in the coupled system the transition in or out of an El Niño or La Niña 
state may have limited predictability while forecast skill may increase in these anomalous states before another 
regime transition occurs (Frederiksen et al., 2010a, b; Hermanson et al., 2018; O’Kane et al., 2019). 

Systematic model biases result in the attractor of the model and its consequent climate state being different or 
displaced from the physical system. This climate shift between the model and physical systems (resulting in 
climate drift of the simulations) is generally a dominant source of errors and forecast failures. Despite this our 
understanding of model biases and how to ameliorate them is rather limited (Hermanson et al., 2018) and the 
World Climate Research Group has made this a project of current and future focus. 

 In a recent study, Osbrough et al., (2019) examined the internal error growth and potential predictability in 
coupled ocean-atmosphere models with different climate forcings and hence different attractors and climates. 
The models were variants of the Primitive Equation Coupled Ocean and Atmosphere Model (PECOCAM) 
formulated by Frederiksen et al., (2010a, b; 2013a, b). In the work of Osbrough et al., (2019) each model 
formulation was regarded as a ‘perfect’ model and the initial conditions or analyses for control forecasts were 
taken from long integrations of the models. The error growth was determined primarily by internal thermo-
dynamics in the model variants with different forcing formulations.  

In this article our focus is on how model biases, and the consequent climate shifts, affect forecasts when the 
initial conditions are from analysed observations and thus in general are displaced from the model attractor. 
We are particularly interested in how forecast skill (in hindcasts) relates to the changing El Niño Southern 
Oscillation (ENSO) cycle observed in the recent past. 

2. MODEL SETUP 

In this study, the PECOAM has been used with different radiative forcing functions derived from reanalysed 
observations and from two CGCMs. PECOAM is an intermediate complexity coupled ocean-atmosphere 
model ideally suited for investigative analysis of ENSO. It is highly computationally efficient and in standard 
configuration is skilful in the prediction of ENSO events (Frederiksen et al., 2010a, b). The model has 
prognostic equations that describe the dynamics and physics involved in the coupling between a Pacific Basin 
ocean, with levels at 50m and 150m, and a global atmosphere with pressure levels at 250hPa and 750hPa. The 
horizontal resolution is 2.3o latitude by 3.75o longitude, which is adequate for studying the variability and 
predictability of ENSO. Coupling is through wind stresses and heat fluxes over the ocean basin.  

Representation of radiative forcing in the prognostic equations for the mean and shear atmospheric potential 
temperatures ensures that the reanalysed climatological annual cycle of mean and shear atmospheric 
temperature is reproduced. This is done in such a way as to produce the best simulation of ENSO-like 
variability and prediction (Frederiksen et al 2010a, Figures 5 and 16). As a result, because this climatological 
state includes a contribution from the climatological sea surface temperature (SST), an anomalous surface heat 
flux is applied to the atmospheric temperature equation. The formulation results in a model with a good 
climatology, little oceanic drift and good ENSO predictability. Full details of the model and its performance 
can be found in Frederiksen et al. (2010a, b; 2013a, b). In this study, we also run PECOAM with radiative 
forcings derived from the two CGCMs to investigate the differences in ENSO variability and predictability 
between the models. We make comparisons with the ENSOs generated using the reanalysed observations.  
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This model can be used to emulate the variability and predictability of more complex coupled models by 
determining forcing functions that closely reproduce the climatology of the CGCMs in simulations with 
PECOAM (Osbrough et al., 2019). Here, we compare the National Center for Atmospheric Research (NCAR) 
Community Climate System Model 4.0 (CCSM4) (Gent et al., 2011), and the Commonwealth Scientific and 
Industrial Research Organisation (CSIRO) and Bureau of Meteorology's (BOM) Australian Community 
Climate and Earth-System Simulator ACCESS1.3 (Rashid et al., 2013) models in their ability to predict 
observed ENSO variability over the period 1980-2000. Osbrough et al. (2019) compared the ENSO variability 
and potential predictability inherent within each model using reanalysed data from the models themselves. 
These models were chosen for their ability to reproduce the large scale dynamics of the Southern Hemispheric 
atmospheric circulation and reproduce 20th century trends in baroclinicity (Frederiksen et al., 2017; Grainger 
et al., 2014). 

 Here, we will use reanalysed data from the observations to investigate how well the models, initialised with 
observed reanalysis, perform seasonal forecasts including at times of developing and large amplitude El Niños 
and La Niñas. The Reanalysis 1 dataset used for the observed atmosphere is a joint product from National 
Centers for Environmental Prediction (NCEP) and NCAR (Kalnay, E. et. al., 1996), with the sub surface ocean 
temperatures taken from the Australian Government’s Bureau of Meteorology Marine observations (2019). 

