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Abstract: Australia plays a significant role in the world’s coal supply. The world’s largest coal operation is
located in the state of New South Wales, where more than 87% of the transport is done through railways. One
of the strategies to increase throughput is to use sophisticated computational techniques for train scheduling
optimisation and this study applies artificial intelligence techniques to the railway traffic management problem
in the context of the Hunter Valley Coal Chain Coordinator (HVCCC). This problem has been studied mostly
through centralised decision-making models, applying linear integer programming, heuristics and hybrid ap-
proaches. However, recent publications indicate a lack of practical applications (Lamorgese et al. [2018]),
pointing out that low computational requirements, scalability, decentralisation and real-world commitment are
key features required for deployment-ready applications.

Towards that, one option is to model system actors (trains, stations, dispatchers, operators, and more) as
autonomous intelligent agents that interact, learn and act independently to reach their own objectives – thus
constituting a multi-agent system (MAS). This way, the railway traffic system will be capable of making rapid,
distributed decisions. Few studies have modelled railway traffic management as a MAS and they lack many of
the important decisions, constraints and actors present in real-world scenarios (Lamorgese et al. [2018]).

This paper describes a discrete event simulation model of a small, closed railway, and implements a de-
centralised and heterogeneous MAS for train dispatching. The model was built using the Arena Simulation
Software1. It includes several train agents and a single dispatcher agent that applies different decision methods
(First-in-First-Out rule, random walk and reinforcement learning) to regulate railway traffic decisions.

The paper describes how experiments were designed, computational results, calibration of the reinforcement
learning (RL) algorithm, performance tests for various levels of congestion, and tests for transfer learning
between different instance configurations. The RL performance outperforms the FIFO standard dispatch rule
by 10.3% for the high-congestion network configuration. In addition, transfer learning tests illustrate the
generalisation capability of the RL method, where knowledge gained during the training using an instance
reduces the time required for the training of additional instances. This represents an initial step towards the
application of the approach in the HVCCC network traffic management problem.

Keywords: Railway traffic management, multi-agent systems, reinforcement learning, transfer learning, dis-
crete event simulation.

1https://www.arenasimulation.com/
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1 INTRODUCTION

Coal exports are the second largest source of external revenue for Australia. The country is the world’s largest
coal exporter – with 36.6% of the volume (IEA [2018]). In the state of New South Wales, more than 87%
of the coal is transported through railways. The Hunter Valley Coal Chain (HVCC) is the largest coal export
operation in the world. The rail network has haulage distances of up to 380 kilometres and reaches 31 loading
points. The port is composed of three terminals, able to load more than 1400 vessels per year (TNSW [2018]).
The planning and scheduling activities are conducted by the Hunter Valley Coal Chain Coordinator (HVCCC).
The start point for the planning process is the vessels line-up sequence. Trains leave the terminals empty, go to
one of the load points, and bring the required type of coal for each vessel before it berths, so loading operations
can start without delay. Besides the operational and safety constraints, dispatchers must also deal with capacity
and time constraints, while satisfying any contractual constraints imposed by the stakeholders.

2 BACKGROUND

2.1 Railway Traffic Management

The general railway traffic management problem is very complex and a core activity is the definition of an
optimal and robust timetable. A timetable is a conflict-free schedule of trains, with specific arrival and depar-
ture times at relevant checkpoints (e.g. stations, terminals and track sections). Among the measures that are
normally optimised, there is total delay, passenger satisfaction, transported weight (or throughput) and several
others. Moreover, the timetable should be robust enough to handle unexpected events with minimal perturba-
tion to the rest of the schedule. This paper addresses the problem of assigning time slots to trains at stations
and main checkpoints, delivering a timetable that assures capacity feasibility.

The term railway traffic management problem (RTMP) (Corman and Meng [2015]) will be adopted here to
describe the problem under consideration. It has a broad scope and groups the main features of interest. Since
most variations of the RTMP are NP-hard (Lamorgese et al. [2018]), commercial solvers cannot deal with
real-world instances. In that case, metaheuristics, decomposition methods, simulation-guided optimisation
and hybrid approaches are frequently applied (Mendes et al. [2017]; Ho and Yeung [2001]; Corman and Meng
[2015]). Although some studies achieved significant results, they can’t be used directly in a decision support
system (Lamorgese et al. [2018]). Most papers propose centralised strategies, dedicated to finding a global
optimum for the whole system, and address simplified versions of the problem without many of the constraints
faced by train drivers, dispatchers, controllers and operators (Corman and D’Ariano [2008]).

