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Abstract: A reliable and efficient traffic network model is required to study urban traffic congestion, which 
has increasingly become a global concern recently. The model can then be used to emulate different policy 
scenarios to assess different mitigation strategies, which will be very useful to policy- and decision makers. 
In this work, we develop a physical traffic model that can be used to investigate the intrinsic property of city 
traffic under different human decisions and driving behaviors. Cellular automaton is one of the most 
commonly used traffic network model. At its simplest stage, however, it can only model a one-dimensional 
problem. The Biham-Middleton-Levine (BML) extends the capability of the cellular automaton model to 
model a two-dimensional traffic network problem. However, it can only model two directions: rightward and 
downward. Directly modeling the four directions of traffic using the BML model causes jamming and 
gridlock problem. Thus, the existing traffic network models have not been sufficiently capable of modeling 
the traffic situation realistically. In this work, we propose a two-layer network modeling to address this 
intrinsic gridlock problem, where each layer is modeled based on the cellular automaton approach. The model 
is developed on a two-dimensional L2-square lattice system, and users can specify the vehicle density prior to 
running the simulation. A moving strategy is then derived for each vehicle based on the origin and destination 
cell locations, where the shortest path is typically assumed. One of the key purposes of this work is to present 
the city traffic in a physical way to investigate the inertial characteristics of city traffic and to help bridge the 
gap between the simplified cellular automaton models and the complexity of real-world traffic. As such, we 
incorporate driving behavior modeling into the two-layer network system by introducing a flexibility index. 
Essentially, this index denotes the probability that a driver can deviate from the predefined shortest path when 
congestion occurs, i.e., when the next cell in its intended moving direction is occupied by another vehicle. 
The rationale behind this feature is that in real situation, drivers have the option to take an alternative path. 
We perform a number of traffic simulations to demonstrate the derived model and to gain insight into the 
effect of flexibility on the overall traffic flow. In particular, we vary the lattice size (by varying L) and the 
traffic density ρ, which will determine the number of vehicles to be simulated. Each vehicle is assigned a 
random origin-destination pair, and the corresponding moving strategy is then determined. By plotting the 
average vehicle speed as a function of vehicle density, we can find the phase transition point, where the 
traffic changes from a free-flow state to a congestion state. Our results show that when drivers are more 
flexible, the onset of congestion state is delayed to a higher density value. In other words, for the same 
density value, introducing a higher flexibility results in a higher average speed. This suggests that the 
vehicles can reach the destination faster, even if they need to cover a longer travel distance. This hypothesis is 
confirmed as we observe the effects of flexibility on the total distance traveled and the total number of 
completed journeys. Overall, our simulation results are consistent with the real traffic situations. This model 
can be further extended to mimic the traffic network more realistically by introducing more complexity in the 
system (e.g., the system lattice layout). As such, we will be able to evaluate some scenarios that the existing 
traffic models can not emulate accurately, such as the effect of traffic disruptions on the overall network flow.
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1 INTRODUCTION

Urban traffic congestion is a serious issue which affects people’s daily life on a global scale. It does not
only affect people’s travel and work, but also increases the risk of environmental pollution. To study traffic
congestion and to assess the right mitigation strategies to implement, first and foremost we need to have a
reliable traffic model. In this paper, we mainly focus on developing a physics-model to study the dynamics
of traffic network and how human iteraction will influence the traffic. Such a model is used to measure some
quantities that can characterize the traffic flow, such as the average speed, travel time, waiting time, and traffic
flow [Maerivoet and De Moor (2005); Chen et al. (2012)]. Cellular automata (CA) is a class of computationally
efficient microscopic traffic flow models, which is commonly used in traffic simulations and studies [Maerivoet
and De Moor (2005)]. To study the urban transportation network, Angel et al. (2005) and Chopard (2012) used
the Biham-Middleton-Levine (BML) model, which is an extension of the CA model to two-dimensional space.
The BML model is a two-direction traffic network model which can describe the green wave and stop-and-
go phenomena, and can be used to investigate the traffic congestion characteristics of the traffic network on
a global scale. The BML model can also emulate the two phases of traffic flow, namely the free-flow and
congestion states. However, the BML model faces some limitations, as it can only move towards the right,
or downwards [Nagatani (1993); Angel et al. (2005)]. A direct extension of the BML model to include four
directions will cause a gridlock, which is defined as a situation when the routing strategies of more than one
vehicle will clash and prevent further movement of the vehicles locally. This situation can cascade into a global
gridlock, which will terminate the traffic network modeling. Consequently, the BML model can not avoid
intrinsic congestion, and thus can not reflect the actual real-world traffic situation. Many researches focus on
specific scenarios when using CA to study the physical features of traffic network. Multi-lane models and
simulations are typically modeled based on the CA model [Wagner et al. (1997); Davis (2004)]. Davis (2004)
simulated the model with dual-lane highway and a single-lane highway with an on-ramp to make the model
more realistic. Based on the multi-lane model, Tang et al. (2007), Li et al. (2006), and Zheng (2014) used
the CA model to study the lane changing behavior of vehicles. In 2006, Li et al. (2006) used the fundamental
CA model to study the lane-changing behavior of vehicles, and addressed the problem on the behavior of
agressive lane changing on a two lane traffic model. In 2018, Tang et al. (2018) also generated a CA model in
one juction with traffic lights to study the electrical vehicle’s lane chaging behavior. Because of its microsopic
view, CA can be used to describe the behaviour of individual vehicles. Burstedde et al. (2001) and Weifeng
et al. (2003) employed the CA model to study the pedestrian movement and behaviors. Here we take a more
global approach and generate our model based on the CA programming paradigm from statistical physics. In
particular, we seek to explore the features of driver path selection behaviors in a scalable traffic network. The
complexity of real traffic limits how much a physical model can represent the real traffic conditions. In this
work, we propose a two-layer network approach to address the aforementioned limitation of the BML model
and make the model more realistic. In particular, we adopt a two-layer approach to model the four directions
of vehicle movement, to better mimic how vehicles actually operate in real traffic situation. A mechanism is
introduced to avoid traffic gridlock. This two-layer network model helps bridge the gap between simplified
CA models and the complexity of real-world traffic. Once established, this model will open door to model the
actual road network, traffic disruptions such as road blocking and accidents.

