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Abstract:  In the deconvolution of convolution equations of the form

pp � hqpxq �
»
8

�8

ppx� yqhpyqdy � gpxq,

where the kernel p is specified explicitly, the goal is to recover from measurements g , estimates of the corre-
sponding solution h. Such situations arise in a wide range of applications including, in rheology, the recovery 
of estimates of the storage and loss moduli characterization of a linear viscoelastic material from oscillatory 
shear measurements (Davies and Goulding 2012).

Various algorithms have been proposed for performing the deconvolution iteratively. The classical and historic 
example of the Neumann iteration has been examined in Anderssen et al. 2019, where conditions have been 
established that guaranteed its theoretical convergence. It is also noted that the corresponding numerical 
convergence is quite sensitive to the underlying frequencies in the discrete data gn used to model g. Thus, 
the presence of noise, particularly at high frequencies, can give rise to poor convergence behavior. This leads 
to the idea that the numerical convergence might be improved by first smoothing the discrete d ata. One way 
of achieving this is to use the Landweber iteration (Landweber 1951), as it corresponds to generating the
iterative solution of the least squares counterpart of p � h � g, namely p � p � h � p � g. It is shown that, 
though the Neumann iteration converges rapidly for smooth (exact) data, it performs quite poorly for noisy
data, whereas the Landweber iteration, though slower, yields useful approximations in the presence of small 
noise perturbations in the data.

Consequently, for iterative schemes, such as that of Landweber, appropriate smoothing of the data must be 
used when working with experimental data.
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1 INTRODUCTION

Easily deformable materials such as emulsions, foams, foods etc. are representative of widely utilized vis-
coelastic industrial products and formulations. Individually, they have unique mechanical properties that de-
termine the type of application to which they are most suitable. Studying their mechanical properties is quite
challenging since their response to a deformation is intermediate between that of solids and liquids. Oscilla-
tory shear rheometry is a standard experimental tool for studying such properties. It provides insight about
how the molecular structure of the material relates to its mechanical properties.

As illustrated in Figure 1, the basic principle of an oscillatory shear rheometer is to induce a sinusoidal shear
deformation

γpt, ωq � γ0sinpωtq, t ¥ 0, and zero otherwise, (1)

in the sample (colored green) and measure the resultant stress response

σpt, ωq � G1pωqγ0sinpωtq �G2pωqγ0cospωtq, (2)

withG1pωq andG2pωq being the corresponding storage and loss moduli of the particular material being tested.
In a typical experiment, the sample is placed between two circular plates, as shown in Figure 1. While the top
plate remains stationary, a motor oscillates the bottom plate, thereby imposing a time dependent oscillatory
shearing strain γpt, ωq � γ0 sinpωtq on the sample. Simultaneously, the time dependent stress σpt, ωq is
determined by measuring the torque that the shearing of the sample imposes on the top plate.

Oscillatory Shear Rheometer

Figure 1. Measuring the viscoelastic stress response of a soft material to an applied sinusoidal shearing strain.

From given data for σpt, ωq, the corresponding values of G1pωq and G2pωq can be determined using the
oscillatory shear stress equation (2).

Using the viscoelastic convolution framework proposed by Boltzmann, dropping, for simplicity, the depen-
dence on ω,

σptq �
» t

�8

Gpt� τq 9γpτqdτ, 9γ � dγ

dt
, t P R,

where Gptq denotes the completely monotone relaxation modulus (Davies and Goulding 2012)

Gptq � Ge �
»
8

0

Hpτq expp�t{τqdτ
τ
, (3)

and Hpτq, the relaxation time spectrum, is an un-normalized non-negative density function associated with a
continuous range of relaxation times τ . Ge is a material constant given by

Ge � lim
tÑ8

Gptq.