2.2 Agent Technology

Humans act by following a sequence of processes: perceiving the environment, understanding the information;
predicting what can happen next; and finally, taking an action. The goal in Artificial Intelligence (AI) is to
reproduce this process, not just by imitating human behaviour, but trying to achieve the ideal performance,
being rational (Corman and D’Ariano [2008]). A multi-agent system (MAS) is composed of intelligent au-
tonomous agents that coexist and interact, sharing environment and information; and the action of one agent
could affect others. MAS has been considered a suitable option for modelling complex systems with decen-
tralised decisions, such as those present in traffic and transportation management (Bazzan and Klügl [2014]).
Recent publications indicate that low computational power requirements, scalability, decentralisation and real-
world commitment are key features to address the RTMP successfully (Lamorgese et al. [2018]; Corman and
Meng [2015]). Those features are compatible with MAS approaches, where the related actors (trains, stations,
dispatchers, operators, etc.) are modelled as autonomous intelligent agents (Corman and D’Ariano [2008];
Narayanaswami and Rangaraj [2015]).

2.3 Reinforcement Learning

A learning agent can use a wide variety of algorithms. Reinforcement Learning (RL) methods promote learn-
ing by experimentation and reward evaluation, i.e. positive and negative rewards are used to guide future
actions. When applying single-agent reinforcement learning (SARL), the environment is usually modelled as
a Markov Decision Process (MDP).

Definition 1. A finite Markov decision process is a tuple (S,A, f,R), where S is a finite set of environment
states, A is a finite set of agent actions, f : S ×A× S → [0, 1] is the state transition probability function, and
R : S ×A× S → R is the reward function (Russell [2010]).
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Figure 1: Illustration of the dynamics of a single reinforce-
ment learning agent.

In a MDP, the environment is composed of fi-
nite discrete time steps and ruled by a stochas-
tic state transition function f . At each time step
k, the RL agent observes the state sk ∈ S and
chooses the action ak ∈ A based on a policy
π. The environment then changes to a state
sk+1 ∈ S, determined by f(sk, ak, sk+1). A
reward function R is used to calculate the re-
ward rk+1 for the choice of action ak in state
sk: rk+1 = R(sk, ak, sk+1). In deterministic
models, the transition function f̄ : S ×A→ S
results always in the same state sk+1 and the same reward rk+1 from a given pair (sk, ak). The objective of
the RL agent is the maximisation of its performance in all k time steps of a given episode (Russell [2010]).
Figure 1 illustrates the relationship between the SRLA and the environment.

Q-learning Q-learning (Watkins [1989]) is a model-free RL algorithm that learns a utility function for the
state-action pairs, and decides the next action based on its estimated value. In Q-learning, the action ak should
be taken considering only the state sk. An action-value function (Q-function) Qπ : S × A → R can be
used to calculate the expected return and determine how good are the episodes in which (sk, ak) are involved:
Qπ(s, a) = E{

∑∞
j=0 γ

j · rk+j+1|sk = s, ak = a, π}. The discount factor γ is used to balance the contribution
of future rewards to the Q-function due to uncertainty. Past decisions (subsequent states (sk), actions (ak) and
rewards (rk+1)) are used to update Q in an iterative approximation procedure: Qk+1(sk, ak) = Qk(sk, ak) +
αk· [rk+1 + γ·max

a′∈A
Qk(sk+1, a

′)−Qk(sk, ak)]

The learning rate αk ∈ [0, 1] dictates the level of adjustment of the current Qk(sk, ak) and usually decreases
with time. The sequenceQk converges to optimal (Q∗) by combining exploration and exploitation episodes, as
in the ε-greedy policy (Russell [2010]). This policy chooses the state-action pair with the highest Q-value with
a (1-ε) probability. Otherwise, the action is determined randomly. Since ε starts with value 1 and decreases
with the number of episodes, the training starts with a high level of exploration (and no exploitation) and
finishes with no exploration and high level of exploitation.

3 RELATED WORK

The use of autonomous intelligent agents to represent elements in traffic and transportation problems has
gained momentum in the last two decades (Bazzan and Klügl [2014]; Chen and Cheng [2010]; Davidsson
et al. [2005]). However, there is still a lack of deployed real-world applications. The study by Corman and
D’Ariano [2008] analysed the few applications of agent technology to railway traffic management problems.
Some of these studies apply methods such as auction, negotiation protocols and learning to solve the RTMP in
cooperative and non-cooperative environments and are discussed next.