The derived model will then be used to study the effect of driving behavior on the traffic congestion. Driving
behavior is one of the most important factor that will influence the traffic efficiency [Zamith et al. (2015)]. The
path selection, which reflect a driving behavior, is known to have a major impact on transit time [Golledge
(1995)]. The transit time reflects the traffic efficiency; when we maximize the traffic efficiency, the traffic
congestion is consequently reduced. Many works have been done on path routing strategies. Oliveira and
Carneiro (2014) presented the hot-spot placement strategy based on people’s daily trajectory. Yeung and Saad
(2012) worked on increasing the network efficiency by importing non-shortest path.

To model the driving behavior, we introduce a flexibility index, which represents the driver’s tendency to
change the routing strategy when the original route is blocked, albeit temporarily. In the modeling, we first
assume that all drivers will travel by choosing the shortest path (in terms of distance) between the origin and
destination. With the flexibility included in the model, the driver is given the option to pick a direction other
than the pre-computed shortest path. In other words, they can deviate from the shortest path when encountering
traffic congestion. The rationale behind this concept of flexibility is that in real traffic situation, some people
have the tendency to choose the direction with fewer vehicles to avoid congestion.

In this paper, we present our proposed a two-dimensional routing strategy that can mimic the four-directional
vehicle movements. This is achieved by introducing a two-layer network model based on the CA concept,
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and this model is categorized as a microscopic traffic flow model. In addition to modeling the four directional
movements of the vehicles, this two-layer approach can also help avoid gridlock in the modeling. To further
reflect the real traffic situation, the derived model can include a flexibility measure to reflect driving behavior.
Using this model, we explore the effects of system phase transitions and different path choices on system
congestion. The description of the proposed model will first be elaborated in Section 2. We will then present
the results in Section 3, and close the paper with conclusion and some discussions on future work in Section 4.

2 DESCRIPTION OF THE MODEL

The developed two-layer CA approach is described in this section. Suppose we have a two-dimensional L×L
square lattice with periodic boundary. Each cell is labelled by two coordinates, x and y, which represent its
positions. In this model, each cell (at each layer) can only be occupied by one car. The two-layer concept can
be perceived as combining two BML models. As mentioned, the BML model can only assume the vehicle
moving to the right and in a downward direction. In this two-layer approach, each layer is bi-directional, as
illustrated in Figure 1. In this setting, we refer to the layers as the positive and negative layers. In the positive
layer, the vehicle can move down or move to the right; in the negative layer, the vehicle can move up or move
to the left. To distinguish between these two layers in the model, we use a layer indicator a, where a = −1 for
the negative layer and a = 1 for the positive layer.

(a) Positive layer. (b) Negative layer.

Figure 1. The positive and negative layers in the two-layer network model, where each layer is bi-directional.