The relaxation time spectrum Hptq is the quantity of interest for the rheologists, because it can be related to
the molecular structure within a polymer.
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The relaxation time spectrum is related to the storage and loss moduli by

G1pωq � Ge �
»
8

0

ω2τ2

1� ω2τ2
Hpτqdτ

τ
, (4)

G2pωq �
»
8

0

ωτ

1� ω2τ2
Hpτqdτ

τ
. (5)

For viscoelastic fluids, Ge � 0, and, with the substitutions

hpxq � Hpexpp�xqq, g1pxq � 2G1pexppxqq, g2pxq � 2G2pexppxqq,

one obtains the corresponding convolutions

dg1
dx

pxq � g11pxq �
»
8

�8

sech2px� yqhpyqdy, x P R, (6)

and

g2pxq �
»
8

�8

sechpx� yqhpyqdy, x P R. (7)

Since Hptq, or equivalently hpxq, is the quantity of interest to the rheologists, we are solving first kind convo-
lution equations for hpxq of the following form:

gpxq �
»
8

�8

ppx� yqhpyqdy :� pp � hqpxq, x P R. (8)

In practice, it is equation (7) that is usually used for deconvolution, in part, because the numerical approxima-
tion of derivatives amplifies the noise in experimental data. In the sequel, we therefore focus on deconvolution
with gpxq � π�1g2pxq and ppxq � π�1sechpxq. The factor of π�1 has been introduced so that the integral of
p is one as this simplifies the convergence analysis. It also provides some intuition about the deconvolution as
the point spread function p can be thought of as a smooth approximation to the Dirac delta function.

Because it corresponds to the recovery of information from oscillatory shear measurements of viscoelastic
materials in rheology [3], various algorithms, including iterative procedures, have been proposed and imple-
mented for such a choice for p (Anderssen et al. 2019). In a recent study (de Hoog et al. 2018), the authors
examined the use of a Neumann iteration for the solution of (8). This takes the form

hn�1 � hn � g � p � hn, n � 1, 2, � � � , (9)

where
h1 � g, en � h� hn, rn � g � p � hn � p � en.

It follows, on subtracting h from both sides of equation (9), that

en�1 � en � p � en. (10)

For convolution problems, it is convenient to work with Fourier transforms as they convert convolutions to
algebraic products. For p P L2pRq, we define its Fourier transform as

pppfq :� » 8
�8

ppxq expp�2πixfqdx , f P R ,

with inverse transform,

ppxq :�
»
8

�8

pppfq expp2πixfqdf , x P R .
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The error analysis of de Hoog et al. (2018) established that the convergence of the Neumann iteration is
controlled by the error reduction term

p1� pppfqqn, n � 1, 2, � � � , (11)

where pppfq denotes the Fourier transform of ppxq. Specifically, taking the Fourier transform of equation (10)
yields

zen�1 � p1� ppqxen � p1� ppqn pe1. (12)

and it follows, from Plancherel’s theorem, that

}en�1}2 ¤ }1� pp}n2 }e1}2.
To demonstrate the convergence behavior of this iteration, we have applied it to

hpxq � 1?
π
expp�px� 2q2

8
q � 3

4
?
π
expp�px� 3q2

8
q. (13)

Because of its bimodality, it is representative of viscoelastic materials such as polystyrene and polybutadiene
(Honerkamp and Weese 1993).The corresponding exact data is g � p�h, with ppxq and pppωq being sechpxq{π
and sechpπ2xq, respectively. The plot of the continuous h and the discrete values of g in Figure 2 illustrate
that the bimodal structure of the solution h is not apparent in the data g, yet, as illustrated in Figure 3, becomes
apparent after just three iterations of the Neumann iteration.

Figure 2. Plot of the discrete exact data g (red) and corresponding exact continuous solution h (blue).

Recent research (Anderssen et al. 2019) has established that the Neumann iteration for this problem converges
quickly for exact data, as illustrated in Figure 3. In reality, of course, experimental data is never exact.

Moreover, deconvolution of equations, such as (8), are improperly posed, and, therefore, understanding the
effect of a perturbation, ε say, in the data g is crucial. Since we are dealing with a linear equation, the
perturbation e in the solution h also satisfies a convolution equation; namely,»

8

�8

ppx� yqepyqdy � εpxq, x P R, (14)

from which it follows that, if a solution exists, its Fourier transform satisfies

pepfq � pppfq�1pεpfq, f P R.