Agent Technology Related Works Törnquist and Davidsson [2002] propose a conceptual model with dis-
patcher and transport operator agents with the objective to maximise punctuality after a disturbance. In
D’Ariano and Hemelrijk [2006], the authors suggest a novel MAS architecture to deal with train dispatch-
ing. In this application, geographically assigned dispatcher agents proactively try to find conflicts in a future
time horizon and generate a set of feasible solutions to be used by the train agents for conflict resolution.
Proença and Oliveira [2004] present a conflict detection approach that minimises train conflicts. Supervisor,
train, station and learning agents are present in this MAS. Results show improvement in performance through
the use of rules learned during past conflict scenarios to predict and prevent new conflicts. Narayanaswami and
Rangaraj [2015] introduce a similar architecture with a new auction-based procedure. They solve the dynamic
and real-time reschedule problem in a linear, single-track railway, with freight and passenger trains sharing
the same resources. Finally, the recent work of Savelsbergh and Talebian [2018] presents an alternative ap-
proach that uses non-cooperative game theory for rail track allocation to rail operators. The players (operators)
propose train configurations that result in different access charge discounts in a cost allocation game.

Agent Technology with Reinforcement Learning There are few examples of applications of Reinforce-
ment Learning (RL) in railway traffic management problems. Khadilkar [2019] applied a table-based Q-
learning algorithm, combined with a discrete event simulation model, to generate a feasible timetable for
passenger trains, allowing scheduling and rescheduling applications. In Šemrov et al. [2016], an agent-based
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model using RL is applied to the conflict detection and resolution problem. The method implements a dis-
patcher agent using Q-learning and a simulation model for timetable rescheduling for passenger and freight
trains. The objective was to minimise total delay, and tests conducted in instances with 23 block sections, 14
stations and 26 trains revealed deadlock-free solutions.

4 A MULTI-AGENT SYSTEM FOR A SMALL CLOSED RAILWAY NETWORK

This work addresses the real-time railway traffic management of trains travelling in a small closed network,
with a tree topology (see Figure 2). Trains are scheduled from their initial location to their final destination,
and the objective function is to minimise the total dwell time. In our model, trains travel at a maximum speed
when moving along a section, and only one train can be in a track section at any given time. Passing loops
allow overtaking, and balloon loops provide access to load/unload points. Trains are only allowed to stop at
passing loops. In that case, a train can only leave a passing loop if the resources required to get to the next
passing loop are available. Every time a train stops, it must wait a minimum penalty time for recharging the
breaks. Also, even if a train does not stop at a passing loop, it must decelerate slightly while crossing it, due
to safety constraints. Finally, the unload point and the load points can only receive one train at a time.

Agent Architecture The MAS in this study is heterogeneous, with a dispatcher agent and several train
agents. The dispatcher has a global objective and deliberates permission concessions for trains travelling in
the network. Meanwhile, train agents display a competitive behaviour. Each train aims to minimise its dwell
time by travelling without interruptions. Trains only have autonomy for the allocation of tracks in load/unload
points and performing loading/unloading activities. The allocation of the remaining tracks by train agents
only occurs if (1) the track is available and (2) if the dispatcher agent allows it. If the dispatcher does not
concede permission to proceed, the train will stop at the passing loop. The dispatcher is activated every time
a train releases a resource/track, and the system waits until it communicates its action. The communication
happens through a Blackboard system, which is shared and updated by the agents. When the dispatcher is
activated, it checks the state of the system in the blackboard, applies one of the available decision methods and
communicates the action to all train agents. The action can be interpreted as a group of permissions for each
train to go ahead or stop at the strategic checkpoints of the network. Both the state and the action are related
to the entire system and not to a single train.