To run the model, we first need to specify the size of the square lattice L and the vehicle density ρ. We
then randomly generate N vehicles and their corresponding origin-destination pairs in the network, where
N = 2ρL2, where the factor 2 is required to represent the two layers. The vehicle can only move to its
neighboring grid, where the definition of the neighbor is based on the Von Neumann model, which was also
used by Kennedy and Mendes (2006). The coordinate positions in x (lateral) and y (longitudinal) directions are
defined for each vehicle. The position of the i-th vehicle at time t is therefore denoted as (xti, y

t
i , a), where the

layer is also specified by a. To mimic the real situation of speed limit, we set that the vehicle velocity is always
less than the maximum velocity, v ≤ vmax. Another operating rule is that the vehicle can not move to a cell
when it is occupied (within the same layer). The vehicles will then travel to the next position

(
xt+1
i , yt+1

i , a
)

by following these operating rules at time t+ 1. Vehicles in the system will continue to travel following to the
moving strategies, which will be described next, until they reach their destinations. The physical characteristics
of the system are then assessed based on the average speed of the system, which will be further elaborated in
Section 3. The moving strategies for the network model will be described next, followed by the descriptions
of the quantities of interest as model outputs.

2.1 Moving Strategy

In this model, vehicles can only move from the current position to the neighboring position, the neighbor is
defined as: (xneighbor, yneighbor) = (x, y) : |x− xneighbor|+ |y − yneighbor| ≤ r. Here, r is defined as the pitch
distance measured between the midpoints of two adjacent cells. In other words, the vehicle can only move one
cell at a time in the right or downward direction (when a = 1) and left or upward direction (when a = −1). For
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illustration purpose, here we assume vmax = 1, i.e., there is no acceleration or deceleration as the vehicle can
move, at most, one cell at each time step. First, let’s define the origin positions of the vehicles as {xoi , yoi},
where i ∈ (1, 2, . . . , N). Similarly, the positions of the destinations are denoted as {xdi

, ydi
} ∀i. At every

time step, the intended movement is decided by comparing the current position to the destination:

(
∆xti,∆y

t
i

)
=


∆xti = sign (xdi

− xi) ∗ sign
(

2

L
− |xdi

− xi|
)

∆yti = sign (ydi − yi) ∗ sign
(

2

L
− |ydi − yi|

)
,

(1)

where sign (x) can have the value of −1, 0, or 1. In Equation 1, the first term signifies the direction under
consideration, and the second term considers the influence of the periodic boundary. Since the algorithm only
allows the vehicle to move one step (either lateral or longitudinal) at a time, we randomly select the direction
of movement when both intended movement directions are non-zero. In other words, when ∆xti 6= 0 and
∆yti 6= 0:(

∆̃x
t

i, ∆̃y
t

i

)
=

{(
∆xti, 0

)
if p ≥ 0.5(

0,∆yti
)

otherwise,
(2)

where p is a random number between [0, 1], which is assumed to be uniformly distributed. As shown in Equa-
tion 2, an equal probability is assumed between the x and y directions. When one of the intended movement
direction is zero,

(
∆̃x

t

i, ∆̃y
t

i

)
= (∆xti,∆y

t
i). With the moving direction is finalized, we can then determine

the appropriate layer (at+1
i ). To complete the moving strategy, the cell occupancy needs to be determined,

since each cell can only be occupied by at most one vehicle. The variable λti is set to 0 if the site correspond-
ing to the next intended movement is already occupied by another vehicle, and 1 otherwise:

λti =

{
0 if (xti, y

t
i) + at+1

i = (xtj , y
t
j), ∃j

1 otherwise
(3)

With the moving direction and λti defined, we can then express the next location (at time t+1) for each vehicle
as: (

xt+1
i , yt+1

i

)
=
(
xti, y

t
i

)
+ λti

(
∆̃x

t

i, ∆̃y
t

i

)
(4)

To incorporate driver behavior, we introduce a flexibility index f : 0 6 f 6 1, which indicates the probability
of a vehicle moving in a direction that is different from the that determined in Equation 2. When f > 0

and λti = 0, the driver can choose a different direction, hence a new
(

∆̃x
t

i, ∆̃y
t

i

)
, with a probability f . The

new direction is determined by evaluating the occupancy of other neighboring cells. Here, we assume that a
“flexible driver” will tend to move to an empty spot, when the initial intended moving direction is blocked.

2.2 Quantities of interest

Due to the randomness involved in this algorithm, a certain number of simulations are required before it
reaches a steady state. Let’s suppose the simulation starts at t = 0, the steady state solution is reached at
time t = Ts. The maximum number of iterations is set to be Te. Once finished, we can obtain the following
output quantities, as a function of L and ρ: the average velocity v̄, the total number of vehicles that reach
their destinations, the average travel time, and the traffic flux. Flux, denoted as φ, is an important variable that
characterizes a traffic network. The flux is computed as φ = ρ ∗ v, and it represents the amount of traffic flow
in the network. The system is defined as in a free flow state when flux increases as ρ increases; otherwise, the
system is in a congestion state.