3. METHODOLOGY 

In order to generate initial conditions for predictability 
studies, we have performed an analysis run of PECOAM in 
which we have assimilated observed 50 and 150 metre ocean 
temperatures and surface wind stresses. Our interest is in the 
forecast of the anomalous temperature and circulation 
features from the climatology. We have therefore used a 
methodology for generating the analysis run that assimilates 
the observed anomalies, by nudging the model anomalies 
towards the observed values over 1980-2000 (see Frederiksen 
et al., 2010a, b for details). This period includes the El Niños 
of 1982-83, 1987-88 and 1997-98 and La Niñas of 1983-85, 
1988-89 and 1998-2000.  
 
Figure 1 shows the Hovmoller diagram for the 50m Pacific 
Ocean temperature anomalies averaged over 5oS to 5oN 
latitude for each month of the 20-year analysis run. The three 
El Niños and La Niñas are clearly seen. 

4. FORECASTS 

For each month between January 1980 and December 2000 
we carry out yearly forecasts using the PECOAM with the 
reanalysed observation dataset. We take this to be our 
‘Standard’ control run and compare this to our PECOAM 
runs that have identical initial conditions created from the 
observed reanalysis but are forced with CGCM forcing 
functions. Figure 2 compares the forecast root mean square 
(rms) errors of the 50m ocean temperatures in the NINO 3+ 
(10oS-10oN, 90oW-150oW) region for the Standard, 

ACCESS1.3 and CCSM4 control runs. Each of the three cases has the same initial conditions and, in particular, 
show large magnitudes of forecast error during the development of the three major El Niño events in 1982, 
1987 and 1997. In both the CGCM cases we see an increase in forecast error compared to the Standard case, 
and this is most evident in the case of CCSM4 with peak error values reaching 3.6 oC. This tells us that the 
climate shift, namely the displacement of the CCSM4 model attractor from the observed reanalysis, is greater 
than for ACCESS1.3. It appears that the model bias in CCSM4 is having a significant detrimental effect on the 
quality of the forecasts as further discussed in Section 5.2. 

Figure 3 examines the yearly averaged rms forecast errors over the 20-year period in order to analyse the 
seasonal dependence of predictability. The least skill is found in forecasts during March-April-May, which is 
a well-known problem in models called the boreal spring predictability barrier. ACCESS1.3 emulates this well, 
with slightly larger peak values but structure similar to the Standard configuration result, and a reduction in 

Figure 1. 50m ocean temperature 
anomalies averaged over 5oS-5oN (C) for 
analysis runs from 1980 to 2000 with 
NCEP/NCAR reanalysis data.  
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error showing a recovery in the months following northern spring. The averaged CCSM4 forecast rms error 
depicts similar values during the boreal spring months, with the most error 12 months on from forecast starting 
in October and November. It is however, expected that as time goes on, forecasts will generally decline in skill. 
 

 

 

 

5. CLIMATE BIASES IN ACCESS1.3 AND CCSM4 

Here we discuss the climate biases of the ACCESS1.3 and CCSM4 coupled ocean atmosphere models which 
affect the growth of errors in seasonal forecasts. 

Figure 2. Error calculated for 12 month control forecasts starting each month during 1980-2000 for 
Standard (top), ACCESS1.3 (middle) and CCSM4 (bottom).  
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5.1 The ACCESS1.3 Model 

Predictability on the seasonal time scale is affected by systematic shifts in the climatological mean state as well 
as biases in the annual cycle of the climate state that considerably impact on the realism of the simulated ENSO 
cycle. Rashid et al., (2013) detail the important biases in the ACCESS1.3 (and ACCESS1.0) model. In common 

 

 

 

 

with most CGCMs, ACCESS1.3 suffers from a so-called ‘cold tongue’ bias in which the SSTs are too cold by 
up to 1oC across the central equatorial Pacific in the latitude band between 5oS-5oN and up to 2oC too warm 
along the west coast of South America (Figure 1d of Rashid et al. 2013). These biases are nevertheless less 
pronounced than typical systematic shifts in most CGCMs used for climate variability and climate change 
prognoses, which is one of the reasons for choosing it for this study. The zonal (longitudinal) wind stress of 
the atmosphere on the ocean is also a significant determinant of the properties of the simulated ENSO 
variability. Again, like most CGCMs ACCESS1.3 has significant easterly wind stress bias across the Indian, 
and particularly Pacific, ocean regions (Figure 2d of Rashid et al. 2013). As noted by Meehl et al., (2001) 
ENSO characteristics are also especially affected by the structure and biases in the model thermocline – the 
temperatures in the equatorial Pacific upper ocean to a depth of 300m. Figure 3d of Rashid et al., (2013) shows 

Figure 3. Yearly averaged rms forecast errors in Control run for each month over all years 1980-2000 for 
Standard (top), ACCESS1.3 (middle) and CCSM4 (bottom) of 50m ocean temperatures in the NINO3+ 
region. 
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the biases in the depth of the 20oC isotherm surface, which  approximates the thermocline, while their Figure 
4d show vertical profiles of climatological potential temperatures in the Pacific ocean between 5oS-5oN. In the 
equatorial regions the anomalies in the 20oC isotherm are small with larger biases located further from the 
equator in a pattern similar to that for zonal wind stress anomalies. The ACCESS1.3 model is cooler than 
observed in the upper equatorial Pacific Ocean and with larger (~2.5oC) warm anomalies in the subsurface 
between 75m and 175m in the eastern Pacific. 
 