State and Action Policy The train agent environment concerns (1) the section track that the train is currently
placed, (2) the allocation status of the following tracks in its route and (3) the dispatcher permissions written
in the Blackboard. After the agent observes the environment, it tries to allocate the tracks (as discussed in the
previous paragraph) and then moves in case of success. The action taken by the dispatcher agent depends on
the state vector and the decision method being used. The state vector indicates where the trains are currently
located in the system, their travel direction and final destination. The action vector allows the movement of
trains and is composed of binary variables that map to the locations where trains need permission to move
forward (i.e. the passing loops). For example, a value 1 in the first element of the vector indicates that
permission to go ahead is given to the train in passing loop one, travelling towards the loading points. An
action vector that only contains zeros indicates that no permissions to move forward were given. The number
of possible actions is 2p (where p is the number of locations where trains can stop). The decision method policy
determines the action selection. Three decision methods are available: First-in-First-Out (FIFO), Random
Walk (RW) and Reinforcement Learning (RL) by Q-learning procedure. If the FIFO method is chosen for the
episode, all actions are guided by it, and the first train that requests a resource will have it. For the RW policy,

Train Agent

Passing Loop 1

Track section

Dispatcher

Agent

Unload

Point

Load

Point 1

Load

Point 2

Figure 2: Railway network implemented in this study. Train agents have decentralised local actions and the
dispatcher agent has a global vision of the system.
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every train waiting for permission to go ahead in one of passing loops will have it granted with a probability
of 50%; and finally, the RL method uses the ε-greedy policy to determine its next action.

Utility Function The total dwell time (DT ) is the utility function used to guide the RL. It is calculated as
the summation of the time τ tp spent by each train t in each passing loop p. Thus, given the set of trains T and
the set of passing loops PL, DT is given by: DT =

∑
t∈T

∑
p∈PL τ

t
p. When RL is applied, DT is used

to evaluate the results of the iteration and calculate the reward obtained by the state-action pairs used. If the
observed dwell time does not exceed the historical minimum dwell timeDT ′ in more than ρ units, a +1 reward
is added to all (S, a) pairs used in the iteration. Negative rewards are not used in our implementation.

At the end of each episode, the dispatcher agent updates the value DT ′, the state-action pairs (S, a), their
Q-value q(S, a), the number of times they were observed βS,a and their accumulated reward δS,a. The last
two parameters are used to calculate the proportion of success σS,a = βS,a/δS,a. The Q-value q(S, a) of a
state-action pair is a value between 0 and 1, calculated as the proportion of success σS,a of the pair divided by
the average σS,a of its N neighbour state-action pairs. A parameter ω is used to balance the two factors – in
this study, ω = 0.5. Equation 1 shows how the Q-value q(S, a) is calculated.

q(S, a) = ω·α(S, a) + (1− ω)
N∑
n=1

α(Sn, an)

N
(1)

5 EXPERIMENTS

The MAS was modelled using a discrete event simulation engine implemented in Arena2. There are three
test phases: calibration, performance and transfer learning. The calibration experiments used 5 instances of
7 trains each to determine the best value for ρ (tested between 0.01 and 0.30) and the best lengths of the
exploration and exploitation phases (tested between 50 and 400). The value of 7 trains was chosen because it
represents an average level of congestion for the network. The best combination of parameters were ρ = 0.03,
300 exploration episodes and 200 exploitation episodes.

5.1 Performance Evaluation

The experiments compare RL against RW and FIFO for the minimisation of total dwell time. RW uses 1000
episodes with 100% of random actions by the dispatcher agent. FIFO uses only one episode (since it is deter-
ministic) and RL uses the parameter configuration described in the previous section. Initially, five instances
with 7 trains were tested with all methods, with 30 different seeds for the random number generator. On aver-
age, RL achieved results 7% better than FIFO and 31% better than RW. Given the very poor result of RW (as
expected), we excluded that method from the remaining tests.

Then, we proceeded to test the approach for different levels of network congestion, using between 5 and 10
trains. Table 1 shows the results for total dwell time. RL performs better than FIFO in 88.2% of the tests. On
average, RL produces better results than FIFO for all levels of congestion.

5.2 Transfer Learning

In this section, we assess the suitability of using transfer learning to reduce training effort. The first experiment
used instance 7TC1 as the target task and instance 7TC2 as source task, both with 7 trains. Table 2 shows the

2https://www.arenasimulation.com/

Table 1: Total dwell time (in hours) for RL and FIFO, for instances representing different levels of congestion
– with 5 to 10 trains.

Reinforcement Learning FIFO

Instance 1st Median 3rd Average Standard
size quartile quartile deviation
5 trains 4.48 4.7 5.05 4.79 0.37 5.54
6 trains 8.92 9.11 9.56 9.18 0.38 9.44
7 trains 13.08 13.29 13.67 13.3 0.48 14.22
8 trains 14.32 14.58 15.43 14.79 0.74 16.41
9 trains 17.78 18.05 18.36 18.02 0.36 20.16
10 trains 27.23 28.34 30.9 28.98 2.17 31.59
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Table 2: Results comparing transfer learning strategies (or training schemes) for the total dwell time. For
the source task, the experiments can have 300 (only exploration phase) or 500 episodes (exploration and
exploitation). For the target task, the experiments include both phases (500 episodes) or no additional training.