3 RESULTS AND DISCUSSION

We demonstrate the proposed method and discuss the results. To avoid bias, 100 000 simulations are performed
with random origin-destination pairs of the vehicles. The traffic simulation follows the operating rules and
moving strategies as presented in Section 2. To see the effects of flexibility, four f values are considered:
f = 0, 0.3, 0.5, 1, and the results are compared. The first and the last cases refer to the cases without and with
flexibility, respectively.
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Figure 2 illustrates the relation between ρ and v̄ for the different f values. We can observe that as ρ increases,
v̄ decreases, where the trend is smoother as the lattice size grows larger. The results also show that a phase
transition exists for all cases. Here, a phase transition is defined as the change in the traffic network behavior,
from the free-flow state to the congestion state. Visually, it is indicated by the sharp drop in v̄, where the
velocity becomes more sensitive with the increasing ρ. The density where the phase transition occurs is
denoted as ρc. As the density increases past ρc, only moderate changes in v̄ are observed. When a higher
flexibility is assumed in the drivers’ behavior, the phase transition is shifted to a higher ρc value. This result
suggests that as drivers tend to deviate from the shortest-path routes, the average speed is higher. In other
words, they can reach the destination faster albeit the increase in the total travel distance. These observations
are deemed consistent with the real traffic situation.

Figure 2. The simulation results of average speed as a function of density on square lattices with varying
sizes.

The flux comparison is presented in Figure 3. As we can see here, a linear relationship between ρ and φ is
observed at the free-flow state. As density increases, flux also increases until it reaches a peak at ρ ≈ 0.2,
which corresponds to the phase-transition shown in Figure 2. Past ρc, the vehicle flux notably decreases despite
the increase in density, which corresponds to the decreasing v̄.

To validate the effectiveness of flexibility, we investigate the number of completed journeys and the total
travel distance of the N vehicles generated in the simulation. The number of completed journeys is obtained
by keeping track of the vehicles that have reached their specified destinations. The travel distance for each
vehicle is obtained by counting the total number of steps required to reach the destination from the origin
point.

We can observe from Figure 4 that flexibility does not have any notable impacts on the traffic network when
the traffic is very empty or very crowded. In between, however, both the total travel distance and the number
of completed journeys increase notably as flexibility increases. Similar trends are observed in the two plots.
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Figure 3. The simulation results of flux as a function of density on a square lattice with L = 20, for varying
flexibility values.

To explain this phenomenon, we first look at Figure 2. When f = 0, v̄ starts decreasing at around ρ = 0.15 ,
while the starting point of the phase transition when f = 1 is shifted to ρ = 0.2; these are consistent with the
observation from Figure 4. That is, when the road is almost empty or highly congested, the drivers’ decisions
will have insignificant impacts on the traffic condition. At other traffic densities, however, being more flexible
to choose an empty road when a congestion occurs, instead of following the predefined shortest path, will
result in a faster travel. This result is consistent with the real traffic situation.
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Figure 4. The simulation results of number of completed journeys and the total distance traveled as a function
of density on square lattices with L = 50.

4 CONCLUSION AND FUTURE OUTLOOKS

In this work, we developed a two-layer CA traffic model to study the characteristics of city traffic. This novel
approach extended the capability of the commonly-used BML model from modeling two traffic directions to
four, while providing the mechanism to avoid gridlock. With this improvement, the developed traffic models
could better represent the actual car traffic situations, which enabled performing more realistic analyses on
traffic networks. In addition, we also incorporated a flexibility index (f ∈ [0, 1]) that reflected driving behavior
into the model. This index denoted how likely would the drivers deviate from the shortest path when congestion
occurred. When no flexibility was assumed (f = 0), drivers would always stick to the predefined shortest path
regardless of the situation. When f > 0, on the other hand, the driver might opt to take another path when
the original path was blocked. Our results showed that introducing some degree of flexibility would shift the
phase transition to a larger density value, thus delaying the onset of congestion. The phase transition occurred
when the vehicle’s average speed became very sensitive of the density, and dropped significantly as density
increased. We also observed the benefits of being flexible within a certain range of densities, particularly in
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terms of the total of completed journeys and the total distance traveled. In other words, when drivers were
flexible, they could reach the destination faster albeit covering a longer traveling distance. This phenomenon,
however, was not observed when the traffic was really empty or really crowded. Moving forward, we would
model the traffic network with cross sections to better mimic the actual road system, which could be done
by modifying the square lattice system. The same approach would also be employed to study how traffic
disruptions and accidents affected the overall traffic flow. Furthermore, we would extend the model to assess
the global routing strategy, instead of relying only on the local information in making the moving decision.
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