As pppfq�1 Ñ8 as |f | Ñ 8, the perturbation at high frequencies will dominate the solution unless the signal
to noise ratio pgpfqpεpfq�1 is large. In our example, pppfq�1 increases exponentially and hence we expect to see
a degradation in the performance of the Neumann iteration when the data is not exact. To illustrate this, an
iid log normal error with standard deviation 0.01 was applied to the data (see Figure 4a). Though that error
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Figure 3. Three (a) (left) and five (b) (right) iterations of the Neumann iteration for exact data.

Figure 4. (a) (left) Perturbed data with standard error of 0.01, (b) (right) three and (c) (below) 30 iterations of
the Neumann iteration when applied to this slightly perturbed non-exact data.

appears to be small, it is quite large when compared to the size of the bimodal dip that we are attempting to
resolve. Figure 4b demonstrates that even for just 3 Neumann iterations, the amplification of high frequency
components of the errors in the data has obscured the underlying bimodal nature of the solution h. This does
not improve with further iterations, as illustrated in Figure 4c.

This leads naturally to the conclusion that, while the number of iterations of the Neumann iteration provides
some regularisation, it is not enough to overcome the strong amplification of the high frequency components
of error in the data. In this paper, we examine an iteration that is closely related to the Neumann iteration
which shows promise for the deconvolution of oscillatory shear rheometry data in data that is contaminated
with error.

2 THE LANDWEBER ITERATION

The Landweber approach (Landweber 1951) performs its regularization by posing the problem as the least
squares problem

min
h
}pp � hq � g}22
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for which the normal equation is

»
8

�8

p̃px� yqhpyqdy � pp̃ � hqpxq � g̃pxq, x P R,

with p̃ � pp � pq and g̃ � pp � gq. The Landweber iteration is the Neumann iteration applied to the normal
equation, namely

hn�1 � hn � p � g � p � p � hn, n � 1, 2, � � � . (15)

Note that, because of the extra smoothing, the convolution pp̃ � hq is more ill-posed than pp � hq. Thus, the
Landweber iterative scheme might appear to be a retrograde step. Furthermore, if 0   p̃pxq ¤ 1 as is the
case for the point spread function of oscillatory shear rheometry, then 1 � pppfq ¤ 1 � p̃ppfq � 1 � pppfq2
and hence the rate of convergence of the Neumann iteration is substantially faster than that for the Landweber
iteration. Consequently, when reconstructing the solution h in equation (13) for exact data, with point spread
function ppxq � π�1sechpxq, applying 5 Neumann iterations (see Figure 3b) yields an approximation that is
comparable to applying 30 Landweber iterations (see Figure 5a). A more precise measure of convergence rate
at different frequencies f is given in Figure 6 which, for various values of n, shows plots of p1 � pppfqqn for
the Neumann iteration and plots of p1� pppfq2qn for the Landweber iteration.

Figure 5. Landweber iteration, after 30 iterations, for exact (a) (left) and non-exact data (b) (right), as for the
Neumann plots of Figure 4.

However, the data g̃pxq � pp � gqpxq is a strongly smoothed version of gpxq and a perturbation, εpxq say, to
this data gpxq results in a perturbation epxq to the solution hpxq that still satisfies the same convolution (14).
Thus, the difference in conditioning is not an issue. The key difference is the slower convergence rate, which
is actually an advantage now, as the number of iterations now provides far greater flexibility as a regularization
than is possible for the Neumann iteration. The application of 30 Landweber iteration for reconstructing the
solution hpxq in equation (13) for deconvolution with point spread function ppxq � π�1sechpxq for data
perturbed previously is shown in Figure 5b. The bimodal character of the solution is now clearly visible. This
result for 30 iterations of the Landweber iteration applied to noisy data, when compared with the corresponding
30 iterations of the Neumann of Figure 4c, illustrates the clear robustness of the Landweber iteration when
applied to experimental data. However, increasing the number of iterations eventually produces solutions
which contain oscillatory artifacts not present in the actual solution, indicating that the number of iterations
which achieve regularization has clearly been exceeded.
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Figure 6. A comparison of (a) (left) p1 � ppqk for the Neumann iteration with (b) (right) p1 � pp2qk for the
Landweber iteration for k � 1, 2, 4, 8, 16, 32.
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