Training Number of episodes for Number of episodes for 1st Median 3rd Average Standard
scheme source task (7TC2) target task (7TC1) quartile quartile deviation

(exploration / exploitation) (exploration / exploitation)

1 Standard (300/200) Standard (300/200) 13.53 13.12 12.83 13.10 0.57
2 Exploration only (300/0) Standard (300/200) 13.66 13.36 12.95 13.30 0.48
3 Standard (300/200) No training (0/0) 15.38 14.58 14.10 14.68 0.86
4 Exploration only (300/0) No training (0/0) 14.41 14.00 13.89 14.69 1.46

results for 4 different training schemes. The performance is measured by the total dwell time, and the numbers
show the median values obtained after 30 runs with different seeds. The best performances come from training
schemes 1 and 2. Training scheme 1 is equivalent to running RL normally on 7TC2 (as the source task) and
using the resulting Q-table in the beginning of the RL on 7TC1 (as the target task). Training scheme 2 runs
only the exploration phase of the RL in the source task, and then exploration plus exploitation in the target
task. Training scheme 3 runs exploration plus exploitation in the source task, and then evaluates in the target
task (i.e. train the RL strategy on one instance, but using the results in a different one). Finally, training scheme
4 runs only exploration in the source task, and then evaluates in the target task. For reference, the dwell times
for random walk (RW) is 18.76, for FIFO is 14.22 and for RL without transfer learning is 13.29.

From the results, we can see that without further training in the target task (training schemes 3 and 4), the total
dwell time degrades, i.e. generality of the RL is limited, but still remains similar to FIFO. More tests will be
required to explore the full potential of this approach, but it might be possible to reduce the number of training
episodes, and/or use less instances to train a robust RL approach for the problem.

In order to reduce the training effort, we tested a strategy that includes a small exploration phase in the target
task. Thus, the last experiments used a training scheme with 100 exploration episodes and 100 exploitation
episodes. Four different instances were used as source task, and all of them presented similar behaviour. For
illustrative purposes, Figure 3 shows the learning curve for the instance 7TC1 with and without transfer from
instance 7TC3. RL 7TC1 (SELF) is the result for instance 7TC1 with 100 exploration and 100 exploitation
episodes. RL 7TC1 (TR-C3) is similar, but with the Q-table learned from 7TC3. Finally, RL 7TC1 (TR-EXC3)
starts with the Q-table learned from 7TC3 with the 300-episode exploration phase only. The tests confirmed
that the most significant asymptotic improvement is achieved when transfer learning comes from the complete
RL run in the source task, and is complemented by 100 exploration and 100 exploitation episodes in the target
instance – RL 7TC1 (TR-C3). Performance is relative to training scheme 1 (i.e. 500 episodes used for the
training of the target instance, instead of only 200).
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Figure 3: Learning curves for instance 7TC1 using 100 exploration and 100 exploitation episodes. The sce-
nario with transfer learning from a complete run of 7TC3 shows the best learning performance.
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6 CONCLUSION

The railway traffic management approach presented in this work uses a heterogeneous MAS with autonomous
agents that represent the main parts of the daily traffic control process at HVCCC. Reinforcement Learning
produced better results than the FIFO strategy for a range of congestion scenarios. These results encourage
the application of RL in larger, real-world instances to measure its potential benefits. The RL was better than
FIFO in all instances, with 5 to 10 trains.

The transfer learning experiments show a worsening in total dwell time when the patterns observed in the
chosen state representation is transferred directly to a different instance, without further training. However,
using transfer learning with limited additional learning for the target instance shows promising results, with a
noticeable improvement in total dwell time, compared to running reinforcement learning from scratch.

Although the MAS approach achieved good results, the centralised dispatcher decision makes the size of the
state and action spaces increase proportionally with the size of the network, which makes it challenging to
model large size networks. It also limits transfer learning to instances with the same number of trains, since
the vectors are specific to the number of trains in the system. Therefore, the next step of the research will focus
on a more autonomous train agent, aiming at a totally decentralised approach.
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