The annual cycle of equatorial (5oS-5oN) SST and zonal wind stress for the ACCESS1.3 model has broadly 
similar behaviour in the Pacific basin compared with observations (Figure 5d of Rashid et al. 2013) but there 
are errors in the strengths and their location. The simulated ENSO SSTs (Figure 6d of Rashid et al. 2013) 
extend somewhat further east than in the observations in common with the CCSM4 model (discussed next). 
The power spectra and wavelet spectra of ACCESS1.3 NINO3 (5oS-5oN, 90oW-150oW) SST indices (Figures 
7b and 8d of Rashid et al. 2013) have realistic magnitudes and show peaks in the 3 to 7-year timescales as in 
the observations and this is another strength of this model. 
 
5.2 The CCSM4 Model 
 
As mentioned in section 2, the CCSM4 CGCM, like ACCESS1.3, is able to reproduce the broad features of 
the Southern Hemisphere circulation and the twentieth century changes in baroclinicity that determines the 
strength and location of extra-tropical storm formation. The CCSM4 model has reduced biases compared to 
earlier versions of the model but still shares many systematic anomalies with the ACCESS1.3, described above, 
and other CGCMs. The cold tongue SST bias in the central Pacific Ocean is considerably reduced compared 
with an earlier version (Figure 1 of Gent et al., 2011) although the model SSTs are up to 2oC too warm along 
the west coast of South America, as for ACCESS1.3. Capotondi (2013, Figures 6 and 7) compares the CCSM4 
zonal wind stress and thermocline depth for different flavours of ENSO with observations and finds broad 
agreement between the two. 
 
The annual cycle of SST for CCSM4 is qualitatively similar to that of the observations (Figure 7 of Gent et al. 
2011) but its strength is considerably reduced. Like the ACCESS1.3 model, the CCSM4 has peak ENSO 
variability, measured by the NINO3 index, between 3 and 6 years. However, the CCSM4 ENSO variability is 
considerably larger than for the observations (Figure 8 of Gent et al. 2011) or the ACCESS1.3 model (Figure 
7 of Rashid et al. 2013). This appears to be a particular source of the error growth in seasonal forecasts we 
found in section 4. Again, the CCSM4 simulated ENSO SSTs extend further eastward than observed and as 
well have an anomalously cold region in the west Pacific just north of the equator. 

6. CONCLUSION 

A new method using an efficient intermediate coupled ocean-atmosphere model with established forecast skill 
has been developed to evaluate the effect of model biases and climate shifts, in comprehensive global climate 
models, in predicting ENSO events. A period of intensive El Niño and La Niña events has been chosen for this 
study spanning twenty years beginning in January 1980.  

Firstly, we have performed an analysis run to create the initial conditions used to produce the forecasts. The 
Standard control run uses this analysis as input to create 12 month forecasts for each month until December 
2000. Next, we repeat this process using the same initial conditions in the PECOAM but with forcings that 
closely reproduce each of ACCESS1.3 and CCSM4 model climates, respectively. We have compared the skill 
of the resulting forecasts of 50m ocean temperatures in the NINO3+ region by calculating the root mean square 
error. Larger amplitudes of error occur during the development of El Niño events and is seen in all cases. 
However, generally increased forecast errors with ACCESS1.3 and CCSM4 model forcings show evidence of 
model climate drift. We have continued our study by examining the variability of forecast error growth during 
the annual cycle. In all cases there is evidence of the boreal spring predictability barrier, with ACCESS1.3 
showing forecast error amplitude and structure more closely resembling that of the Standard run than that of 
CCSM4. The CCSM4 ENSO variability is known to be considerably larger than for the observations as 
discussed in section 5.2 and may be a contributing factor to this model’s larger ocean temperature forecast 
errors than those of ACCESS1.3. CCSM4 yearly averaged forecast error results show that it has potential to 
improve its forecasts during this period by reducing the model’s evident climate shift. 

Our work in this area is continuing, with studies on the effect of climate shift using ensemble prediction 
methods in progress. Further discussion on this topic is beyond the scope of this paper, other than to say initial 
results show overall improvement in the ensemble forecast error when compared against the model’s control 
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run. This indicates the model attractor is sufficiently close to the observed reanalysis to produce perturbations 
that result in an ensemble average that improves the forecast. 
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